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Abstract

Since inverse problems are usually ill-posed it is necessary to use some method to reduce their deficiencies. The method

that we choose is the regularization by derivative matrices. When a first derivative matrix is used the order is called the first.

Then, second-order regularization is when the matrix is formed by second-order differences, and order zero means that the

regularization matrix is the identity. There is a crucial problem in regularization, which is the selection of the regularization

parameter l. We used the L-curve as a tool for the selection of l, and we propose a new extension, which we call the Y-

curve. The tool was applied in geophysical diffraction tomography in two acquisition geometries: cross-hole and vertical

seismic profile (VSP), where the goal is to obtain the 2-D velocity distribution from the measured values of the scattered

acoustic field. We present several simulation results with synthetic data, for the three regularization orders mentioned

above. We validate the necessity of some kind of regularization, as well as the feasibility of both parameter selection

approaches.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The main purpose of exploration geophysics for
hydrocarbons is to provide trustworthy images of
the subsurface, which can indicate potential hydro-
carbon reservoirs. Exploration seismology, better
known as seismics, is the area of applied geophysics
most employed for the subsurface imaging in
hydrocarbons reservoirs. And within seismics,
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tomography is incorporated as a suitable method
of data inversion. In this work, we use geophysical
diffraction tomography where the input data is the
scattered acoustic field measured at the receivers,
and the velocity of the 2-D medium is the inversion
output. Instead of using the classical approach of
diffraction tomography in geophysics, i.e., the
Fourier projection theorem (Devaney, 1984; Slaney
et al., 1984; Wu and Toksöz, 1987), we use a matrix
formulation approach (Thompson et al., 1994;
Reiter and Rodi, 1996; Rocha Filho et al., 1996,
1997). The main advantages of the matrix for-
mulation are: (1) the option of having irregular
spacing (i) between sources, (ii) between receivers
.
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and (iii) between sources and receivers (all very
common in practical situations with real data); and
(2) the possibility to study, in a better way, the ill-
posedness of the inverse problem. The main
disadvantage is the cost in terms of computation
time. For forward modeling, we compute the
scattered acoustic field from a given 2-D velocity
distribution. The field is obtained by a second-order
finite difference scheme and the tomographic matrix
by a first-order Born approximation. One common
way to calculate the inverse matrix is by the
generalized inverse through singular value decom-
position (SVD).

Since geophysical diffraction tomography is an
ill-posed inverse problem, it is necessary to use some
tool to reduce this deficiency. The tool that we
choose is the regularization of the inverse problem
by derivative matrices, known in the literature by
several names, (e.g. the Tikhonov regularization).
This tool has an important input parameter called
the regularization parameter l.

In the last 10 years researchers have studied the
problem of finding the optimum value of l in
geophysical applications. One of first works was
done by Ray and Sanchez (1994), who used
regularization and the L-curve to raw tidal estimates
based on Geosat altimeter data. The estimation is
based on fitting specific functions called Proudman
functions as a spatial basis, which is formulated as a
linear system. The fitting coefficients are obtained
solving the corresponding least-squares problem
using zero-order regularization. Then, L-curve is
applied to obtain the optimal regularization para-
meter. Yao and Roberts (1999), presented an
algorithm for the practical choice of the regulariza-
tion parameter in linear seismic tomographic inver-
sion. Two criteria for the choice of the regulari-
zation parameter were investigated. The first
approach assumes that the norm of the errors in
observed data is known accurately and searches the
regularization parameter associated with this error
using Newton’s method. The second approach is the
application of the generalized cross-validation
(GCV), which chooses the regularization parameter
associated with the best average prediction for all
possible omissions of one datum, corresponding to
the minimum of the GCV function. More recently,
Farquharson and Oldenburg (2004) compared two
automatic ways of estimating the best regularization
parameter to non-linear inverse problems: the GCV
and L-curve. These criteria initially proposed
for linear problems are applied to each iteration
of linearized inverse problems, in a typical itera-
tive process to obtain the linearized solution to
the corresponding non-linear problem. Thus,
the best l is estimated for each linearized iteration.
To ensure that the regularization parameter de-
creases along iterations, an attenuation factor is
multiplied by the regularization parameter at the
last iteration to limit the next maximum allowable
parameter.

Some other relevant works that consider the
aspect of parameter selection, either generally, or in
geophysical applications are Hansen (1992, 1998),
Bouman and Sauer (1993), Hansen and O’Leary
(1993), Hanke (1996), Hanke and Raus (1996),
Reginska (1996), Vogel (1996), Belge et al. (2002),
Calvetti et al. (1999), Kilmer and O’Leary (2001),
Soupios et al. (2001, 2003), Castellanos et al. (2002)
and McCarthy (2003).

In the present work, to our knowledge the first
one in geophysical diffraction tomography using
regularization with search for the optimum para-
meter, we employ the L-curve and an extension of it,
which we call the Y-curve, in cross-hole and vertical
seismic profile (VSP) geophysical diffraction tomo-
graphy. In the L-curve the x-axis represents the
error between the observed data and the calculated
one, and the y-axis represents the amount of
regularization of the solution. The L-curve was
reintroduced in the literature of inverse problems by
Hansen (1992, 1998) and he also produced a
toolbox (Hansen, 1992). Hansen’s book (1998) is a
very good source of information for a more rigorous
treatment of the L-curve.
2. Regularization, L- and H-curve

Consider a modeling process where the input of a
system is described by certain parameters contained
in m and the output is described as Am( ¼ d) which
is a linear transformation on m. If the vector d

describes the observed output of the system, the
problem is to ‘‘choose’’ the parameters m in order to
minimize in some sense, the difference between the
observed d and the prescribed output of the system
Am. If we measure this difference through the norm
JdJ, our task is to find the value of m that minimizes
JAm�dJ2, where the M�N matrix A and the data
vector d with M elements are provided. This is
called a least-squares problem, which can be
formally stated as follows. Considering the basic
relationship d ¼ Am, we wish to minimize the error
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Fig. 1. Schematic representation of L-curve.
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using the following objective function:

FðmÞ ¼ ðd� AmÞT � ðd� AmÞ. (1)

The estimated solution, also called least-squares
solution, is

mest ¼ ðATAÞ�1ATd. (2)

Least-squares solutions very often do not provide
good results and sometimes they do not even exist.
In order to solve this problem we use a tool of
regularization or smoothing: the ill-conditioning of
the matrix A is regularized and the unstable least-
squares estimate mest is consequently smoothed to
greatly reduce the possibility of wild noise-induced
fluctuation in d, hopefully without distorting the
resulting smoothed image too far from the true m

(Titterington, 1985).
The concept of regularization was introduced by

Tikhonov in 1963 in order to improve the quality of
the inversion. This theory was studied by many
researchers, and we use the Twomey (1963)
approach. See Bassrei and Rodi (1993) about the
names and history in regularization theory. Con-
sider the following objective function:

FðmÞ ¼ lðDlmÞ
TDlmþ eTe, (3)

where l is the regularization parameter and Dl is the
lth-order derivative matrix. If qF(m)/qm ¼ 0, then
the estimated model is given by

mest ¼ ðATAþ lDT
l DlÞ

�1ATd. (4)

Notice that if l ¼ 0 we obtain the standard
least squares, and the least squares is said to be
damped if D0

TD0 ¼ I. If D is the first der-
ivative matrix then the regularization is called
to be first order and so on. Each 2D model is
scanned line by line to be represented by a single
vector, i.e., rasterized. It simplifies the form of the
discrete derivative approximation matrix, which
resembles a regular pattern. Thus, the matrices D1

and D2 may be schematized by the following
templates:

D1 ¼

�1 1 0 0 0 0 0 . . . 0

0 �1 1 0 0 0 0 . . . 0

..

. ..
. . .

. ..
.

. . .

0 . . . 0 0 0 0 �1 1 0

0 . . . 0 0 0 0 0 �1 1

0
BBBBBB@

1
CCCCCCA

(5)
and

D2 ¼

1 �2 1 0 0 0 0 . . . 0

0 1 �2 1 0 0 0 . . . 0

..

. . .
.

. . .

0 . . . 0 0 0 1 �2 1 0

0 . . . 0 0 0 0 1 �2 1

0
BBBBBB@

1
CCCCCCA
.

(6)

The L-curve knee (Fig. 1) represents a trade-off
between smoother solutions with higher errors and
rougher solutions with smaller errors. Thus, the
knee detection at the L-curve is an heuristic
criterion to select the most appropriate solution.
Solutions near to the curve knee are also acceptable.
Thus, one can achieve a solution that simulta-
neously satisfies the criteria of error minimization,
smoothness and also with physical meaning.

The detection of the L-curve corner was per-
formed using Hansen’s toolbox. A number of
different definitions have been proposed for the
best estimation of the L-curve corner (Calvetti et al.,
2002; Belge et al., 2002; Kilmer and O’Leary, 2001;
Hansen, 1992, 1998).

Considering this curve approximately L-shaped,
one can find its knee searching the maximum
curvature point (Hansen, 1992; Hansen and
O’Leary, 1993). Although, secondary inflexions
may occur, which may result in the wrong detection
of the best regularization parameter. Thus, the
automatic method of knee detection adopted in this
toolbox may lead sometimes to inadequate regular-
ization parameters. Due to this problem, sometimes
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it is necessary to select the best regularization
parameter by visual inspection of the L-curve and
a manual detection of its knee. Belge et al. (2002)
adopted the point closest to the origin of L-curve
graph as an estimation of the L-curve corner. It
works fine when the curve is clearly L-shaped, but it
may fail when the inflexion at knee significantly
differs from a straight angle because other points
outside knee may be closer to the origin.

Thus, a criterion that identifies the L-curve corner
should be flexible enough to tolerate certain
deviations from its ideal L-shape and still correctly
identifies correctly its corner. We adopted a
different criterion based on a curve representing
the cosine of angles between adjacent segments of
L-curve discrete representation, which we named
Y-curve. Where the curve is locally straight, the angle
tends to zero, leading the cosine of this angle to one.
Near the L-curve knee, the angle tends to be greater
than its neighbors, leading the cosine to values less
than one. Thus, smaller cosine values are associated
with inflexions of the curve, which lead us to inspect
the minima of the Y-curve to find the knee of the L-
curve and consequently the best regularization
parameter (Fig. 2). The method developed to select
the best regularization parameter is based on the
detection of the first local minimum of the Y-curve.
This minimum is automatically detected where the
first derivative is close to zero and the second
derivative is positive, adopting thresholds due to
the discretization and arithmetic computer precision.
Thus, the first occurrence of minimum at Y-curve is
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Fig. 2. Schematic representation for the construction of Y-curve.
associated with the knee of L-curve, giving us
the best regularization parameter. Further infle-
xions of the L-curve were discarded because only
the first local minimum of Y-curve is associated with
L-curve knee. This avoids the wrong regularization
parameter detection described before, when one
adopts the criterion of maximum curvature of the
L-curve.

3. Diffraction tomography modeling via Born

approximation

The wave equation is given by

r2Uðr; tÞ ¼
1

c2ðrÞ

q2Uðr; tÞ
qt2

, (7)

where U(r, t) is the solution, either displacement or
pressure, and c(r) is the acoustic velocity of the
medium. Considering that the solution can be
written as U(r,o,t) ¼ e�iotP(r,o), which represents
a harmonic dependence with time, we obtain the
Helmholtz equation:

½r2 þ k2
�Pðr;oÞ ¼ 0, (8)

where the two-dimensional (2-D) wavenumber is

given by k ¼ kðr;oÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
. The conditions

for the imaging are that the medium is acoustic and
2-D, and the propagation of the incident field is
within a limited area A(r0), the background,
with constant velocity c0. The object function is
defined as

OðrÞ ¼ 1�
c20

c2ðrÞ
(9)

and represents the perturbation of the velocity in
each point in relation to c0. Redefining the
wavenumber as function of O(r), and substituting
it in the Helmholtz equation, we obtain

½r2 þ k2
�PS ¼ k2

0OðrÞ½PO þ PS�, (10)

where PO is the incident field and PS is the scattered
field. The last differential equation has the following
integral solution, known as Lippmann–Schwinger
equation (Lo and Inderwiesen, 1994):

PSðrÞ ¼ �k2
0

Z
Aðr0Þ

Oðr0ÞGðrjr0Þ½POðr
0Þ þ PSðr

0Þ�dr0.

(11)

In the inverse scattering procedure, we consider
the knowledge of the scattered field, so that the
object function is the unknown function, and the
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Fig. 3. Example 2—plus pod model. 3-D representation of the

true model.

Table 1

lbest and �
c
rms (%) of all simulations

Model Method lbest �crms (%)

Example 1—diffractor point cross-hole Order 0: L-curve 0.0008 0.0742

Order 0: Y-curve 0.0666 0.0572

Order 1: L-curve 0.0006 0.0687

Order 1: Y-curve 0.0769 0.0520

Order 2: L-curve 0.0003 0.0703

Order 2: Y-curve 0.0514 0.0505

Least squares — 0.0568

Example 2—plus pod cross-hole Order 0: L-curve 0.0060 0.6895

Order 0: Y-curve 0.0045 0.7750

Order 1: L-curve 0.0111 0.5175

Order 1: Y-curve 0.0061 0.5506

Order 2: L-curve 0.0041 0.5331

Order 2: Y-curve 0.0038 0.5385

Least squares — 2.6842

Example 3—reef cross-hole Order 0: L-curve 0.1234 0.5130

Order 0: Y-curve 0.1322 0.5107

Order 1: L-curve 0.1599 0.5125

Order 1: Y-curve 0.3035 0.4823

Order 2: L-curve 0.2449 0.5309

Order 2: Y-curve 0.4784 0.4856

Least squares — 0.5260

Example 4—reef VSP Order 0: L-curve 0.2139 0.5953

Order 0: Y-curve 0.2256 0.5938

Order 1: L-curve 0.2783 0.5494

Order 1: Y-curve 0.2971 0.5456

Order 2: L-curve 0.8463 0.5278

Order 2: Y-curve 0.5867 0.5423

Least squares — 0.6076
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integral solution becomes an integral equation. The
above equation is non-linear and the linearization is
achieved, for example, via the first-order Born
approximation, which is only valid for the weak
scattering of the incident field. The total field is
PT(r) ¼ PO(r)+PS(r) and PS(r)5PO(r), so that we
have PT(r) ¼ PO(r). Thus we obtain a linear relation
between O(r) and PS(r):

PSðrÞ ¼ �k2
0

Z
Aðr0Þ

Oðr0ÞGðrjr0ÞPOðr
0Þdr0. (12)

We represent the incident field by a source in rS

through the Green’s function:

POðr
0Þ ¼ Gðr0jrSÞ (13)

and the scattered field in A(r) is registered by a
receptor in rG:

PSðrS; rGÞ ¼ �k2
0

Z
Aðr0Þ

Oðr0ÞGðr0jrSÞGðrGjr
0Þdr0.

(14)
The discretization of the above relation leads to
the linear relation d ¼ Am, which has to be inverted
in order to recover O(r). In this work the inversion is
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done using SVD with regularization, which we
described earlier.

4. Numerical simulation

We explore these two approaches for the selection
of the regularization parameter in four synthetic
examples, all with 225 blocks (15� 15), i.e., the
vector of model parameters has 225 components. In
all numerical experiments there are 16 sources and
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Fig. 4. Example 2—plus pod model. L-curve for second order.
16 receivers, in such a way that the data set has 256
complex numbers. Since we separate the complex
numbers into real and imaginary parts, we have in
fact 512 numbers, making the tomographic matrix
overdetermined (512 equations� 225 unknowns).
The frequency of the monochromatic wave is
200Hz, and all the simulations were performed
with noisy data. Basically we added Gaussian noise
was added such that the RMS error between the
original scattered field and the corrupted one is
0 25 30 35 40

2
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0.69447
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Fig. 5. Example 2—plus pod model. Reconstruction with best

regularization parameter obtained from Fig. 4.
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Fig. 8. Example 2—plus pod model. Least squares reconstruction.
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around 1%. For each example and for each order,
we produced three L-curves and three Y-curves.
Due to space limitations we show only some of the
results although all simulations are summarized in
Table 1, where the estimator �c

rms express the rms
error of the acoustic velocity:

�c
rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðc

true
i � cest

i Þ
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðc
true
i Þ

2
q � 100%. (15)

The scattered field was computed using a second
order in time and fourth order in space, finite
differences scheme. We adopted a Ricker’s wavelet
centered around 200Hz as the source, propagating
through the medium limited by absorbing bound-
aries. The calculation of the scattered field can be
separated into two steps: first we compute the
primary field assuming a homogeneous medium
with background velocity. Then we use the velocity
model to compute the total field. We obtain the
scattered field subtracting the primary field from the
total field. The resulting scattered field was decon-
volved at 200Hz as center frequency in order to
perform a monochromatic inversion. The calculated
field at the source position has some differences of
amplitude and phase in relation to the original
Ricker’s wavelet due to the modeling, which were
adjusted using an average complex correction
factor.

The first synthetic example simulates the diffrac-
tor point. The background medium has 4000m/s,
and the inhomogeneity (diffractor point) is repre-
sented by a single block with 4100m/s, which means
a 2.5% positive anomaly. The diffractor point is in
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Fig. 7. Example 2—plus pod model. Reconstruction with best

regularization parameter obtained from Fig. 6.
fact a 10m� 10m square or half-wavelength� half-
wavelength. Due to space limitations no figures are
presented for this example, but from Table 1 one
can conclude that for the first and second orders the
regularized solution using the Y-curve was better
than least squares. In all three orders the solutions
obtained from the Y-curve had smaller �c

rms than the
ones obtained from L-curve. This discrepancy
between the regularization parameters obtained
from the two approaches was more accentuated in
this example. In the other three sets of simulations
the obtained parameters from the two approaches
were close, sometimes the same.

In the second example there is a homogeneous
inclusion in the form of a plus pod within the
homogeneous background, which has 3000m/s. The
inclusion (plus pod) has 3300m/s, which represents
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Fig. 9. Example 3—simple reef model. Cross-hole and VSP

geometries data acquisition. 3-D representation of the true

model.
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a positive anomaly of 10%. The plus pod true
model can be seen as a 3-D diagram in Fig. 3. In
terms of wavelength, the plus pod has a diameter of
5.3 wavelengths. Fig. 4 shows the L-curve for the
second order and Fig. 5 shows the reconstruction.
Hansen’s package provided the best parameter as
0.0041. Here the L-curve obtained is more or less
like the letter L shape. TheY-curve for second order
can be seen in Fig. 6 and the reconstruction in
Fig. 7. Notice that the visualization of the first,
0 5 10 15 20
0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

4.1975e-007 0.0001111 0.00

Fig. 12. Example 3—simple reef model. Cross-hole geo

10-2 10-1 100
10-6

10
-4

10
-2

10
0

10
2

10
4

221.1981

23.7516

2.5504

0.27385

0.029405

0.0031575

0.00033904

3.6405e-005

3.9091e-006

4.1975e-007

residual norm || A x - b ||2

s
o
lu

ti
o
n
 s

e
m

i-
n
o
rm

 |
| 
L
 x

 |
| 2

Fig. 10. Example 3—simple reef model. Cross-hole geometry

data acquisition. L-curve for second order.
and in this case the global minimum, is straightfor-
ward, different from the corner visualization in
the L-curve. The least-squares solution is pre-
sented in Fig. 8. Comparing Figs. 5 and 8, or
Figs. 7 and 8, we can conclude the necessity of
some kind of regularization. Comparing Figs. 5
and 7 we can conclude that the two approaches
gave similar results, which is confirmed when we
compare the regularization parameters and the �crms

estimator.
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meter obtained from Fig. 10.
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The third example, displayed in Fig. 9, is a simple
representation of a reef, as a possible oil reservoir.
The acquisition geometry is still the cross-hole, like
the first and the second examples. There is also a
low velocity layer. The background medium has
4000m/s. The low velocity layer has 3900m/s, which
means a minus 2.5% contrast. The central inhomo-
geneity (the reef) has 4100m/s which is equivalent to
a plus 2.5% anomaly. In terms of wavelength the
reef is 3.5 wavelengths� 1 wavelength, and the low
velocity layer is 7.5 wavelengths� 1 wavelength.
Fig. 10 shows the L-curve for second order and
Fig. 11 shows the reconstruction. This is a practical
example where the L-curve does not have a typical
letter L shape, in such a way that it is difficult to see
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Fig. 14. Example 3—simple reef model. Cross-hole geometry

data acquisition. Least-squares reconstruction.
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Fig. 13. Example 3—simple reef model. Cross-hole geometry

data acquisition. Reconstruction with best regularization para-

meter obtained from Fig. 12.
the location of the L-curve corner. Hansen’s
package provided the best parameter as 0.2449.
For the same order the Y-curve can be seen in
Fig. 12, where we can see that the first minimum is
0.4784. As mentioned earlier we always consider
only the first minimum. With this value we obtained
the reconstructed tomogram showed in Fig. 13. The
two results, i.e., Figs. 11 and 13 are very similar
despite some difference in the �c

rms estimator. The
least-squares solution is presented in Fig. 14. This
last result is not as bad as in the previous example,
but again we see that regularization is necessary.

For the VSP geometry, the true model is the same
as shown in Fig. 9. The sources are still located in a
hole but the receivers are now located at the surface.
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Fig. 15. Example 4—simple reef model. VSP geometry data

acquisition. L-curve for second order.
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Fig. 16. Example 4—simple reef model. VSP geometry data

acquisition. Reconstruction with best regularization parameter

obtained from Fig. 15.
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Fig. 18. Example 4—simple reef model. VSP geometry data

acquisition. Reconstruction with best regularization parameter

obtained from Fig. 17.
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Fig. 19. Example 4—simple reef model. VSP geometry data

acquisition. Least-squares reconstruction.
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Fig. 17. Example 4—simple reef model. VSP geometry data acquisition. Y-curve for second order.
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Fig. 15 shows the L-curve for second order and
Fig. 16 shows the reconstruction. Here the L-curve
obtained is more or less like the letter L shape,
although the corner location is not obvious. For the
same order, the Y-curve can be seen in Fig. 17 and
the reconstructed tomogram in Fig. 18. The results
obtained using both criteria for the selection of the
optimum regularization parameter were very similar
in this case. We may also observe similar �crms

estimators for both criteria. The least-squares
solution is presented in Fig. 19. Once more the
result without regularization shows clearly the
necessity of regularization combined with appro-
priate selection of the optimum regularization
parameter.

5. Conclusions

From four sets of overdetermined synthetic
examples corrupted by noise and with an ill-
conditioned kernel matrix we have shown that the
regularization algorithm in question, together with
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its related approaches for the selection of the
regularization parameter, is feasible in linear geo-
physical diffraction tomography. The two last sets
represent the same simple geological model but with
different acquisition geometries, cross-hole and
VSP, this last one very common in geophysical
exploration for hydrocarbon reservoirs. The com-
parison with non-regularized solution confirms the
necessity of some kind of regularization. We
considered three orders of regularization, where
the order of regularization is equivalent to the order
of the derivative matrix. One crucial aspect here is
the selection of regularization parameter, usually
chosen by some trial and error approach. We used
the L-curve and we proposed a variation of it, which
we named Y-curve. The results were consistent,
providing good to excellent approximations of the
true model, even considering that Gaussian noise
was always added to the scattered field, and the
observed data was not exact, i.e., it did not came
from the first-order Born series, but from a finite
differences scheme. Natural extensions of this work
are the application of this formulation to a layered
medium background, and application to real data
waveform.
Acknowledgments

This work is part of the projects ‘‘Multi-dimen-
sional and spectral seismic processing in high-
resolution seismo-stratigraphy’’ (edict CTPETRO/
CNPq-FINEP 03/2001), and ‘‘Development of
techniques and algorithms for improvement
of subsurface imaging and seismic processing’’
(edict CTPETRO/CNPq 01/2003). The authors
also would like to thank the support from
PETROBRAS.
References

Bassrei, A., Rodi, W.L., 1993. Regularization and inversion of

linear geophysical data. In: Proceedings of the Third

International Congress of the Brazilian Geophysical Society,

Rio de Janeiro, Brazil, vol. 1, pp. 111–116.

Belge, M., Kilmer, M.E., Miller, E.L., 2002. Efficient determina-

tion of multiple regularization parameters in a generalized

L-curve framework. Inverse Problems 18, 1161–1183.

Bouman, C., Sauer, K., 1993. A generalized gaussian image

model for edge-preserving map estimation. Institute of

Electrical and Electronics Engineers Transactions on Image

Processing 2, 296–310.
Calvetti, D., Golub, G.H., Reichel, L., 1999. Estimation of the

L-curve via Lanczos bidiagonalization. BIT (Nordisk

Tiddskrift for Informationsbehandling) 39, 603–619.

Calvetti, D.P., Hansen, P.C., Reichel, L., 2002. L-curve curvature

bounds via Lanczos bidiagonalization. Electronic Transac-

tions on Numerical Analysis 14, 20–35.

Castellanos, J.L., Gomez, S., Guerra, V., 2002. The triangle

method for finding the corner of the L-curve. Applied

Numerical Mathematics 43, 359–373.

Devaney, A.J., 1984. Geophysical diffraction tomography.

Institute of Electrical and Electronics Engineers Transactions

on Geoscience and Remote Sensing 22, 3–13.

Farquharson, C.G., Oldenburg, D.W., 2004. A comparison of

automatic techniques for estimating the regularization para-

meter in non-linear inverse problems. Geophysical Journal

International (156), 411–425.

Hanke, M., 1996. Limitation of the L-curve method in ill-posed

problems. BIT (Nordisk Tidsskrift for Informationsbehand-

ling) 36, 287–301.

Hanke, M., Raus, T., 1996. A general heuristic for choosing the

regularization parameter in ill-posed problems. Society for

Industrial and Applied Mathematics Journal on Scientific

Computating 17, 956–972.

Hansen, P.C., 1992. Analysis of discrete ill-posed problems by

means of the L-curve. Society for Industrial and Applied

Mathematics Review 34, 561–580.

Hansen, P.C., 1998. Rank-deficient and Discrete Ill-posed

Problems—Numerical Aspects of Linear Inversion. Society

for Industrial and Applied Mathematics, Philadelphia, 247pp.

Hansen, P.C., O’Leary, D.P., 1993. The use of the L-curve in the

regularization of discrete ill-posed problems. Society for

Industrial and Applied Mathematics Journal on Scientific

Computating 14, 1487–1503.

Kilmer, M.E., O’Leary, D.P., 2001. Choosing Regularization

Parameters in Iterative methods for ill-posed problems.

Society for Industrial and Applied Mathematics Journal on

Matrix Analysis and Applications 22, 1204–1221.

Lo, T.-W., Inderwiesen, P.L., 1994. Fundamentals of Seismic

Tomography. Geophysical Monograph Series, Tulsa, OK,

178pp.

McCarthy, P.J., 2003. Direct analytic model of the L-curve for

Tikhonov regularization parameter selection. Inverse Pro-

blems 19, 643–663.

Ray, R.D., Sanchez, B.V., 1994. Improved smoothing of a

altimetric ocean-tide model with global Proudman functions.

Geophysical Journal International 118, 788–794.

Reginska, T., 1996. A regularization parameter in discrete

ill-posed problems. Society for Industrial and Applied

Mathematics Journal on Scientific Computation 17,

740–749.

Reiter, T.D., Rodi, W.L., 1996. Nonlinear waveform tomogra-

phy applied to crosshole seismic data. Geophysics 61,

902–913.

Rocha Filho, A.A., Harris, J.M., Bassrei, A., 1996. A simple

matrix formulation diffraction tomography algorithm. In:

Proceedings of the 39th Brazilian Congress of Geology,

Salvador, Brazil, vol. 2, pp. 312–315.

Rocha Filho, A.A., Harris, J.M., Bassrei, A., 1997. Integrated

inversion of seismic data using diffraction tomography. In:

Proceedings of the Fifth International Congress of the

Brazilian Geophysical Society, São Paulo, Brazil, vol. 2,

pp. 630–634.



ARTICLE IN PRESS
E.T.F. Santos, A. Bassrei / Computers & Geosciences 33 (2007) 618–629 629
Slaney, M., Kak, A.C., Larsen, L.E., 1984. Limitation of imaging

with first-order diffraction tomography. Institute of Electrical

and Electronics Engineers Transactions on Microwave

Theory and Techniques 32, 860–874.

Soupios, P.M., Papazachos, C.B., Juhlin, C., Tsokas, G.N., 2001.

Nonlinear three-dimensional traveltime inversion of crosshole

data with an application in the area of Middle Urals.

Geophysics 66, 627–636.

Soupios, P.M., Papazachos, C.B., Vallianatos, F., Papakostas,

T., 2003. Numerical treatment and inspection of inverse

problems. World Scientific and Engineering Academy and

Society Transactions on Circuits and Systems 2, 547–552.

Thompson, D.R., Rodi, W.L., Toksöz, M.N., 1994. Nonlinear
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