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Abstract

Robust control design for quantum systems is a challenging and key task for practical technol-

ogy. In this work, we apply neural networks to learn the control problem for the semiclassical

Schrödinger equation, where the control variable is the potential given by an external field that

may contain uncertainties. Inspired by a relevant work [29], we incorporate the sampling-based

learning process into the training of networks, while combining with the fast time-splitting spec-

tral method for the Schrödinger equation in the semi-classical regime. The numerical results

have shown the efficiency and accuracy of our proposed deep learning approach.

1. Introduction

Control of quantum phenomena has been an important scientific problem in the emerging

quantum technology [16]. The control of quantum electronic states in physical systems has a

variety of applications such as quantum computers [4], control of photochemical processes [38]

and semiconductor lasers [18]. Detailed overviews of the quantum control field can be found in

survey papers and monographs [15, 43]. One issue of the controllability theory [35] aims to assess

the ability to steer a quantum system from an arbitrary initial state to a targeted final state,

under the impact of a control field such as a potential function, given possibly noisy observation

data.

Uncertainty Quantification (UQ) has drawn many attentions over the past decade. In simu-

lating physical systems, which are often modeled by differential equations, there are inevitably

modeling errors, imprecise measurements of the initial data or background coefficients, which

may bring uncertainties to the models. In this project, we study the semiclassical Schrödinger

equation with external potential that may contain uncertainties, and is treated as the control

variable. Let Ω be a bounded domain in R, the Schrödinger equation in the semiclassical regime

is described by a wave function ψ : Q 7→ C, iε∂tψ
ε = −ε

2

2
∆ψε + V (x, z)ψε, (x, t) ∈ Q× (0, T ),

ψ|t=0 = ψ0(x), x ∈ Ω ⊂ R,

(1.1)

where 0 < ε≪ 1 is the scaled Planck constant describing the microscopic and macroscopic scale

ratio. Here the solution ψ = ψ(t, x,z) is the electron wave function with initial condition ψ0(x),
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the potential V (x, z) ∈ L∞(Ω× Iz) is the control variable that models the external field and is

spatially dependent. Periodic boundary condition is assumed in our problem.

The uncertainty is described by the random variable z, which lies in the random space Iz

with a probability measure π(z)dz. We introduce the notation for the expected value of f(z)

in the random variable z,

⟨f⟩π(z) =
∫
f(z)π(z)dz. (1.2)

The solution to the Schrödinger equation is a complex valued wave function, whose nonlinear

transforms lead to probabilistic measures of the physical observables. The primary physical

quantities of interests include position density,

nε = |ψε|2, (1.3)

and current density

Jε = ε Im
(
ψε∇ψε

)
=

1

2i

(
ψε∇ψε − ψε∇ψε

)
. (1.4)

At each fixed z, with V being continuous and bounded, the Hamiltonian operator Hε defined

by

Hεψε = −ε
2

2
∆ψε + V (x, z)ψε

maps functions in H2(Rd) to L2(Rd) and is self-adjoint. The operator 1
iεH

ε generates a unitary,

strongly continuous semi-group on L2(Rd), which guarantees a unique solution of the Schrödinger

equation (1.1) that lie in the space [39]:

W (0, T ) :=

{
ϕ ∈ L2((0, T );H1

0 (Ω;C))
∣∣∣dϕ
dt
∈ L2((0, T );H−1(Ω;C))

}
.

As a literature review, we mention that there has been several work [2, 27] on boundary

control for the Schrödinger equation (1.1), where the observation is taken from the Dirichlet

or Neumann boundary data. In some references such as [7], the authors consider the quantum

system with evolution of its state |ψ(t)⟩ described by the Schrödinger equation
d

dt
|ψ(t)⟩ =

−iH(t)|ψ(t)⟩ with the initial condition |ψ(0)⟩ = |ψ0⟩. The Hamiltonian H(t) there corresponds

to a time-dependent control variable that contains random parameters. Their goal is to drive

the quantum ensemble from an initial state |ψ0⟩ to the target state |ψtarget⟩, by employing a

gradient-based learning method to optimize the control field. In [5, Section 7.3], the control

problem of a charged particle in a well potential was formulated, where in their setting the

potential field is time-dependent. We mention some other relevant work on stability estimates

and semiclassical limit of inverse problem for the Schrödinger equation [3, 8, 17, 26, 39].

We continue to mention several studies that are related to the inverse problems for the

Schrödinger equation or other models. For relevant inverse boundary value problems on this

topic, there are existing iterative methods applied to the Helmholtz equation [31], where one

starts with an initial guess of the boundary condition, then adjusts it iteratively by minimizing

functionals such as error norms between the calculated data and measured data. This could be
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extremely time-consuming since at each iteration step, a forward problem needs to be solved.

In the partial boundary data situation, there has been research on studying the linearized

inverse problem of recovering potential function for the time-independent Schrödinger equation

[47]. Moreover, for inverse potential problems, well-posedness of the continuous regularized

formulation was analyzed in both elliptic and parabolic problems, with conditional stability

estimates and error analysis for the discrete scheme studied in [10, 22].

The desired control problem can be described as the following: To which extend can the

wave solution ψε of (1.1) be perturbed by the control field–in our case the potential function

V , in order to reach the desired target state at the final time T? The above question can be

reformulated into an optimal control problem. At the final time T , given the target state ψtarget ,

let V be approximated by a neural network parameterized by θ, and λ > 0 be a regularization

coefficient, we aim to solve the following minimization problem:
min
θ
Jλ(V (θ)) = min

θ
||ψε(x, T ;θ)− ψtarget ||2L2(Ω) + λ ||V (x;θ)||2L2(Ω),

such that iε∂tψ
ε(x, t;θ) = −ε

2

2
∆ψε(x, t;θ) + V (x;θ)ψε(x, t;θ),

ψε(x, t = 0;θ) = ψ0(x).

(1.5)

if V is a deterministic potential, and
min
θ
Jλ(V (θ)) = min

θ
||ψε(x, T ;θ, z)− ψtarget(z)||2L2(Ω×Iz)

+ λ ||V (x;θ, z)||2L2(Ω×Iz)
,

such that iε∂tψ
ε(x, t;θ, z) = −ε

2

2
∆ψε(x, t;θ, z) + V (x;θ, z)ψε(x, t;θ, z),

ψε(x, t = 0;θ, z) = ψ0(x; z).

(1.6)

if the potential V contains uncertainty and the random variable is z.

In each particular problem setting, discretized form of the above loss function will be pre-

sented. We now highlight the main contributions of our work:

1. We take advantage of the rising trend of machine learning and use neural networks to

approximate the control variable considered as the potential field in the Schrödinger equa-

tion. Both deterministic and stochastic control functions are considered. A fully-connected

neural network is used for the deterministic problem, and the DeepONet [30] is applied in

the stochastic case.

2. During the training process, the Schrödinger equation in the semiclassical regime is solved

using the fast time-splitting spectral method to improve the computational efficiency and

accuracy of our algorithm.

3. We study and compare both cases when the observation data is associated with or with-

out noise, and propose different training strategies. For data without noise, the popular

stochastic gradient descent (SGD) method is used. For noisy data, we consider a Bayesian

framework and adopt the stochastic gradient Markov chain Monte Carlo (MCMC) ap-

proach to obtain robust learning results.
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The rest of the paper is organized as follows. In Section 2, we discuss the oscillatory behavior

of solution to the semiclassical Schrödinger equation in the random variable and mention the

numerical challenges even for the forward UQ problems. Our main methodology of using the

learning-based technique to solve the optimization problem (1.6) will be proposed in Section 3,

with numerical scheme for the forward problem introduced in subsection 3.1 and several neural

network approaches described in subsection 3.2. We conduct extensive numerical experiments

for both the deterministic and stochastic potential control problems and present the results in

Section 4. Conclusion and future work will be addressed lastly.

2. Regularity of solution in the random space

The semi-classical Schrödinger equation is a family of dispersive wave equations parameter-

ized by ε ≪ 1, it is well known that the wave equation propagates O(ε) scaled oscillations in

space and time. However, for UQ problems it is not obvious whether the small parameter ε in-

duces oscillations in the random variable z. We conduct a regularity analysis of ψ in the random

space, which enables us to study the oscillatory behavior of solution in the random space.

To investigate the regularity of the wave function in the z variable, we check the following

averaged norm

||ψ||Γ :=

(∫
Iz

∫
R3

|ψ(t,x, z)|2 dxπ(z)dz
)1/2

. (2.1)

First, observe that ∀ z ∈ Iz,
∂

∂t
∥ψε∥2L2

x
(t, z) = 0,

thus
d

dt
∥ψε∥2Γ = 0,

which indicates the Γ-norm of the wave function ψε is conserved in time, ψε∥Γ(t) = ∥ψε
in∥Γ .

Below we show that ψε has ε-scaled oscillations in z. As an example, we analyze first-

order partial derivative of ψε in z1 and denote ψ1 = ψε
z1 and V 1 = Vz1 . By differentiating the

semi-classical Schrödinger equation (1.1) with respect to z1, one gets

iεψ1
t = −ε

2

2
∆xψ

1 + V 1ψε + V ψ1.

Direct calculation leads to

d

dt
∥ψ1∥2Γ =

∫ (
ψ1
t ψ̄

1 + ψ1ψ̄1
t

)
πdxdz

=

∫ ( 1
iε
V 1ψεψ̄1 − 1

iε
V 1ψ1ψ̄ε

)
πdxdz

≤ 2

ε
∥ψ1∥Γ ∥V 1ψε∥Γ ,

where we use the Cauchy-Schwarz inequality and Jensen inequality in the last step, namely∫
V 1ψεψ̄1dx ≤

(∫
(V 1ψε)2dx

)1/2(∫
(ψ̄1)2dx

)1/2

,
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∫ ∫
V 1ψεψ̄1dxπ(z)dz ≤

(∫ (∫
V 1ψεψ̄1dx

)2

π(z)dz

)1/2

≤ ||V 1ψε||Γ ||ψ1||Γ .

Therefore,
d

dt
∥ψ1∥Γ ≤

1

ε
∥V 1ψε∥2Γ .

For t = O(1), this pessimistic estimate implies

∥ψ1∥Γ = O
(
ε−1
)
.

To summarize, in this part we emphasize the oscillatory behavior of the solution ψ in the

random space, which brings numerical challenges for the forward UQ problem. If one directly

adopts the generalized polynomial chaos (gPC)-based Galerkin methods or stochastic collocation

methods [44] to the semi-classical Schrödinger equation with random parameters, ε-dependent

basis functions or quadrature points are needed to get an accurate approximation. There has

been some work developed for this forward problem [11, 23], where in our inverse problem case

shares the similar difficulty. In the future work, to more efficiently sample from the random

space, we will adopt numerical solvers that can resolve the ε-oscillations in the random variable.

For simplicity of notations, we will omit the superscript ε in ψε and use ψ in the rest of the

paper.

3. Optimal control using neural networks

3.1. The time-splitting spectral method

In the semiclassical regime where ε ≪ 1, the solution to the Schrödinger equation (1.1) is

oscillatory both temporally and spatially, with an oscillation frequency of O(1/ε). This poses

tremendous computational challenges since one needs to numerically resolve, both spatially and

temporally, the small wave length of O(ε). The time-splitting spectral (TSSP) method, studied

by Bao, Jin and Markowich in [1], is one of the most popular and highly accurate methods for

such problems, where the meshing strategy ∆t = O(ε) and ∆x = O(ε) is required for moderate

values of ε. Moreover, in order to just compute accurately the physical observables (such as

position density, flux, and energy), one still needs to resolve the spatial oscillations, but the

time step ∆t = o(1) is much more relaxed [1, 20, 24]. Recently a rigorous uniform in ε error

estimate was obtained in [19], by using errors measured by a pseudo-metric in analogy to the

Wasserstain distance between a quantum density operator and a classical density in phase space,

with the regularity requirement for V being V ∈ C1,1.

In this section, we review the first-order time-splitting spectral method studied in [1, Section

2]. Consider an one-dimensional spatial variable and a given potential V (x). We choose the

spatial mesh size h = (b− a)/M for an even integer M , and the time step k = ∆t, let the grid

points and time step be

xj := a+ jh, tn := nk, j = 0, 1, · · · ,M, n = 0, 1, 2, · · · .
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For the time discretization, from t = tn to t = tn+1, the Schrödinger equation (1.1) is solved in

the following two steps. First, one solves

εψt − i
ε2

2
ψxx = 0, (3.1)

then

εψt + iV (x)ψ = 0, (3.2)

in the second step. We discretize (3.1) in space by the spectral method, then integrate in time

exactly. Note that the ODE (3.2) can be solved exactly.

Denote Ψn
j by the numerical approximation of the analytic solution ψ(tn, xj) to the Schrödinger

equation (1.1). Then the discretized scheme is given by

Ψ∗
j =

1

M

M/2−1∑
l=−M/2

e−iεkµ2
l /2 Ψ̂n

l e
iµl(xj−a), j = 0, 1, 2, · · · ,M − 1,

Ψn+1
j = e−iV (xj)k/εΨ∗

j ,

(3.3)

where the Fourier coefficients of Ψn is defined as

Ψ̂n
j =

M−1∑
j=0

Ψn
j e

−iµl(xj−a), µl =
2πl

b− a
, l = −M

2
, · · · , M

2
− 1,

with

Ψ0
j = ψ(0, xj), j = 0, 1, 2, · · · ,M.

We remark that instead of directly simulating the semi-classical Schrödinger equation, there

are quite a few other methods which are valid in the limit ε→ 0, see [25] for a general discussion.

In particular, many wave packets based methods have been introduced in past few years, which

reduce the full quantum dynamics to Gaussian wave packets dynamics [21]. In this work, we

simply adopt the TSSP method as our deterministic solver in the learning algorithm

3.2. Learning method for the control problem

Thanks to the nonlinear structure of deep neural network, it has shown great potential

in approximating high dimensional functions and overcoming the curse of dimensionality. In

recent years, deep learning has gained great success in solving high-dimensional PDEs, in both

forward and inverse problem settings [34, 45]. There have been studies that suggested learning-

based methods on solving general control problems, such as [14, 41]. Recently, in [32] the

authors proposed SympOCnet to solve high dimensional optimal control problems with state

constraints. The idea is to apply the Symplectic network, which can approximate arbitrary

symplectic transformations, to perform a change of variables in the phase space and solve the

forward Hamiltonian equation in the new coordinate system. In our work, we consider the control

problem for the semiclassical Schrödinger equation and adopt neural networks to approximate

the control field V that may contain uncertainties. The neural network parameterized potential
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function is learnt by minimizing the discrepancies between the state solution of the system with

neural network and the observation of the target state.

In this section, we will describe the neural network structures under two different prob-

lem settings: (i) the deterministic case where the underlying target potential is fixed; (ii) the

stochastic case where the target potential is parameterized by some random variables. In both

problems, we will validate the efficiency of our proposed method by using both clean and noisy

training data.

3.2.1. Deterministic problem

In the deterministic problem, our goal is to learn a single target function V (x) using the

neural network. In this case, the input of the neural network is the spatial variable {xk}, while
the output is the value of the potential function at xk, i.e., {V (xk)}, k = 1, · · · ,M . We will use

5 fully connected layers with 50 neurons per layer to build up the network. For the data points,

assume the spatial domain Ω ∈ R and temporal domain [0, T ], N equally distributed points in Ω

(where N ≪M) are taken, and the measurement data are the corresponding numerical solutions

of the wave function at time T . This implies that the data pairs are chosen as (xi, ψobs(xi))

for i = 1, · · · , N and ψobs(xi) ∼ N (ψ(xi), σ
2). In our numerical examples, we set N = 50 and

M = 1000. An illustration of the network for the deterministic problem is presented in Figure

1. As noticed from Figure 1, the input-output pairs for the fully connected neural network are

(xi, V (xi)). The output of the neural network, i.e. the potential function, is then used to solve

the forward Schrödinger equation by adopting the time-splitting spectral method. The predicted

solution obtained at the final time step ψ(x;T ) is then compared with the measurement data

ψobs(x;T ). The mismatch between the predicted solution and the measurement data will form

the loss function. A pseudocode is presented in Algorithm 1.

Figure 1: Illustration of the network for the deterministic problem.
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Algorithm 1 Deterministic case

INPUT: Neural network input {xi}Mi=1. Observation data {ψobs(xj , T )}Nj=1. Initialization of

neural network parameters θ0.

1: for For k ← 0 : #iterations do

2: Get the output of the neural network {V (xi;θk)}Mi=1.

3: Given V (x;θk), solve equation (1.1) by time-splitting spectral method and get the solu-

tion ψ(x, T ;θk).

4: Compute the mismatch between ψobs(x, T ) and ψ(x, T ;θk), and get the loss.

5: Use SGD type or SGLD method to update the network parameter and get θk+1.

OUTPUT: The solution of (1.1) ψ(xj , tm) at all spatial locations and all time steps of interest.

3.2.2. Stochastic problem

In the stochastic problem, our goal is to learn a set of functions described by a stochastic

potential function V (x; z) containing a random parameter z, by training the DNN. We will

utilize the DeepONet architecture developed in [30].

First we give a brief overview of DeepONet, which is a powerful tool designed to learn con-

tinuous nonlinear operators. Denote G by an operator with input function u; for any coordinate

y in the domain of G(u), the output G(u)(y) is a number. DeepONet aims to approximate G

with a neural network Gθ parameterized by θ, which takes inputs (u, y) and returns the output

G(u)(y). The architecture of DeepONet is composed of a branch net and a trunk net. In the

unstacked setting, the branch net encodes the discrete input function u into the features repre-

sented by [b1, · · · , bq], and the trunk net takes the coordinate y as input and encodes it into the

features represented by [t1, · · · , tq]. Then the dot product of b and t provides the final output

of DeepONet, i.e.

Gθ(u)(y) =

q∑
k=1

bk(u(x1), · · · , u(xN ))tk(y).

The parameter θ consists of all weights and biases in the branch and trunk net.

In our setting, we aim to approximate the parameterized potentials V (x; z) using Gθ that

takes the discrete data [ψobs(x1; z), · · · , ψobs(xN ; z)] and the coordinate yk as inputs. Here

k = 1, · · · ,M . We note that for each z, there are N sensors that provide the observation data

ψobs(·, z), thus the dataset size is equal to the product of M and the number of z samples.

The value of Gθ(ψobs(·; z))(yk) is a prediction of V (yk; z). Utilizing the predictions from the

DeepONet, namely V (yk; z) (k = 1, · · · ,M), the time-splitting spectral method is then applied

to compute the value of wave functions ψ(yk, z). We aim to minimize the mismatch between the

observations ψobs(xj , z) and the numerical solutions ψ(xj , z) at all sensor locations xj for all z.

An illustration of the network for the stochastic problem is presented in Figure 2. A pseudocode

is presented in Algorithm 2.
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Figure 2: Illustration of the network for the stochastic problem.

Algorithm 2 Stochastic case

INPUT: Neural network input {ψobs(xj , tm; zs)}Nj=1 for some stochastic samples zs, at few

time instances tm, as well as spatial points {yk}Mk=1. Observation data {ψobs(xj , T ; zs)}Nj=1.

Initialization of neural network parameters θ0.

1: for For k ← 0 : #iterations do

2: Get the output of the neural network {V (yk; zs;θk)}Mk=1.

3: For each V (x; zs;θk), solve equation (1.1) by time-splitting spectral method and get the

solutions ψ(x, t;θk) at all spatial points and time instances.

4: Compute the mismatch between {ψobs(xj , T ; zs)}Nj=1 and ψ(xj , T ; zs;θk) (at the obser-

vational spatial and temporal points) over all samples of zs, and get the loss.

5: Use SGLD method to update the network parameter and get θk+1.

OUTPUT: For each zs, the solution of (1.1) ψ(xj , tm; zs) at all spatial locations and all time

steps of interest.

3.2.3. Training of the neural network

When dealing with large-scale problems, traditional Bayesian inference methods, e.g., Markov

chain Monte Carlo (MCMC)[37] have shown disadvantages due to extremely expensive compu-

tational cost of handling the whole dataset at each iteration. To tackle problems with large

datasets, deep learning algorithms such as stochastic gradient descent (SGD) [36] are favorable
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and have been popularly used, since one only needs to employ a small subset of samples ran-

domly selected from the whole dataset at each iteration. To bring together advantages of these

two types of methods, Welling and Teh [42] first proposed the stochastic gradient Langevin dy-

namics (SGLD) (also known as stochastic gradient MCMC) method. It adds a suitable amount

of noise to the standard SGD and uses mini-batches to approximate the gradient of loss function.

With the help of decreasing training step size ηk, it has demonstrated powerful and provided a

transition between optimization and Bayesian posterior sampling [6].

We now briefly review the SGLD method. Denote D = {di}Ni=1 = {(xi,yi)}Ni=1 by a given

dataset, where xi is the input and yi is the corresponding noisy output. We let NN be a

neural network parameterized by the parameter θ; the goal of its training is to find suitable

parameters θ such that F (NN (xi;θ)) ≈ yi (i = 1, · · · , N). Due to the noise in measurement

data, we assume the parameters are associated with uncertainties and obey a prior distribution

p(θ). The uncertainties in the parameters θ can be captured through Bayesian inference to

avoid overfitting. Let dj be a mini-batch of data with size n, the likelihood can be written as

p(dj |θ) = 1

(2πσ2)n/2
exp

{
−

∑
xj
i∈dj

(yj
i − F (NN (xj

i ;θ)))
2

2σ2

}
,

where σ is standard deviation of the Gaussian likelihood. In our case, for the dataset dj =

(xj
i ,y

j
i ), x

i
j corresponds to the input [ψobs(x1; z), · · · , ψobs(xN ; z), y], yi

j corresponds to the labels

[ψobs(x1; z), · · · , ψobs(xN ; z)] and F maps the output of the neural network output NN (xi;θ)

which approximates V (y, z) to the quantities of interest ψ(y; z;T ) with T the final simulation

time. According to the Bayes’ theorem, the posterior distribution of θ, given the data D, then

follows p(θ|D) ∝ p(θ)
∏N

i=1 p(di|θ).
To sample from the posterior, one efficient proposal algorithm is to use the gradient of the

target distribution. Let ηk be the learning rate at epoch k and τ > 0 be the inverse temperature,

the parameters will be updated by SGLD based on the following rule:

θk+1 = θk + ηk∇θL̃(θk) +N (0, 2ηkτ
−1).

Here for a subset of n data points dj = {dj1, · · · , d
j
n},

∇θL̃(θ) = ∇θ log p(θ) +
N

n

n∑
i=1

∇θ log p(d
j
i |θ)

is the stochastic gradient computed by using a minibatch that approximate the true gradient of

the loss function ∇θL(θ).

However, if the components of the network parameters θ have different scales, the invariant

probability distribution for the Langevin equation is not isotropic. If one still uses a uniform

learning rate in each direction, this may leads to slow mixing [9, 12, 13, 28, 40, 46]. To incorpo-

rate the geometric information of the target posterior, stochastic Gradient Riemann Langevin

Dynamics (SGRLD) [33] generalizes SGLD on a Riemannian manifold. Consider the probability
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model on a Riemann manifold with some metric tensor P−1(θ), in SGRLD, the parameter is

updated at the k-th iteration by the following rule:

θk+1 = θk + ηk

[
P (θk)∇θL̃(θk) + Γ(θk)

]
+N (0, 2ηkτ

−1P (θk)) (3.4)

where Γi(θk) =
∑
j

∂Pij(θk)

∂θj
. One popular and computationally efficient approach to approxi-

mate P (θk) is to use a diagonal preconditioning matrix [28, 40], that is,

P (θk) = diag−1(λ+
√
V (θk)), (3.5)

V (θk) = (1− ωk)V (θk−1) + ωkg(θk) ◦ g(θk), (3.6)

where λ is a regularization constant, g(θk) = ∇θL̃(θk) is the stochastic gradient, the operator ◦
denotes a elementwise multiplication, and ωk ∈ (0, 1) is a weight parameter used in the moving

average V (θk). In our framework, we will use the preconditioned SGLD to train the network

parameters.

4. Numerical results

In our numerical experiments, we consider two types of potential functions, the deterministic

and stochastic potential. In the deterministic case, the potential V is only spatially dependent.

In the stochastic problem, the potential function V (·, z) is assumed to depend on a random

parameter characterized by z. In particular, we consider a simple example with V (x, z) =

(1 + 0.5z)x2, where z is a random variable following the uniform distribution in [−1, 1].

4.1. Test I: A Deterministic Potential

In the first problem setup, we assume the potential function as V (x) = x2. The network

architecture introduced in Section 3.2.1 is adopted, and we train the network by using standard

SGD and SGLD studied in Section 3.2.3. For the observation data, we choose it to be the

electron wave function ψ solved by the Schrödinger equation (1.1) at several spatial locations

and time instances using the forward TSSP solver, given the reference potential function V .

We first consider that there is no noise in the observation data and apply both SGD and

SGLD to train. The numerical results show that the wave function ψ obtained from the network

of both training algorithms matches well with the observation data, while it is also noticeable

that the SGLD gives a slightly better approximation of the potential function. We then consider

when some noise is added to the observation data, one can just apply SGLD to train the network

in order to more accurately capture the uncertainties in the target potential function.

4.1.1. V (x) = x2, no noise in the observation and by SGD

In this case, we let the reference potential function be V (x) = x2, here the observation

data is clean and without noise interference, SGD method is used in our training algorithm. In

the forward solver, the spatial mesh size is π/250 and the temporal mesh size is 6.25 × 10−4.
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Figure 3: Test I case 1: V (x) = x2, without noise in the observation and by SGD. (a) True and predicted value

of the potential function. (b) True and predicted value of the position density at time T . (c) True and predicted

value of the wave function at time T .

The learning rate is 10−4 and the total training epoch is 20000. In Figure 3 (a), a comparison

between the reference and predicted potential function obtained from the neural network is

shown. We observe that there is some mismatch in the region when x > 0, while the underlying

reason remains to be discovered. In Figure 3 (b)-(c), a comparison between the reference with

predicted position density nε and the wave function ψε (real and imaginary parts) is presented.

We conclude that the predicted wave and density functions at the final time T , which are

computed by solving the Schrödinger equation (1.1) under the neural network’s predicted output

potential, can provide good approximations to the solution quantities obtained by using the true

potential V (x) = x2 in the TSSP solver.

4.1.2. V (x) = x2, no noise in the observation and by SGLD

In the second case, the problem setup is the same as the previous case, while we apply SGLD

algorithm to train the neural network. In the forward solver, the spatial mesh size is π/1000

and the temporal mesh size is 3×10−3. The learning rate is 10−5 and the total training epoch is

12



(a) (b)

(c)

Figure 4: Test I case 2: V (x) = x2, without noise in the observation and by SGLD. (a) True and predictions of

the potential function. (b) True and predictions of the position density at time T . (c) True and predictions the

wave function at time T .

10000. A comparison between the reference and predicted potential function is shown in Figure

4 (a). According to the nature of SGLD, we collect samples of neural network’s parameters

during the training process, then compute the mean and standard deviation of output potential

functions (at each spatial point) obtained by using those parameter samples. The blue dashed

line represents the mean of the predicted potential V , and the confidence interval are depicted

by the shaded blue area in Figure ??. Based on these two tests, we observe that SGLD provides

more reliable results compared to the standard SGD, and the uncertainty is neglible in the

prediction since the data is clean.

In Figure 4 (b)-(c), we again present a comparison between the reference and predicted wave

function ψε or position density vε that is computed by the TSSP solver by using the predicted

mean value of the potential. Similar to the previous test, it is obvious that the predicted wave

or density can provide quite good approximations to the true data, i.e., the numerical solution

at final time T obtained by using the true potential V (x) = x2 in the TSSP solver.
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4.1.3. V (x) = x2, noisy data and by SGLD

In the thrid case, we consider some noise in the observation data and use SGLD to train

the network. The mesh size in the forward solver, the learning rate and the training epochs are

the same as in the previous subsection. We let the noise be a random variable that follows the

normal distribution with mean 0 and standard deviation 0.05. In Figure 5 (c), the yellow circles

are the noisy values of ψε at 50 equally spaced locations. A comparison between the reference,

i.e., V (x) = x2, with the predicted mean of the potential function is shown in Figure 5 (a). One

can observe that the predicted mean value is consistent with the reference potential, and the

blue shaded area indicates that there are some uncertainties due to the noisy data, compared to

the previous tests where there is no noise in the observation.

Similarly, we can see from Figure 5 (b)-(c), the predicted wave and density at final time T

that are computed using the mean of network’s predicted potential V , capture well the true

solution obtained by using V (x) = x2 in the TSSP solver. Therefore, we conclude that SGLD

can deal with the noisy data and provide reliable results.

4.2. Test II: A Stochastic Potential

In Test II, we consider a stochastic potential, V (x, z) = (1 + 0.5z)x2, where z follows the

uniform distribution on [−1, 1]. To generate the dataset, we first take eight Gauss-Legendre

points for z ∈ [−1, 1]. For each zk (k = 1, · · · ,K), i.e., each specific potential V (x; zk), we have

the corresponding noisy measurement data ψobs(x; zk) at the final time instance T = 0.6. The

observation ψobs(x; zk) ∼ N (ψ(x; zk), σ
2) where σ is the standard deviation. The wave functions

at the final time instance ψ(x; zk) is computed using the time-splitting spectral method on a

640 × 1000 temporal-spatial grid. Then for each zk we select N sensor locations to collect the

measurement data, the sensors are uniformly located in the spatial domain Ω = [−π/2, π/2].
We will take N = 20, 50 in the numerical tests. In the forward solver, the spatial mesh size

is π/1000 and the temporal mesh size is 6.25 × 10−4. The learning rate is 10−5 and the total

training epoch is 10000.

The input of the network then consists of the spatial evaluation point xi, and the real part

ℜ(ψobs(x1; zk)), · · · ,ℜ(ψobs(xN ; zk) and the imaginary part ℑ(ψobs(x1; zk)), · · · ,ℑ(ψobs(xN ; zk)

of the observation data. The output of the network is the value of potential at xi, i.e., V (xi; zk).

The number of training samples is equal to the product of M (the number of evaluation points

xi) and the number of z samples. We assume that the values of V (x, z) at the endpoints x = −π
2

and x = π
2 are known for the training samples. The loss function consists of three parts, (1) the

mismatch between the observation data ψobs(x; zk) and the ψ computed using neural network

predicted potential function, (2) the mismatch between the true potential and neural network

predicted potential at the endpoints of the spatial domain, and (3) a regularization term on the

potential. After training, we will obtain the full potential profile for different z samples. In the

testing stage, we will only have noisy observations of the wave function at final time T without

knowing any information of the true potential function. We will feed the a set of spatial location

14



(a) (b)

(c)

Figure 5: Test I case 3: V (x) = x2, noisy data and by SGLD. (a) True and predictions (with confidence interval)

of the potential function. (b) True and predictions of the position density at time T . (c) True and predictions

the wave function at time T .
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xi as well as the observation data into the neural network, and obtain the predictions of the

potential evaluated at these points xi.

We first show the predictions of V (x; z) for some training samples of z when there are

50 sensors and ψobs(x; z) ∼ N (ψ(x; z), 0.05). The comparison of predictions and references

of V (x; z) = (1 + 0.5z)x2 for four different z values (z = [0.9603, 0.7967, 0.5255, 0.1834]) are

presented on the left of Figure 6. The expected value of V over the random variable z are

computed using 8 Legendre quadrature points in the interval z ∈ [−1, 1], and the comparison

of the predicted mean and reference mean are shown on the right of Figure 6. With large

numbers of observation data and suitable amount of noise in the data, the neural network can

provide reasonable approximations for the potential functions. The corresponding predictions

of wave function ψ (computed using predicted potential functions) at the final time T = 0.6

with different values of z are shown in Figures 7, 8. We observe good agreements between the

predictions and the true values of the wave functions. A testing case for z = 0.0976 is shown in

Figure 9. It shows that our trained neural network can generalize well to new samples of z.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
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DNN prediction

Figure 6: Test II, true and predicted value of the potential function V (x; z) = (1 + 0.5z)x2 when the number of

sensors is 50. Left: different zs, right: mean prediction with respect to z.

Figure 7: Test II, true and predicted value of the potential function ψ at final time T = 0.6, for a training sample

z = 0.9603, 50 sensors.
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Figure 8: Test II, true and predicted value of the potential function ψ at final time T = 0.6, for a training sample

z = −0.9603, 50 sensors.

Figure 9: Test II, testing case: z = 0.0976. True and predicted value of the potential function ψ at final time

T = 0.6, 50 sensors.

We then show the predictions of V (x; z) when there are 20 sensors and ψobs(x; z) ∼ N (ψ(x; z), 0.02),

that is, the number of sensors are getting smaller and the noise in the observation data is also

less. In this case, the predictions of the potential function for z = [0.9603, 0.7967, 0.5255, 0.1834]

are shown in Figure 10. The corresponding predictions of wave function ψ with different values

of z = [0.9603,−0.9603] are shown in Figure 11 and 12, respectively. In addition, a testing case

for z = −0.57315 is presented in 13.

We observe that the results are still quite satisfactory under this test setting. This indicates

our proposed network architecture and training algorithm can work well to learn the target

stochastic potential, when the observation data is corrupted with a reasonable amount of noise.

5. Conclusion and future work

In this work, we adopt deep learning approach to learn the control variate in the inverse

or control problem described by the Schrödinger equation in the semiclassical regime. With

the choice of appropriate deep neural networks, we apply our framework to learn both the

deterministic and stochastic control functions known as the potential. During the training

process, the forward problem is solved by utilizing the efficient time-splitting spectral method,

which guarantees the accuracy and enhances computational efficiency for the highly-oscillatory
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Figure 10: Test II, 20 sensors, true and predicted value of the potential function V (x; z) = (1 + 0.5z)x2. Left:

different zs, right: mean prediction with respect to z.

Figure 11: Test II, 20 sensors, true and predicted value of the potential function ψ at final time T = 1.0, for a

training sample z = 0.0.7967.

Figure 12: Test II, 20 sensors, true and predicted value of the potential function ψ at final time T = 1.0, for a

training sample z = −0.9603.

Schrödinger equation. We then develop a learning-based optimal control strategy by training

neural networks to learn the control variate, considering observation data with or without noise.

Our numerical results show that more reliable predictions can be obtained by adopting the SGLD
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Figure 13: Test II, 50 sensors, testing case: z = −0.57315. True and predicted value of the potential function ψ

at final time T = 1.0.

algorithm. We address the importance of our work by the following: (i) we investigate a new

problem that is barely studied in the scientific computing fields; (ii) we introduce a novel hybrid

NN-TSSP method as a deep learning approach to study the potential control problem described

by the Schrödinger equation; (iii) the TSSP method as the forward solver in the sampling process

is crucial, as the small parameter in the Schrödinger equation brings numerical challenges.

We mention some limitations of the current work, thus propose them as future works listed

below. In the loss function during the training process, one can try to minimize the variance

of the solution for more robust control. Besides, we shall investigate higher-dimensional space

problem for the Schrödinger equation, where other efficient schemes such as Gaussian wave

packet based schemes can be adapted. Finally, more complicated potential function that depend

on the temporal variable will be studied, in order to explore more general cases with practical

applications for the quantum control problem.
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