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Non-singular Cooperative Guiding Vector Field

Under a Homotopy Equivalence Transformation
Zirui Chen and Zongyu Zuo, Senior Member, IEEE

Abstract—The present article advances the concept of a non-
singular cooperative guiding vector field under a homotopy
equivalence transformation. Firstly, the derivation of a guiding
vector field, based on a non-singular vector field, is elaborated to
navigate a transformed path from another frame. The existence
of such vector fields is also deliberated herein. Subsequently,
a coordination vector field derived from the guiding vector
field is presented, incorporating an in-depth analysis concerning
the impact of the vector field parameters. Lastly, the practical
implementation of this novel vector field is demonstrated by its
applications to 2-D and 3-D cooperative moving path following
issues, establishing its efficacy.

Index Terms—path following, vector field, homotopy equiva-
lence transformation, singularity, cooperation.

I. INTRODUCTION

A
UTONOMOUS robotic vehicles often perform trajectory

tracking and path following tasks as part of their motion

control obligations. In trajectory tracking, the vehicle has to

adhere to a designated trajectory within time constraints. In

path following, the vehicle must follow a predetermined path at

a given speed, which may or may not involve time constraints

[1]. In recent decades, the path following control idea is

attracting growing attentions for its advantage in dealing with

military and rescue tasks, including the monitoring of borders,

reconnaissance of specified geographic areas, and safeguarding

of convoys [2].

In order to solve path following problem, several solution

strategies have been proposed so far [3], such as H2/H∞

controller design [4], integral line-of-sight control [5], [6],

[7], nonlinear feedback control [8], nonlinear model predictive

control [9], guiding vector field control [10], [11]. Besides,

there is also some work in coordinated path following control

[12], [13], [14] and formation path following control [15].

Among all the methods for studying the path following

problem, the vector-field-based method has garnered extensive

attention [16]. This approach has been successfully applied to

various types of paths, including lines or circles [17], time-

varying curves in n-Dimensions [18], bi-circular paths [19],

moving paths [20], and manifolds on Riemann space [21]. The

vector field methodology is a global technique for solving the

path following problem, avoiding singularity issues that arise

from the conventional approach’s use of the Frenet frame.

However, despite its utility, there are inherent limitations to
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the vector field approach. Chief among these issues is the

occurrence of singularity as a result of the zero vector [16].

Indeed, it has been demonstrated that if the vector field is

to guide a path that is homologous to a circle or intersects

itself, it must incorporate at least one singular point, with

the measure of the singular set being zero [21]. While the

analysis in [18] assumes that the singular points are repulsive,

this assumption is not upheld in [22] for a planar desired path.

Another challenge associated with the vector field approach is

the lack of a parameter for cooperation, presenting difficulties

in addressing cooperative path following problems.

Introducing an additional parameter has been identified as

a potential solution for addressing the aforementioned chal-

lenges [16], [23]. By altering the topological composition of

the original path, it is possible to ensure that the guiding vector

remains non-zero globally. Further, a coordinate proposal can

be developed based on this supplementary parameter, ulti-

mately enabling the construction of a distributed cooperative

vector field.

In the absence of a guiding vector field, numerous con-

sensus path-following algorithms have been suggested in the

literature for multi-robot navigation. In an early attempt, [24]

presented an initial endeavor to provide a formal definition

for the consensus path-following control problem in multi-

agent systems. The main objective of this control problem is

to guide a group of agents along a specific spatial path without

any temporal constraints. To attain cooperative path following

control for mobile robots, a framework has been proposed

comprising of two distinctive loops. The outer loop addresses

robot guidance, while the inner loop pertains to dynamics

control, as stated in the literature [25]. In this framework, the

outer loop manages the angular speed, whereas the inner loop

regulates the velocity of the non-holonomic wheeled mobile

vehicle. A similar structure has been utilized in other studies

[2]. Furthermore, the approach introduced in [1] applies a

parameter updating rule and an angle control law to address

the moving path following problem. A speed regulation law

has also been designed to efficiently carry out the cooperative

task.

However, the utilization of the Frenet frame method in-

evitably encounters singularities due to its dependence on

the local structure of a single point on the path. The issue

lies in the fact that the path following problem requires the

robot to move along a geometric curve, rather than solely

focusing on a single point on the path. Although the vector

field approach effectively addresses the problem of local

singularities, complications arise when the path undergoes

time-varying transformations, as is the case with moving path
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following. The transformations between frames further make

vector field calculations cumbersome. Thus, this paper aims to

address these issues by focusing on constructing a non-singular

cooperative guiding vector field under homotopy equivalence

transformations. Furthermore, we aim to discuss the identity

and features of this novel type of vector field.

Compared with some early attempts in [20], [26], the focal

contributions of this article from a technical standpoint are

enumerated as follows:

1) A non-singular and controllable vector field can be

obtained through the application of a homotopy equiva-

lence transformation. The existence of this vector field is

contingent upon the invertibility of the Jacobian matrix

associated with the transformation. The resulting vector

field is capable of fulfilling navigation tasks even when

a time-varying path is associated with a time-varying

transformation rather than being dependent on time

directly.

2) The derived non-singular controllable vector field un-

der transformation has been applied to the problem of

cooperative moving path following, avoiding singularity

issues caused by introducing the Frenet frame in tradi-

tional methods.

3) The cooperative structure present in the cooperative

transformation vector field is identified, enabling coordi-

nated moving path tracking in multi-agent systems with-

out requiring each individual to have direct knowledge of

the specific details of the transformation. Furthermore,

we engage in a discussion regarding the impact of the

vector field parameters, concluding that the convergence

parameter ought g to be less or equal than 1 while larger

than 0 when the coordination vector field is taken into

account.

4) The effectiveness of the proposed vector field is val-

idated through the coordinated mobile path tracking

problem.

The subsequent sections of this paper are structured as

follows. In Section II, the fundamentals of graph theory and

guiding vector fields for path following are introduced. Section

III expounds on the extension of the guiding vector field

for transformed situation and navigation along desired paths.

Furthermore, in Section IV, a cooperative guiding vector field

under revertible transformation is proposed. Additionally, an

application for cooperative moving path following (CMPF)

problem is discussed in Section V. Finally, concluding remarks

are presented in Section VI.

II. PRELIMINARIES

A. Notation

In this paper, if the coordination X is relative to frame {I},

it would be symbolized by the left superscript IX . The matrix

or tensor PRI represents it is a transformation from frame {I}
to frame {P}. For a system with N robots, the superscript (·)[i]

represents any quantity that is connected to the robot indexed

as i. The symbol “:=” denotes the meaning ”defined as”. And

If space A is homologous to B, then A ≈ B holds. ⊕ means

the direct sum of two transformation.

B. Graph Theory

This section adheres to the convention as specified in refer-

ence [27]. A graph with n items is denoted by G = (V , E). In

this context, the set of vertices, denoted by V := {1, . . . , N},

is finite and contains a specific set of elements. The set of

edges, denoted by E , is a subset of V × V and consists of

elements in the form of (i, j), representing the adjacency

between vertex i and j. It is important to note that both i and

j belong to V . If the graph G is undirected, it is connected

if there exists a pathway between all vertices within the set

V . And for directed graph G, it has a spanning tree when

there exists a pathway from the root to every vertices in the

set V . The adjacency matrix A(G) of an undirected graph G
is a symmetric N × N matrix used to encode the adjacency

relationships between vertices. Its elements are defined as

[A(G)]ij = 1 if the vertices (i, j) are connected by an

edge in G, and [A(G)]ij = 0 otherwise. On the other hand,

the Laplacian matrix L(G) of G is an N × N matrix with

[L(G)]ij = −aij if i 6= j and [L(G)]ii =
∑N

k=1 aik for i ≤ n.

Here, aij represents the ijth entry of the adjacency matrix.

The matrix D ∈ R
N×E is an incidence matrix. In the case of

an undirected graph, the determination of D can be achieved

through the allocation of arbitrary orientations to its edges.

C. General Time-varying Guiding Vector Field

In this section, we introduce the construction of a general

time-varying Lyapunov guiding vector field. In [18], the de-

sired path P is described as a set T (t) = {X ∈ Rn|αi(X, t) =
0, i ≤ n− 1} of points lying in the intersection of level sets

αi = 0 where αi(X, t) : R
n+1 7→ R.

Choose a positive definite Lyapunov function

V (α1, α2, ...αn−1, t), our aim is to design a vector field

whose invariant set is T (t) and χ(t) remains on T (t) once

χ(t0) ∈ T (t) for certain t0 ≥ 0. Noticing the fact that the

null space of a 1-D curve is spanned by a non-zero vector

n0. When the vector field goes parallel with n0, αi remains a

constant value while the vector is non-zero. This proposition

helps to determine the moving direction of the vector field.

The time derivative of V (α1, α2, ...αn−1, t) is

V̇ = ∇V ⊤Ẋ +
∂V

∂t
(1)

The work [18] gives a general expression of vector field for

Ẋ = u satisfying the navigation goal

u = −G∇V +H(∧n−1
i=1 ∇αi)− (∇V ⊤)+

∂V

∂t
(2)

where G and H are diagonal positive definite matrices, (·)+

denotes the generalized inverse of a non-square matrix. (2)

derives V̇ = −G‖V ‖2, Indicating that V would becomes 0.

So the position of the robot would finally satisfy αi = 0 for

i = 1, . . . , n − 1, meaning the trajectory of the robot would

converge to T (t).

Moreover, when the desired path P is time-invariant, and

the Lyapunov function is chosen as V (α1, α2, ...αn−1) =
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∑n−1
i=1 ki

1
2α

2
i , where ki is a positive constant for k =

1, . . . , n− 1, the vector field (2) could be simplified as

u = ∧n−1
i=1 (∇α1, ...,∇αn−1)−

n−1
∑

i=1

kiαi∇αi (3)

And (3) is used in [16], [21], [23].

Lemma 1 ∧n−1
i=1 (p1, ..., pn−1) exhibits orthogonality with re-

spect to each of the vectors p1, . . . , pn−1.

III. NON-SINGULAR GUIDING VECTOR FIELD UNDER

TRANSFORMATION FOR SINGLE ROBOT

Singularity is a prevalent issue encountered in guiding

vector field approaches. A straightforward explanation for this

phenomenon is that at a singular point, there exist multiple

tendencies to follow a particular direction to reach the desired

path. For instance, when the desired path is a circle, the singu-

lar point corresponds to its center point. At this location, the

distances between any point on the circle and the center point

are identical, resulting in an equal tendency to reach every

point on the circle. Therefore, the guiding vector becomes a

zero vector to represent this equality. A similar situation arises

at the intersection point of a self-intersecting curve. It has been

demonstrated that this singularity always exists for a bounded

curve homologous to a circle [21]. However, this singularity

does not occur when the path is homologous to a straight line.

Based on this observation, a likely approach to emit the

singularity is to ”stretch” the bounded curve into an unbounded

line. Intuitively, this particular operation could be viewed as

disrupting the symmetrical properties of the original path, thus

providing a reference direction for the singular point.

Remark 1 The primary reason why the curve can change its

topological identity is that the one-dimensional (1-D) manifold

can be considered as a single-parameter transformation group.

This implies that there exists a point θ(t) ∈ S moving along

the path, and the path can be regarded as the collection of the

trajectory produced by the motion of θ(t). The extended curve

can be expressed as P × S. In the case of the (a) manifold

in Fig. 1, S is homologous to a curve, so θ(t) returns to the

same point after traversing S. In contrast, for the (b) manifold,

S is homologous to a straight line, which means θ(t) moves

ahead and never returns. From this perspective, the original

path may be perceived as a projection from P × S to P .

It is imperative to elucidate the correlation between the

initial path and state and the extended path and state.

For original path P ∈ P, the extended path Pex := P ×S.

So the extended path is the product of the original path and

the set where the extra parameter θ in. For a point IX ∈ I,
the corresponding extended state is ξ := (IX⊤, θ)⊤.

Reversely, the original path P can be regarded as a projec-

tion from Pex to it, mathematically

Π : P× S → P, Π(Pex) = P (4)

Also, the original state IX of the robot has a similar relation-

ship with the extended states

π : P× S → P, π
(

ξ(IX⊤(t), θ(t))⊤
)

=I X (5)

For IX(t) and θ(t) are function depending on t, ξ also depends

on t, denoting by ξ(t).
Since the fundamental concept of a non-singular vector

field has already been introduced, the primary concern of this

section is to address the main issue at hand, which is:

Problem 1 For a homotopy equivalence transformation F :
I 7→ P and a time-invariant path P in P, find a vector field

χ : I × S 7→ TP (I × S) for the equation ξ̇ = χ(ξ(t)), such

that the following two conditions are satisfied

1) Λ+ is the invariant set of the system ξ̇ = χ(ξ(t)),
F(Π(Λ+)) = P ,

2) For every IX ∈ F−1(P), χ(ξ(IX, θ)) is non-zero.

Lemma 2 Let F : I → P be a homotopy equivalence

transformation and A : S → S be the identical trans-

formation. Suppose that the spaces operated by F and A
are disjoint. Then, the direct sum of F and A, denoted as

Fex = F⊕A : I×S→ P×S, is also a homotopy equivalence

transformation.

Proof: See appendix A.

In order to enhance clarity, a visual representation of the re-

lationships between the spaces and transformations discussed

in this paper is presented in Fig. 2.

××
=

Fig. 2: Relationships between the spaces and transformations

in this paper

In the present study, it is imperative to assert that the

transformation under investigation exhibits temporal variation

aligning with ζ(t), PX = F(IX, ζ(t)), mathematically. Con-

sequently, the path in question may be considered relatively

static with respect to a moving frame. In studies such as

[20], it is assumed that the kinetic differential equation is

integrable, leading to an explicit dependence of the path

expression on time t. However, in cases where the moving

frame undergoes motion with non-holonomic constraints, the

trajectory becomes non-integrable, making it impossible to

obtain such an expression. As a result, the vector field (2)

cannot be directly constructed. Moreover, the invariant set of

normal vector field is the union of the desired path and singular

points, meaning the guiding vector field is ineffective on these

singular points.

As in [16], the desired path P ∈ P is described by

parameter θ ∈ S

Px1 = f1(θ),
Px2 = f2(θ), ...,

Pxn = fn(θ) (6)
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Fig. 1: An planar curve homologous to a circle (1a) could be homologous to a line in 3-D (1b) after ”stretching”. (1c): the

corresponding normal guiding vector field for (1a). (1d): the corresponding non-singular guiding vector field for (1b)

Assumption 1 The first and second derivatives of fi are

bounded for every i = 1, . . . , n.

So the extended manifold hP in P× S could be regarded as

the intersection of the following hyperplane

φ1 = Px1 − f1(θ), ..., φn = Pxn − fn(θ) (7)

Remark 2 For convenience, in this paper, some notations are

defined as follows:

∇IV :=
[

∂V
∂Ix1

. . . ∂V
∂Ixn

]⊤
,

∇PV :=
[

∂V
∂P x1

. . . ∂V
∂P xn

]⊤
,

∇ξV :=
[

∂V
∂P x1

. . . ∂V
∂P xn

∂V
∂θ

]⊤
,

Φ := (φ1, φ2, . . . , φn)
⊤,

PX := (Px1,
Px2, . . . ,

Pxn)
⊤.

The candidate positive definite Lyapunov function V =
V (Φ), and the time derivative of V is

V̇ =

n
∑

i=1

∂V

∂φi
φ̇i

=

(

∂V

∂Φ

)⊤











∇ξφ⊤1
∇ξφ⊤2

...

∇ξφ⊤n

























P ẋ1
P ẋ2

...
P ẋn
θ̇















(8)

One obtains from (7) that ∇ξφi =
(

0, . . . , 1, . . . ,−∂fi
∂θ

)⊤

for

i = 1, . . . , n, and 1 is the ith element of the gradient vector.

So the compact form of (8) is derived as
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V̇ = (
∂V

∂Φ
)⊤











1 0 · · · 0 −∂f1
∂θ

0 1 · · · 0 −∂f2
∂θ

...
...

. . . 0
...

0 0 · · · 1 −∂fn
∂θ

























P ẋ1
P ẋ2

...
P ẋn
θ̇















= (
∂V

∂Φ
)⊤





















P ẋ1
P ẋ2

...
P ẋn











−











∂f1
∂θ
∂f2
∂θ
...

∂fn
∂θ











θ̇











(9)

It is noteworthy to highlight that PX part and θ part are

separately in (9), signifying that θ is an extensive parameter.

While the transformation from I to P is

PX = F(IX, ζ(t)) (10)

whose time derivative is

P Ẋ = ∇FIẊ +
∂F

∂ζ
ζ̇(t) (11)

where ∇F = ∂PX
∂IX

is the Jacobian between I and P, usually

denoted by J in differential geometry. According to (11),

if ∇F is invertible, a fully time compensation could be

accomplished by

χ0 = IẊ = (∇F)−1

(

uuu−
∂F

∂ζ
ζ̇(t)

)

(12)

where uuu ∈ Rn.

Remark 3 The transformation studied in this paper is influ-

enced by time t through an indirect correlation with ζ(t). In

practical scenarios, section V for example, ζ(t) may refer to

the position of the leader target or another physical property.

(12) indicates that this information can be obtained through an

internal model, allowing the controlled agent to successfully

achieve the path following task without direct knowledge of

the leader’s exact information. This issue would be discussed

deeper in section V-A2.

Combining (9), (10), (11) and (12), the time derivative of

V can be simplified as

V̇ = (
∂V

∂Φ
)⊤











uuu+











∂f1
∂θ
∂f2
∂θ
...

∂fn
∂θ











θ̇











= (
∂V

∂Φ
)⊤











∇ξφ⊤1
∇ξφ⊤2

...

∇ξφ⊤n

























u1
u2
...

un
θ̇















(13)

So the term varying over time due to the time-varying trans-

formation has been fully emitted.

Remark 4 From (12), it can be seen that a prerequisite for

compensation to exist is the invertibility of ∇F . This observa-

tion highlights the possibility of constructing this type of vector

field not only under rotational or translational transformations

(both of them are special cases of orthogonal congruent

transformations) but also under any invertible transformation.

Based on (13), we can construct a guiding vector field (2)

or (3) to accomplish the path following task. An example is

given in Section V. The designed vector field solving Problem

1 is:

χmpf =

[

(∇F)−1
0n×1

01×n 1

]

(

−G∇PV +H ∧n−1
i=1 ∇Pφi

)

−

[

(∇F)−1 ∂F
∂ζ
ζ̇(t)

0

]

(14)

Theorem 1 A solution for Problem 1 is (14) under Assump-

tion 2.

Proof: Equation (13) could be rewritten as

V̇ = (∇ξV )⊤















u1
u2
...

un
θ̇















(15)

Applying (14) to (9), and combining with (15), one obtains

V̇ = −G‖∇ξV ‖2 (16)

Together with the definition of V , According to Theorem 4.10

in [28], the system ξ̇ = χmpf(ξ(t)) is global exponential

stable. This implies every ξ(t0) would converge to the invari-

ant set of this system. Since F is a homotopy equivalence

transformation, so its extension Fex is also a homotopy

equivalence transformation according to Lemma 2. Thus, the

extended desired path in I satisfies (Fex)−1(Pex) ≈ R.

Theorem 2 in [16] has proven that no singular point exists

when the desired path is homologous to R, the singular set

C = ∅. According to Lemma 2 in [16], the invariant set Λ+

is (Fex)−1(Pex), Λ+ = (Fex)−1(Pex) mathematically. Then

one obtains Fex(Λ+) = Pex. So Π(Fex(Λ+)) = P . Since

the extension part is separated from the original part, and Π
emits it, one can derive F(Π(Λ+)) = P . Thus 1) in Problem

1 holds.

From (6), one calculates that ∇ξφi =
(

0, . . . , 1, . . . ,−∂fi(θ)
∂θ

)⊤

for i = 1, . . . , n, where 1 is

the i-th component of the gradient vector. Therefore,

∧n−1
i=1 ∇

ξφi = (−1)n











∂f1(θ)
∂θ
...

∂fn(θ)
∂θ

1











∈ R
n+1

It’s clear that ∧n−1
i=1 ∇

ξφi is not equal to zero vector.

From Lemma 1, one obtains that the linear combination of

∧n−1
i=1 ∇

ξφi and ∇ξφi for i = 1, . . . , n − 1 equals to zero if

and only if all these vectors are zero vector, conflicting to the

fact that ∧n−1
i=1 ∇

ξφi is unequal to zero vector. So for any ξ,
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χ(ξ) 6= 0, the second requirement in Problem 1 is satisfied.

IV. DISTRIBUTED COOPERATIVE GUIDING VECTOR FIELD

It is important to note that the virtual coordinates’ coordina-

tion has a direct impact on the robotic motions’ coordination,

as the virtual coordinate corresponds to a certain parameter of

the desired path, such as the natural parameter. Additionally,

equation (9) indicates that the supplementary parameter, θ, is

disentangled from the actual coordination component. Con-

sequently, the collaboration among robots may be achieved

through a consensus protocol tailored for θ.
In order to achieve cooperation among robots in a network,

it is essential to establish a desired pattern. This entails

creating a desired pattern, denoted as ∆[i,j], derived from a

specified reference configuration Θ∗ := (θ[1]∗, . . . , θ[N ]∗)⊤.

Specifically, the vector stack of ∆[i,j] is represented by ∆∗,

which is obtained by transposing D with Θ∗.

Before proposing the consensus algorithm, it is necessary

to formulate the cooperative guiding vector field for path

following problem as follows.

Problem 2 For a smooth reversible transformation F : I 7→
P and a time-invariant path P in P. Devise a coordinated

guiding vector field X
[i] for i = 1, . . . , n−1 to ensure that the

trajectories of ξ̇[i] = X
[i](ξ[i], ζ(t)), having an initial condition

ξ[i] ∈ Rn+1 at t = t0 ≥ 0, satisfy the subsequent two control

objectives.

1) Λ+ is the invariant set of the system ξ̇[i] =
X

[i](ξ[i], ζ(t)), F(Π(Λ+)) = P . and for every Ix[i] ∈
F−1(P), X[i] is non-zero.

2) The motion of each robot is coordinated in a distributed

manner, based on the communication graph G, whereby

communication between Robot i and Robot j only occurs

if the pair (i, j) ∈ E . The coordination ensures that the

virtual coordinates of the robots satisfy θ[i](t)−θ[j](t)−
∆[i, j] → 0 as time approaches infinity, for all pairs

(i, j) ∈ E .

The cooperative guiding vector field we design here has the

formulation as

χ[i]
cr(Θ) =

(

0, . . . , 0, c[i](Θ)
)⊤

(17)

where Θ = (θ[1], . . . , θ[n])T and c[i] is the consensus protocol.

The consensus objective here is limt→∞(θ[i]−θ[j]−∆[i, j]) =
0 for every (i, j) ∈ E . We would like to suggest utilizing the

subsequent consensus control algorithm [23]:

c[i] = −
∑

j∈Ni

(θ[i] − θ[j] −∆[i,j]) ∀(i, j) ∈ E (18)

Thus the compact form of the consensus protocol is c(Θ̃) =
−LΘ̃, where L is the Laplacian matrix. And the cooperative

guiding vector field is X
[i] = χ

[i]
mpf + χ

[i]
cr(Θ). Here an

assumption is employed to guarantee the consensus when

applying protocol (18).

Assumption 2 The communication graph G = (V , E) is

undirected and connected.

Assumption 2 ensures the consensus protocol works, which

has been proven in [27].

So far, we could propose the cooperative guiding vector

field

X
[i] = χ

[i]
mpf + χ[i]

cr (19)

It has been discovered that the two terms function indepen-

dently. And in particular, χicr solely operates in relation to the

supplementary parameter θ[i].

Theorem 2 problem 2 is solved by (14), (17) and (19) under

Assumption 1 and 2 if the last item g of G in (14) satisfying

g ≥ 1.

Proof: The time derivative of the extra parameter θ[i] is

the last row of (19), which is

θ̇[i] = g
∂V [i]

∂θ[i]
+ (−1)n + kcc

[i](Θ) (20)

where g is the last item in G and H is set to be an identical

matrix of n×n for convenience. So for Θ̃ = Θ−Θ∗, it holds

˙̃Θ = (−1)n1N + g









∂V [1]

∂θ[1]

...
∂V [N ]

∂θ[N ]









+ kcc(Θ) (21)

noting that D⊤
1N = 0, equation (21) becomes (22) when

multiplying D⊤ at left:

D⊤ ˙̃Θ = gD⊤









∂V [1]

∂θ[1]

...
∂V [N ]

∂θ[N ]









− kcD
⊤LΘ̃ (22)

Set the candidate Lyapunov function for the whole system as

V =

N
∑

i=1

V [i] +
1

2
kcΘ̃

⊤LΘ̃

=

N
∑

i=1

V [i] +
1

2
kc(D

⊤Θ̃)⊤(D⊤Θ̃) (23)

where the fact L = DD⊤ has been applied here. Taking the

time derivative of V, one derives

V̇ =−

N
∑

i=1

G‖∇ξV [i]‖2 + kc

N
∑

i=1

(∇ξV [i])⊤











0
0
...

c[i](θ[i])











+ kc









gD⊤









∂V [1]

∂θ[i]

...
∂V [n]

∂θ[n]









− kcD
⊤LΘ̃









⊤

D⊤Θ̃

=−

N
∑

i=1

G‖∇ξV [i]‖2 + 2gkc

[

∂V [1]

∂θ[i]
. . . ∂V [n]

∂θ[n]

]

LΘ̃

− k2c‖LΘ̃‖2

=−

N
∑

i=1

G‖∇PV [i]‖2
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− g
[

∂V [1]

∂θ[i]
. . . ∂V [n]

∂θ[n]

]









∂V [1]

∂θ[i]

...
∂V [n]

∂θ[n]









+ 2gkc

[

∂V [1]

∂θ[i]
. . . ∂V [n]

∂θ[n]

]

LΘ̃− k2c‖LΘ̃‖2 (24)

let α :=
[

∂V [1]

∂θ[i]
. . . ∂V [n]

∂θ[n]

]⊤

and β := k2cLΘ̃, then (24)

becomes

V̇ = −
N
∑

i=1

G‖∇ξV [i]‖2 − g‖α‖2 + 2gα⊤β − ‖β‖2

= −
N
∑

i=1

G‖∇ξV [i]‖2 −
[

α⊤ β⊤
]

[

g −g
−g 1

] [

α
β

]

(25)

where the fact that only if g > 0 (g 6= 0 for G is a positive

definite matrix) could V̇ not be greater than 0 for arbitrary

α and β has been applied in derivation. Noticing that the

property of M :=

[

g −g
−g 1

]

determines whether V̇ is

negative definite or semi-negative definite. Two cases would

be discussed separately as follows:

1) Case 1: 0 < g < 1
The determinate of M is

|M | = g − g2 = g(1− g) > 0 (26)

which implies that M is positive definite, indicating that

V̇ is negative definite. So Φ[i] for i = 1, . . . , n and

Θ̃ could converge to zero asymptotically (see Theorem

4.10 in [28]). Then the second requirement of Problem

2 is satisfied. Besides, according to Theorem 1, the first

requirement is also meet, and Theorem 2 holds.

2) Case 2: g = 1
In this case, equation (25) could be derived into

V̇ =−

N
∑

i=1

G‖∇PV [i]‖2

− ‖
[

∂V [1]

∂θ[i]
. . . ∂V [n]

∂θ[n]

]⊤

− kcLΘ̃‖2

≤−
N
∑

i=1

G‖∇PV [i]‖2 (27)

So V̇ is negative semi-definite. Based on LaSalle’s

invariance principle (Theorem 4.4 in [28]), the trajec-

tories of the entire system will converge to the largest

invariant set ∗+ in B := {V̇ = 0} ⊆ {Φ = 0}.

To obtain the largest invariant set ∗+ in B, it is

necessary to set
˙̃Θ = 0, which can be achieved by

satisfying D⊤LΘ̃ = D⊤DD⊤
Θ̃ = 0. As a result,

we obtain D⊤
Θ̃ = 0. Moreover, with Φ = 0, we

have Θ̇ = 0, ensuring that the largest invariant set

∗+ in B is ∗+ =
{

Φ = 0, D⊤
Θ̃ = 0

}

. Consequently,

the errors in path following vanish asymptotically for

all robots, and the differences of neighboring virtual

coordinates Θ̃ converge to the desired formation pattern

∆∗, thus achieving coordinated motion. It is noteworthy

that (41) is positive definite and radially unbounded in

e and its time derivative is negative semi-definite, which

guarantees the global vanishing of the composite error

Θ̃ regardless of the initial composite error ‖Θ̃(t0)‖.

Remark 5 The cooperative requirement can be accomplished

by selecting a convergence parameter g that is less than or

equal to one, but greater than zero. It is recommended that

the value of g is chosen appropriately in order to ensure a

successful trajectory alignment with the intended path, while

still satisfying the cooperative requirement. If the value of

g exceeds a certain threshold, it becomes apparent that the

convergence rate is excessively rapid, rendering collaboration

unfeasible.

V. APPLICATIONS FOR 2-D AND 3-D COOPERATIVE

MOVING PATH FOLLOWING PROBLEMS

In the present section, we aim to showcase the efficacy

of the previously discussed guiding vector field approach

through its application to the problem of cooperative moving

path following (CMPF). For a typical moving path following

problem, the desired path is static with respect to a moving

target. So there exists a contractual transformation between the

original frame and the frame attached to the moving target.

Contractual transformation is an isometric transformation that

preserves the topological properties of a curve, and thus is

a homotopy equivalence transformation. This demonstration

starts from the theoretical analysis for 2-D situation, then

attaching a simulation with an ellipse path situation, and ends

with a 3-D cooperative moving path following simulation.

A. Theoretical analysis for 2-D CMPF problem

1) Problem Formulation: Basically, there exists two frames,

showed in figure 3, in a moving path following problem. The

former frame is the original frame I = {Ix,I y} attached to

the earth and the latter P = {Px,P y} attaching to a moving

target with a kinetic model as










I ẋd = vd cosϕd,
I ẏd = vd sinϕd,

ϕ̇d = ωd

(28)

where (Ixd,
I yd, ϕd) is the position in frame {I} and (vd, ωd)

is the velocity and angular speed. The orientation of the axes

are defined as follows: the Ix axis points to the East, the Iy
points to the North, the Px axis points to the direction parallel

with vd and P y is orthogonal with Px following a right hand

rule. In practice, the moving target can be a leader robot or

ship, and the desire path Pxxx = fff(θ) is relative static with

respect to the moving target. So if the moving path following

problem was solved, the controlled agent would move along

a fixed path in the frame attaching to the moving target.

The MPF problem can be expressed in the following man-

ner: Consider a mobile robot that is in a motion described as
Iẋxx = uuu and a pre-defined path P :P xxx = fff(θ). The objective

is to devise a control strategy that guides the robot to follow

the desired path P and maintains its trajectory on the same

path.
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: = ( )

Fig. 3: Relative position relationships among {I} and {P}

Remark 6 The MPF problem has been addressed in previous

studies, including those in [1] and [2] , which utilized the

Frenet coordinate system based on the local structure of a

curve. However, due to the global definition of the path,

the Frenet description may give rise to singularities as the

natural parameter moves along the path. To overcome this

issue, an alternative approach is to use the guiding vector field

method. In this research, we propose a non-singular guiding

vector field solution to the MPF problem, which effectively

circumvents the singularities that may arise from the Frenet

framework.

2) Guiding vector field approach for single agent: In a

planar MPF problem, the transformation between {I} and {P}
is

F :

[

Px
P y

]

= PRI(θd)

([

Ix
Iy

]

−

[

Ixd
Iyd

])

(29)

The desired path P could be described as Px = f1(θ),
P y =

f2(θ) in frame {P}. To stretch the 2-D curve into 3-D

manifold, rewrite the equation as

φ1 = Px− f1(θ)
φ2 = P y − f2(θ)

(30)

Choose a positive definite candidate Lyapunov function as

V = k1
1
2φ

2
1 + k2

1
2φ

2
2, where k1 and k2 are positive constants.

The time derivative of V is

V̇ =
[

k1φ1 k2φ2
]

[

φ̇1
φ̇2

]

=
[

k1φ1 k2φ2
]

[

∇ξφ⊤1
∇ξφ⊤2

]





P ẋ
P ẏ

θ̇





=
[

k1φ1 k2φ2
]

([

∂φ1

∂P x
∂φ1

∂P y
∂φ2

∂P x
∂φ2

∂P y

]

[

P ẋ
P ẏ

]

+

[

∂φ1

∂θ
∂φ2

∂θ

]

θ̇

)

(31)

where ∇ξφ⊤i =
[

∂φi

∂P x
∂φi

∂P y
∂φ1

∂θ

]

, noticing the fact that
[

∂φ1

∂P x
∂φ1

∂P y
∂φ2

∂P x
∂φ2

∂P y

]

=

[

1 0
0 1

]

concluded from (30), (31) could

be simplified as

V̇ =
[

k1φ1 k2φ2
]

([

P ẋ
P ẏ

]

+

[

∂φ1

∂θ
∂φ2

∂θ

]

θ̇

)

(32)

An inspiring fact about (32) is that the extra parameter

θ can be derived from the coordination Px and P y. Thus

the composition for time-varying transformation could be

designed without any information about the third dimension.

Theorem 3 For robot with motion Iẋxx = uuu and a pre-defined

path P :P xxx = fff(θ) with respect to a moving frame {P},

guiding vector field χpf =
[

uuu θ̇
]T

could accomplish the

MPF problem with the following expression:

[

uuu

θ̇

]

=





I ẋd
I ẏd
0



−

[

IRP (ϕd)S(ωd) 02×1

01×2 0

]





Px
P y
0





+

[

IRP (ϕd) 02×1

01×2 1

]

(

∧(∇ξφ1,∇
ξφ2)−

2
∑

i=1

kiφi∇
Pφi

)

(33)

where S(ωd) =

[

0 ωd
−ωd 0

]

and the rotational matrix from

{P} to {I} is IRP (ϕd) =

[

cosϕd − sinϕd
sinϕd cosϕd

]

.

Proof: This proof starts from deriving the time derivative

of
[

Ix Iy
]⊤

. Concluding from (29),
[

P ẋ
P ẏ

]

= S(ωd)

[

Px
P y

]

+I RP (ϕd)

([

I ẋ
I ẏ

]

−

[

I ẋd
I ẏd

])

(34)

Denote the first two items in
(

∧(∇ξφ1,∇
ξφ2)− Σ2

i=1kiφi∇
ξφi
)

as u1 and u2, considering

the fact

[

I ẋd
I ẏd

]

= uuu, one obtains

V̇ =
[

k1φ1 k2φ2
]

([

u1
u2

]

+

[

∂φ1

∂θ
∂φ2

∂θ

]

θ̇

)

=
[

k1φ1 k2φ2
]

[

∇ξφ⊤1
∇ξφ⊤2

]

(∧(∇ξφ1,∇
ξφ2)

−

2
∑

i=1

kiφi∇
ξφi)

=− [k1φ1∇
ξφ⊤1 + k2φ2∇

ξφ⊤2 ]
2

=− ‖∇ξV ‖2 (35)

meaning V̇ is negative definite. All motions would go into

the invariant set {φ1 = 0, φ2 = 0}. In this invariant set,

the coordination of the controlled agent satisfies Px = f1(θ)
and P y = f2(θ). That is to say the position of robot finally

converge to the path P .

Remark 7 The primary contribution of the initial two ele-

ments within the control law (33) is to amalgamate the impact

of the time-varying frame. This necessitates obtaining the po-

sition and velocity information of the moving target. In certain

real-world scenarios, such as formation control with a leader-

follower structure, this information can be evaluated from an
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internal model based on the data transmission between each

distributed controller or observer.

3) Cooperative guiding vector field for multi-agents: The

preceding section V-A2 provides an overview of the guiding

vector field that resolves the MPF challenge for a solitary

agent. This segment, however, delves into a distributed for-

mation controller, which is constructed based on the findings

of reference [23]. This controller serves as an effective tool to

guide multiple agents in accomplishing the MPF task while

optimizing their cooperation efforts.

The main purpose for cooperative vector field is to design

an extra mechanism with parameter θ[i] to maintain a desired

formation pattern ∆[i,j] for (i, j) ∈ E . Mathematically

lim
t→+∞

(θ[i] − θ[j] −∆[i,j]) = 0, (i, j) ∈ E (36)

To solve the coordination problem (36), the coordination

vector field could be given as

χ[i]
cr =



0, 0,−
∑

j∈Ni

(θ[i] − θ[j] −∆[i,j])





⊤

(37)

And the combined vector field could be given by X
[i] =

χ
[i]
mpf + χ

[i]
cr . Noticing a fact that the last row of this vector

field is the same as the vector field (4) given in [23], so the

convergence is obvious.

Remark 8 From (33) and (37), we can easily find a fact that

the guiding part and the coordination part are separated,

which decouples the design for vector field. This could be

interpreted as the parameter θi goes outside the plane where

the transformation occurs. That is also why we call the θi an

extra dimension.

B. A simulation for 2-D CMPF problem

In the first simulation, we let N = 2 and the robots can get

information from each other. The desired path has an ellipse

shape α = x2/4 + y2 − 1, which can be parameterized as

x = 2 cos θ, y = sin θ. the motion of the moving target is

ẋd = vd cosϕd, ẏd = vd sinϕd, ϕ̇d = ωd (38)

where vd = 1m/s and ωd = 0.5 sin t rad/s−1. The initial

conditions for robot 1 and 2 are (2m, 1m) and (1m,−2m),
respectively. The formation pattern is set as ∆[1,2] = π/4.

The vector field parameters are chosen as k1 = k2 = kc = 1.

According to Figure.4, all robots effectively track the ellipse

shaped path while maintaining the desired positions relative

to one another (as defined by θ[i]). Notably, both the path-

following errors and coordination errors eventually dissipate

towards zero.

C. A simulation for 3-D CMPF problem

The theoretical analysis of the 3-dimensional scenario paral-

lels that of the 2-dimensional scenario, hence we shall present

essential contextual data before showcasing the simulation

results.

In this simulation, we assume the moving frame is at-

tached on an aerial vehicle, whose kinetic model is described

in [29]. Two frame in this case is the earth coordinate

frame {I; Ix, Iy, Iz} and the aircraft-body coordinate frame

{P ; Px, P y, P z}. The position of the aircraft in {I} is IXd =
(xd, yd, zd)

⊤ and (u, v, w)⊤ is the inertial velocity of the

aircraft measured in {P}. Here, Euler angles denoted as

(ψ1, ψ2, ψ3)
⊤ following an x − y − z rotation sequence and

the Euler matrix is represented by PCI = PCI(ψ1, ψ2, ψ3).
So the transformation between {I} and {P} is

PX = PCI(
IX − IXd) (39)

where IXd has the following transnational kinematics






























ẋd =u cosψ2 cosψ3 + v(sinψ1 sinψ2 cosψ3 − cosφ sinψ3)

+ w(sinψ1 sinψ3 + cosφ sinψ2 cosψ3)

ẏd =u cosψ2 sinψ3 + v(sinψ1 sinψ2 sinψ3 + cosφ cosψ3)

− w(sinψ1 cosψ3 − cosφ sinψ2 sinψ3)

żd =− u sinψ2 + v sinψ1 cosψ2 + w cosφ cosψ2

(40)

Besides, the rotational equations of the aircraft in relation to

Euler angles are denoted as follows:






ψ̇1 = p+ (r cosψ1 + q sinψ1) tanψ2

ψ̇2 = q cosψ1 − r sinψ1

ψ̇3 = 1
cosψ2

(r cosψ1 + q sinψ1)

(41)

where [p, q, r]⊤ is the angular velocity vector of the aircraft

measured in the frame {P}.

Remark 9 In rotational kinematics, the Euler angles rep-

resentation commonly encounters singular points. This phe-

nomenon is attributed to the inherent nature of the description,

rather than the guiding vector field approach. Therefore, in the

context of this simulation, it is imperative to assign negligible

values to the angular velocities.

In this simulation, we let N = 4 and the commu-

nication topology is shown in Fig. 5. The desired path

here is a Lissajous curve, expressing as Px = 2 cos θ,
P y = sin θ and P z = cos θ2 . The speed and angu-

lar velocity for the aircraft is set as (u, v, w)⊤ = (1 +
0.1 sin t m/s, 0.1 cos t m/s, 0.1 sin t m/s)⊤ and (p, q, r)⊤ =
(0.01π180 sin t rad/s, 0.01π180 sin t rad/s, 0.01π180 sin t rad/s)⊤ with

initial conditions set as (xd0, yd0, zd0)
⊤ = (0, 0, 1m)⊤ and

(ψ10, ψ20, ψ30)
⊤ = (0, 0, π/4)⊤, respectively. The initial con-

ditions for each aerial vehicle are (1m, 0, 0)⊤, (1m, 1m, 0)⊤,

(−1m, 0, 0)⊤ and (1m, 0, 2m)⊤. The formation pattern is set

as ∆[1,2] = ∆[2,3] = ∆[3,4] = π/6. Besides, the vector field

parameters are set as k1 = k2 = k3 = 1 and kc = 5.

‖Φ‖2 = (Px − 2 cos θ)2 + (P y − sin θ)2 + (P z − cos θ2 )
2

is used to described the convergence error.

Fig. 6 shows the simulation results. In due course, both the

errors related to path-following and coordination are inclined

to reduce and ultimately converge towards zero.

VI. CONCLUSION AND FUTURE WORK

This article introduces the concept of a non-singular coop-

erative guiding vector field, achieved via a homotopy equiv-

alence transformation. It firstly provides an elaboration on
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the robots in {P}. (4c) shows the path errors of the robots. (4d) shows the coordination error between the robots.
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Fig. 5: The topology in simulation 2

the derivation of a guiding vector field, based on a non-

singular vector field, for navigating a time-varying transformed

path from another frame. The article also deliberates on the

existence of such vector fields, finding a necessary condition

for such vector field is that the Jocabian of the transformation

should be revertible. Subsequently, it presents a coordination

vector field derived from the guiding vector field. Addition-

ally, we discuss about the influence from the vector field

parameters, finding that the convergence parameter should be

limited (0 < g ≤ 1) when taking the coordination vector

field into consideration. Finally, the practical implementation

of this innovative vector field is demonstrated through its

application to a planar cooperative moving path following

challenge, establishing its effectiveness.

Based on our research, we have identified several poten-

tial avenues for future work. Firstly, while the vector field

in cooperative control typically exhibits identical properties,

there has been limited investigation into the potential of non-

identical vector fields to facilitate coordination. Secondly,

with the increasing interest in heterogeneous multi-agent

systems, exploring the feasibility of utilizing guiding vector

field approaches in this area holds particular promise. Lastly,

our research has demonstrated that guiding vector fields can

function under homotopy equivalence transformation. How-

ever, further exploration is required to fully understand the

necessary conditions for this approach.

APPENDIX A

PROOF OF LEMMA 2

To prove that the direct sum Fex = F ⊕A of a homotopy

equivalence transformation F and an identical transformation

A is also a homotopy equivalence transformation, we need to

show that Fex satisfies the following two conditions:

Fex is a continuous transformation.

Fex and its inverse are homotopy equivalences.

To prove the first condition, note that the direct sum Fex

is defined as the transformation that acts on the direct sum

space of the spaces operated by F and A. Since both F and
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Fig. 6: Results of Simulation 2. (6a) shows the positions of the moving target and robots in {I}. (6b) shows the positions of

the robots in {P}m, and the formation at t = 11.34s has been marked. (6c) shows the path errors of the robots. (6d) shows

the coordination error between the robots.

A are continuous transformations, it follows that Fex is also

continuous.

To prove the second condition, we need to show that Fex

and its inverse are homotopy equivalences. Let G be the inverse

of F , i.e., F ◦ G = A and G ◦ F = A. Then, the direct sum

of G and A, denoted as Gex = G ⊕ A, is the inverse of Fex,

i.e., Fex ◦ Gex = A and Gex ◦ Fex = A.

Next, we need to show that Fex and Gex are homotopy

equivalences. To do so, we will construct a homotopy between

Fex ◦Gex and A, and a homotopy between Gex ◦Fex and A.

For the first homotopy, consider the homotopy H1 : [0, 1]×
(F×G)×A → F⊕A defined by H1(t, (f, g), a) = (f(ta), a),
where f ∈ F , g ∈ G, a ∈ A, and t ∈ [0, 1]. Note that

H1(0, (f, g), a) = (f(0), a) = (a, a) = H1(1, (f, g), a) for all

(f, g) ∈ (F ×G) and a ∈ A, and H1(t, (f, g), a) ∈ F ⊕A for

all t ∈ [0, 1] and (f, g, a) ∈ (F × G)×A. Therefore, H1 is a

well-defined homotopy between Fex ◦ Gex and A.

For the second homotopy, consider the homotopy H2 :
[0, 1]× (G × F)×A → G ⊕A defined by H2(t, (g, f), a) =
(g(ta), a), where g ∈ G, f ∈ F , a ∈ A, and t ∈ [0, 1]. Note

that H2(0, (g, f), a) = (g(0), a) = (a, a) = H2(1, (g, f), a)
for all (g, f) ∈ (G × F) and a ∈ A, and H2(t, (g, f), a) ∈
G⊕A for all t ∈ [0, 1] and (g, f, a) ∈ (G×F)×A. Therefore,

H2 is a well-defined homotopy between Gex ◦ Fex and A.

Since we have constructed homotopies between Fex ◦ Gex

and A, and between Gex ◦ Fex and A, we conclude that Fex

and Gex are homotopy equivalences. Therefore, the direct sum

Fex = F ⊕A is also a homotopy equivalence transformation.
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