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Abstract

In this paper, we study the problem of consensus-based distributed Nash equilibrium (NE) seeking where a network of players,
abstracted as a directed graph, aim to minimize their own local cost functions non-cooperatively. Considering the limited
energy of players and constrained bandwidths, we propose a stochastic event-triggered algorithm by triggering each player with
a probability depending on certain events, which improves communication efficiency by avoiding continuous communication.
We show that the distributed algorithm with the developed event-triggered communication scheme converges to the exact
NE exponentially if the underlying communication graph is strongly connected. Moreover, we prove that our proposed event-
triggered algorithm is free of Zeno behavior. Finally, numerical simulations for a spectrum access game are provided to illustrate
the effectiveness of the proposed mechanism by comparing it with some existing event-triggered methods.

Key words: Distributed algorithm; Nash equilibrium; Event-triggered communication.

1 Introduction

The prevalence of applications of game theory varies
from power grids (Wang et al. (2021)), mobile ad-
hoc networks (Stankovic et al. (2011)), resource
allocation (Rahman et al. (2019)) and social net-
works (Ghaderi and Srikant (2014)), etc., capturing
competition characteristics among different parts. In
non-cooperative games, each self-interest player intends
to maximize or minimize its local objective function
which is often in conflict with other players. A Nash
equilibrium (NE) in such games presents a rigorous
mathematical characterization of desirable and stable
solutions to the games and has attracted a considerable
amount of interest in past decades.

With the rapid development of large-scale networks,
traditional centralized frameworks for NE seeking algo-
rithms where all players access all opponents’ actions
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1 Corresponding author.

suffer from limited scalability and substantial computa-
tion cost (Frihauf et al. (2011); Govindan and Wilson
(2003); Kannan and Shanbhag (2012)). In view of this,
distributed NE seeking in a non-cooperative game where
players only communicate with their neighbors has
shown theoretical significance and practical relevance in
recent years. In discrete-time settings, Salehisadaghiani
and Pavel (2016) developed an asynchronous gossip-
based method for seeking a NE with almost sure con-
vergence, but diminishing step sizes slowed down the
convergence. Later, Salehisadaghiani et al. (2019) uti-
lized an alternating direction method of multipliers
approach to achieve the NE with constant step sizes.
For continuous-time cases, Gadjov and Pavel (2018)
presented a passivity-based algorithm to obtain the
NE over networks by leveraging incremental passivity
properties of the pseudo-gradient. Ye and Hu (2017)
proposed a consensus-based approach to seek the NE
exponentially.

The above-mentioned conventional distributed NE
seeking algorithms require continuous communication,
causing a high communication burden. Therefore, these
algorithms can be impractical in physical applications.
Especially for some embedding networks equipped with
energy harvesting, the energy of each player can be a
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scarce resource and needs to be closely monitored and
controlled. A motivating application is the spectrum
access game in energy-harvesting body sensor networks
(BSNs). Multiple BSNs compete to share the band-
width in a cognitive radio network, and they use the
allocated spectrum to transmit physiological data to a
remote healthcare center (Niyato and Hossain (2007)).
Each selfish BSN intends to minimize its own transmis-
sion cost and receive the best health service by choosing
appropriate spectrum size. To achieve the NE distribu-
tively, BSNs need to interact with their neighbors to
compensate for the lack of global information on oth-
ers’ strategies. However, continuous communication
excessively consumes scarce energy harvested from the
ambient environment. Thus, there is a need for novel
communication-efficient algorithms seeking the NE to
save the harvested energy.

Event-triggered mechanism has gained popularity
throughout the control community since it can reduce
the communication burden by filtering out unnecessary
information transmission (Wu et al. (2012)). As for
non-cooperative games, Shi and Yang (2019) proposed
an edge-based event-triggering law in discrete-time ag-
gregative game. However, the convergence speed is slow
owing to the diminishing step size. Yu et al. (2022)
designed a static event-triggering law with a decaying
threshold, and recently, Xu et al. (2022) proposed a
fully distributed edge-based adaptive dynamic event-
triggered scheme for undirected networks. Nonetheless,
algorithms in Xu et al. (2022); Yu et al. (2022) only
converge to the neighborhood of the NE instead of
the exact NE. Liu and Yi (2023) constructed an adap-
tive event trigger and a time base generator to achieve
predefined-time convergence with an arbitrarily small
error. Zhang et al. (2021) have successfully applied the
dynamic event-triggered method from Yi et al. (2018) to
distributed games and proven that the algorithm con-
verges to the exact NE. However, all the existing works
focus on deterministic event-triggered algorithms that
precisely specify the triggering times for each player.

Recently, Tsang et al. (2019, 2020) extended determin-
istic event triggers to stochastic versions by defining
the triggering time more loosely and achieved a better
trade-off between communication effort and conver-
gence performance in multi-agent consensus and de-
centralized unconstrained optimization in undirected
networks. Nonetheless, the existing stochastic event-
triggering laws cannot be directly applied to distributed
NE seeking problems since the cost function of each
player in a non-cooperative game is coupled with the
actions of other players. Due to the complex informa-
tion exchange setting in distributed NE seeking, the
design of the stochastic event-triggered mechanism and
the convergence analysis encounter more difficulties.
Constrained action sets should also be considered. To
the best of the authors’ knowledge, there is no stochas-
tic event-triggered mechanism designed for distributed

constrained NE seeking problems.

All the above motivates us to develop a stochastic event-
triggered algorithm for a multi-agent system to seek the
NE in a distributed constrained game. The main contri-
butions of this paper are summarized in the following:

1) We propose a novel stochastic event-triggered dis-
tributed NE seeking algorithm for constrained non-
cooperative games in directed networks.

2) We show that the developed algorithm converges to
the exact NE exponentially. Furthermore, we prove
that the algorithm is free of Zeno behavior, validating
its feasibility.

3) Simulation results for the spectrum access game in
BSNs demonstrate the advantage of the proposed al-
gorithm in better balancing the communication con-
sumption and convergence properties than determin-
istic ones.

The remainder of this paper is organized as follows. In
Section 2, some preliminaries are provided. Then the
problem formulation about the distributed NE seeking
under an event-triggered mechanism is presented in Sec-
tion 3. In Section 4, a stochastic event-triggered algo-
rithm is proposed first, and then the convergence, to-
gether with a guarantee on the exclusion of Zeno be-
havior are analyzed. Simulations are given in Section 5
to illustrate the effectiveness of the proposed algorithm.
Finally, conclusions are offered in Section 6.

Notations: In this paper, R and RN represents the set
of real numbers and N -dimensional real vector, respec-
tively. X � 0 means the matrix X is positive definite.
diag{a1, a2, . . . , aN} denotes an N ×N diagonal matrix
with elements a1, a2, . . . , aN . The matrix IN ∈ RN×N
represents the identity matrix and 1N ∈ RN denotes a
vector with all elements being 1. The operator ‖·‖ is the
induced 2-norm for matrices and the Euclidean norm for
vectors. For any vector v ∈ RN , vT represents its trans-
pose. P (E) means the probability of the event E hap-
pening. For any two matrices, A ∈ Rn×m, B ∈ Rp×q,
A⊗B ∈ Rnp×mq is the Kronecker product of A by B.

2 Preliminaries

2.1 Game theory

Definition 1 A game is defined as a tuple Γ =
{P,X , f}, where P = {1, 2, . . . , N} is the set of players,
X = X1 ×X2 × · · · ×XN , Xi ⊆ R is the action set of the
ith player, and f = {f1, f2, . . . , fN}, fi : RN → R is the
cost function of the player i.

Definition 2 An NE is defined as an action pro-
file x∗ = [x∗1, x

∗
2, . . . , x

∗
N ]T ∈ X if fi(x

∗
i ,x
∗
−i) ≤

fi(xi,x
∗
−i), ∀i ∈ V, where xi ∈ Xi and x∗−i =

[x∗1, x
∗
2, . . . , x

∗
i−1, x

∗
i+1, . . . , x

∗
N ]T .
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2.2 Graph theory

For a directed graph defined as G = (V, E), V =
{1, 2, . . . , N} is the set of nodes, and E represents the
set of edges. Each edge (i, j) ∈ E describes an avail-
able communication link from player j to player i. The
adjacency matrix A = [aij ] ∈ RN×N indicates the un-
derlying topology of G, where aij > 0 if (i, j) ∈ E , and
aij = 0, if (i, j) /∈ E .

The degree matrix is defined asD = diag{din
1 , d

in
2 , . . . , d

in
N},

where din
i =

∑N
j=1 aij . The Laplacian matrix is then

defined as L = D−A. G is said to be strongly connected
if, for any node, there exists a directed path to every
other node.

The following lemma about strongly connected directed
graphs is essential for our analysis (Zhang et al. (2021)):

Lemma 3 (L⊗ IN +B0) is a non-singular M -matrix if
and only if G is a directed and strongly connected graph,
whereB0 = diag{a11, . . . , a1N , a21, . . . , a2N , . . . , aN1, . . . ,
aNN}. There exist positive definite matrices P,Q � 0
such that

(L⊗ IN +B0)
T
P + P (L⊗ IN +B0) = Q. (1)

2.3 Projection operator

A set X ⊆ RN is convex if cv1 + (1− c)v2 ∈ X , for any
v1,v2 ∈ X and any c ∈ [0, 1]. For a closed convex set X ,
the projection operator PX (·) : RN → X is defined as
PX (v) = arg min

z∈X
‖v − z‖.

Lemma 4 (Facchinei and Pang (2003)) For a closed
convex setX ⊆ RN , the projector PX (·) is non-expansive,
i.e., for any v1,v2 ∈ X ,

‖PX (v1)− PX (v2)‖ ≤ ‖v1 − v2‖ .

3 Problem Formulation

Consider a non-cooperative multi-agent system with
N > 1 players represented by a strongly connected
directed graph G = (V, E), where each selfish player i
intends to minimize its own cost function,

min
xi∈Xi

fi(xi,x−i), (2)

where Xi is a closed convex set, and fi is the convex cost
function of player i satisfying the following assumptions:

Assumption 5 fi(x) is twice continuously differen-

tiable and ∂fi
∂xi

(x) is globally Lipschitz for all i ∈ V,

that is, there exists a constant li > 0 such that∥∥∥ ∂fi∂xi
(x)− ∂fi

∂xi
(y)
∥∥∥ ≤ li ‖x− y‖.

Assumption 6 There exists a constant µ > 0 such that
(x − y)T (F (x) − F (y)) ≥ µ ‖x− y‖2 for x,y ∈ RN ,

where F (x) =
[
∂f1
∂x1

(x), ∂f2∂x2
(x), . . . , ∂fN∂xN

(x)
]T
∈ RN de-

notes the pseudo-gradient (the stacked vector of all play-
ers’ partial gradients w.r.t. local cost functions).

Remark 7 Under Assumption 5, the NE of the
game (2), x∗, is equivalent to the solutions to the
varational inequality V I(X , F ) which satisfies (x −
x∗)TF (x∗) > 0,∀x ∈ X (Facchinei and Pang (2003)).
Assumption 6 implies that V I(X , F ) has at most one
solution (Facchinei and Kanzow (2007)). Thus, the ex-
istence and uniqueness of the NE of (2) follows and x∗

satisfies

x∗ = PX (x∗ − α̃F (x∗)), ∀α̃ > 0. (3)

In a distributed setting, each player communicates with
its neighbors to obtain partial information on the others’
actions. We consider a leader-follower-based consensus
control algorithm with projected gradient play dynam-
ics (Liang et al. (2022); Ye and Hu (2017)):

ẋi(t) =PXi

(
xi(t)− α

∂fi
∂xi

(yi(t))

)
− xi(t), (4)

ẏij(t) =− β

[
N∑
k=1

aik (yij(t)− ykj(t))

+ aij (yij(t)− xj(t))

]
, (5)

where α, β > 0 are step sizes, yi = [yi1, yi2, . . . , yiN ]T ∈
RN , yij is player i’s estimate on player j, yii = xi, and
the initial actions are chosen as xi(0) ∈ Xi.

The algorithm composed of (4) and (5) needs contin-
uous communication among players. We employ an
event-triggered mechanism to reduce the communica-
tion times, i.e., a player only broadcasts its state and
estimate on all players when certain critical events
occur. The update law of (5) becomes

ẏij(t) =− β

[
N∑
k=1

aik (ŷij(t)− ŷkj(t))

+ aij (ŷij(t)− x̂j(t))

]
,

(6)

where ŷij is the latest estimate on player j broad-
cast by player i, and x̂j is the latest state broad-
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cast by player j. Suppose the triggering time in-
stants of player i is {ti1, ti2, . . . , tik, . . . }, and then
ŷij(t) = yij(t

i
k), x̂i (t) = xi(t

i
k) for t ∈

[
tik, t

i
k+1

)
.

Our objective is to develop an event-triggered mecha-
nism such that the NE can be asymptotically achieved.
Specifically, we aim to design a decision variable:

γi(t) =

{
1, x̂i(t) = xi(t), ŷij(t) = yij(t),

0, otherwise,
∀i ∈ V,

so that the average communication rate

Γ(t) =
1

Nt

N∑
i=1

∫ t

0

γi(t)dt (7)

with Γ(0) = 0 can be reduced. For the stochastic event-
triggered mechanism, we consider its expected value
E[Γ(t)] due to the randomness of γi(t). Moreover, the
event-triggered mechanism should not exhibit Zeno be-
havior which refers to the phenomenon that an infinite
number of events occur in a finite time.

Remark 8 The problem formulation is different from
the distributed optimization problem solved in Tsang
et al. (2020), where N agents cooperatively minimize

a global cost function, F (x) = 1
N

∑N
i=1 fi(x), and the

cost function of agent i is decoupled with other agents’
actions, xj, j 6= i. Although (2) can be regarded as a
set of parallel optimization problems, each player’s cost
function fi depends on all other players’ decisions x−i.
However, each player only accesses information about
its neighbors. The players need to keep an estimate on
other players’ strategies, yi, and communicate this in-
formation to neighbors to seek the NE. Owing to this
more complex information exchange setting, the stochas-
tic event-triggering law and the convergence analysis
become more complex compared to Tsang et al. (2020).

4 Main Results

In this section, a stochastic event-triggered algorithm is
proposed for the distributed NE seeking. Then we prove
that the NE can be sought with exponential convergence
rate without Zeno behavior.

4.1 Proposed Stochastic Event-Triggering Law

The compact form of (4) and (6) can be written as

ẋ(t) = PX
(

x(t)− α∂f
∂x

(y(t))

)
− x(t), (8)

ẏ(t) = −β [(L⊗ IN +B0) (ŷ(t)− 1N ⊗ x̂(t))] , (9)

where x = [x1, x2, . . . , xN ]
T

, x̂ = [x̂1, x̂2, . . . , x̂N ]
T

,

y =
[
yT1 ,y

T
2 , . . . ,y

T
N

]T
, ŷ =

[
ŷT1 , ŷ

T
2 , . . . , ŷ

T
N

]T
, ŷi =

[ŷi1, ŷi2, . . . , ŷiN ]
T

, and ∂f
∂x (y) =

[
∂f1
∂x1

(y1), ∂f1∂x2
(y2), . . . ,

∂f1
∂xN

(yN )
]T

. The equality (9) holds from (L⊗IN )(1N ⊗
x̂(t)) = 0.

We define the event errors of player i as

exi
(t) = x̂i(t)− xi(t), (10)

eyi(t) = ŷi(t)− yi(t), (11)

and the consensus error between player i’s estimate and
j’s estimate as

∆ij(t) = ŷi(t)− ŷj(t). (12)

We propose a stochastic event trigger:

γi (t) =

{
1, ξi(t) > κ exp (−ciρi(t)/δi(t)) ,
0, otherwise,

(13)

where κ > 1 is a parameter, ξi (t) ∈ (a, 1) an arbitrary
stationary ergodic random process with a constant a >
0, ci > 0 a constant, and δi(t) > 0 a decreasing function
w.r.t. t. Inspired by Zhang et al. (2021) and Tsang et al.
(2020), ρi(t) and δi(t) are defined as

ρi(t) = exi(t)
2 + ‖eyi(t)‖

2 − σi

∥∥∥∥∥∥
N∑
j=1

aij∆ij(t)

∥∥∥∥∥∥
2

, (14)

δ̇i(t) = −ηδi(t), (15)

where σi > 0 and η > 0. According to (13) and (14), we
can infer the following condition when no trigger occurs,
i.e., γi(t) = 0:

exi(t)
2 + ‖eyi(t)‖

2 − σi

∥∥∥∥∥∥
N∑
j=1

aij∆ij(t)

∥∥∥∥∥∥
2

≤δi(t)
ci

(lnκ− ln ξi(t)) .

(16)

Remark 9 In the literature, ρi(t) is usually called a
triggering function, depending on event error, consen-
sus error, and network parameters. Different triggering
functions lead to different event-triggering laws, yielding
different performances. In deterministic event-triggered
mechanisms, player i triggers always whenever ρi(t) >
0 (Singh et al. (2022); Yi et al. (2018); Zhang et al.
(2021)). However, in stochastic event triggers, player i
triggers with a certain probability which increases with
ρi(t). As an illustration, we consider a case where a =
1
2 , and ξi(t) is a uniformly distributed random process.
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When ρi(t) ≤ 0, there is κ exp (−ciρi(t)/δi(t)) ≥ 1 >
ξi(t), which makes it impossible for player i to trigger.
This is consistent with the deterministic event-triggering
law as γi(t) = 0 when ρi(t) ≤ 0. If ρi(t) > 0, we can infer
that P [γi(t) = 1] = 1

2 [1− κ exp (−ciρi(t)/δi(t))] based
on the distribution of ξi(t), i.e., P [γi(t) = 1] is monoton-
ically increasing with the value of ρi(t). When ξi(t) is a
strictly positive constant, the stochastic event trigger be-
comes deterministic. In this sense, (13) can be regarded
as a generalized version of the deterministic trigger, fur-
ther reducing communication burden. It is suitable for
networks with tighter communication requirements, thus
more practical.

4.2 Convergence Analysis

To simplify notation, the time index t is omitted in the
following analysis.

Define the seeking errors of x and y as εx = x− x∗ and
εy = y−1N ⊗x. Then based on (8)–(11), the dynamics
of εx and εy can be written as

ε̇x =ẋ = PX
(

x− α∂f
∂x

(εy + 1N ⊗ x)

)
− x,

ε̇y =ẏ − 1N ⊗ ẋ

=β (L⊗ IN +B0) (1N ⊗ ex − εy − ey)

− 1N ⊗

{
PX
(

x− α∂f
∂x

(εy + 1N ⊗ x)

)
− x

}
,

where ex = [ex1
, ex2

, . . . , exN
]T and ey = [eTy1

, eTy2
, . . . ,

eTyN
]T .

Theorem 10 For a multi-agent system, suppose that
Assumptions 5 and 6 are satisfied. The distributed algo-
rithm (4) and (6) under the stochastic event-triggering
law (13) exponentially converges to the NE x∗ with

0 < α <
2µβλ− 8C2C3 − 2µC4

8C1C2C3 + 4µC2C3 + βC2
1λ− C2

1C4
, (17)

β >
4C2C3 + µC4

µλ
, (18)

0 < σ ≤ N − 1

2N ‖L‖2
, (19)

where σ = maxi{σi}, λ is the minimum eigenvalue

of Q, C1 = l̄
√
N , C2 = l̄, C3 =

√
N ‖P‖, C4 =

2
√

2(N − 1) ‖P (L⊗ IN +B0)‖, and l̄ = maxi{li}.

PROOF. Inspired by Liang et al. (2022), we consider
the Lyapunov candidate

V = φ2V1 + φ1V2 + ζ

N∑
i=1

δi, (20)

where V1 = εTxεx, V2 = εTyPεy, φ1 = 2αC2, φ2 =

2C3(2 + αC1), ζ = 2φ1C5

ηmini{ci} (lnκ − ln a), and C5 =

N
√

2
N−1 ‖P (L⊗ IN +B0)‖.

For the time derivative of V1, we have

V̇1(t) =2εx(t)T ε̇x(t)

=− 2εTx

{
x− PX

(
x− α∂f

∂x
(1N ⊗ x)

)}

− 2εTx

{
x− PX

(
x− α∂f

∂x
(εy + 1N ⊗ x)

)

−
[
x− PX

(
x− α∂f

∂x
(1N ⊗ x)

)]}
. (21)

For the first term of (21),

2εTx

{
x− PX

(
x− α∂f

∂x
(1N ⊗ x)

)}

=2εTx

{
x− PX

(
x− α∂f

∂x
(1N ⊗ x)

)

−
[
x∗ − PX

(
x∗ − α∂f

∂x
(1N ⊗ x∗)

)]}

=2 ‖εx‖2 − 2εTx

[
PX
(

x− α∂f
∂x

(1N ⊗ x)

)
− PX

(
x∗ − α∂f

∂x
(1N ⊗ x∗)

)]
≥2 ‖εx‖ (‖εx‖ − ‖εx − αd(x)‖) , (22)

where d(x) = ∂f
∂x (1N ⊗ x)− ∂f

∂x (1N ⊗ x∗), and the first
equation holds from (3). Then

‖εx‖ − ‖εx − αd(x)‖ =
‖εx‖2 − ‖εx − αd(x)‖2

‖εx‖+ ‖εx − αd(x)‖

≥2αεTxd(x)− α2 ‖d(x)‖2(
2 + α

√
Nl̄
)
‖εx‖

≥2αµ− α2 l̄2N

2 + αl̄
√
N
‖εx‖ . (23)

For the last two terms of (21),

− 2εTx

{
x− PX

(
x− α∂f

∂x
(εy + 1N ⊗ x)

)

−
[
x− PX

(
x− α∂f

∂x
(1N ⊗ x)

)]}

≤2α ‖εx‖
∥∥∥∥∂f∂x

(εy + 1N ⊗ x)− ∂f

∂x
(1N ⊗ x)

∥∥∥∥
5



≤2αl̄ ‖εx‖ ‖εy‖ (24)

Combining (22), (23), (24) into (21), we get

V̇1 ≤ −ω1 ‖εx‖2 + φ1 ‖εx‖ ‖εy‖ , (25)

where ω1 =
2(2αµ−α2C2

1 )
2+αC1

.

Moreover, the time derivative of V2 is

V̇2(t)

=2εTyP ε̇y

=− 2εTyP

{
1N ⊗

[
PX
(

x− α∂f
∂x

(εy + 1N ⊗ x)

)
− x

]}
+ 2βεTyP (L⊗ IN +B0) (1N ⊗ ex − εy − ey)

=− 2εTyP

{
1N ⊗

[
PX
(

x− α∂f
∂x

(εy + 1N ⊗ x)

)
− x

]}
+ 2βεTyP (L⊗ IN +B0) (1N ⊗ ex − ey)

− βεTyQεy. (26)

Similar to (22), the first term of (26) satisfies

− 2εTyP

{
1N ⊗

[
PX
(

x− α∂f
∂x

(εy + 1N ⊗ x)

)
− x

]}

≤2
√
N ‖εy‖ ‖P‖

∥∥∥∥PX (x− α∂f
∂x

(εy + 1N ⊗ x)

)
− x

−
[
PX
(

x∗ − α∂f
∂x

(1N ⊗ x∗)

)
− x∗

]∥∥∥∥
≤2
√
N ‖P‖

(
2 + αl̄

√
N
)
‖εx‖ ‖εy‖+ 2αl̄

√
N ‖P‖ ‖εy‖2 ,

(27)

and the second term of (26),

2εTyP (L⊗ IN +B0) (1N ⊗ ex)

≤1

ν
‖εy‖2 + νN ‖P (L⊗ IN +B0)‖2 ‖ex‖2 , (28)

and

− 2εTyP (L⊗ IN +B0) ey

≤1

ν
‖εy‖2 + ν ‖P (L⊗ IN +B0)‖2 ‖ey‖2 , (29)

for any ν > 0 according to Young’s inequality.

According to (16),

‖ex‖2 + ‖ey‖2

=

N∑
i=1

e2
xi

+

N∑
i=1

‖eyi‖
2

≤
N∑
i=1

δi
ci

(lnκ− ln ξi) +

N∑
i=1

σi

∥∥∥∥∥∥
N∑
j=1

aij∆ij (t)

∥∥∥∥∥∥
2

≤
N∑
i=1

δi
ci

(lnκ− ln ξi) + 2σ ‖L‖2
(
‖ey‖2 + ‖εy‖2

)
.

Then, we have

‖ex‖2 +
(

1− 2σ ‖L‖2
)
‖ey‖2

≤
N∑
i=1

δi
ci

(lnκ− ln ξi) + 2σ ‖L‖2 ‖εy‖2 .

If σ ≤ N−1
2N‖L‖2 , the combination of the second terms

of (28) and (29) satisfies

νN ‖P (L⊗ IN +B0)‖2 (‖ex‖2 +
1

N
‖ey‖2)

≤νN ‖P (L⊗ IN +B0)‖2
[
‖ex‖2 +

(
1− 2σ ‖L‖2

)
‖ey‖2

]
≤νN ‖P (L⊗ IN +B0)‖2

[
N∑
i=1

δi
ci

(lnκ− ln ξi)

+ 2σ ‖L‖2 ‖εy‖2
]
. (30)

Letting ν =
√

2√
N−1‖P (L⊗IN+B0)‖ , and combining (27)–

(30) into (26), one obtains

V̇2 ≤− ω2 ‖εy‖2 + φ2 ‖εx‖ ‖εy‖

+ C5

[
N∑
i=1

δi(t)

ci
(lnκ− ln ξi (t))

]
, (31)

where ω2 = βλ− 2αC2C3 − C4.

Combining (25) and (31), we have

φ2V̇1 + φ1V̇2

≤− φ2ω1 ‖εx‖2 + 2φ1φ2 ‖εx‖ ‖εy‖ − φ1ω2 ‖εy‖2

+ φ1C5

[
N∑
i=1

δi(t)

ci
(lnκ− ln ξi (t))

]
=−Θ∗(φ2 ‖εx‖2 + φ1 ‖εy‖2)− (ω1 −Θ∗)φ2 ‖εx‖2

− (ω2 −Θ∗)φ1 ‖εy‖2 + 2φ1φ2 ‖εx‖ ‖εy‖

6



+ φ1C5

[
N∑
i=1

δi(t)

ci
(lnκ− ln ξi (t))

]

≤−Θ∗
(
φ2V1 +

φ1

λM (P )
V2

)
+ φ1C5

[
N∑
i=1

δi(t)

ci
(lnκ− ln ξi (t))

]
, (32)

where Θ∗ =
(
ω1 + ω2 −

√
(ω1 − ω2)2 + 4φ1φ2

)
/2, and

λM (P ) is the maximum eigenvalue of P . It follows
from (17) and (18) that Θ∗ > 0, and (ω1 − Θ∗)(ω2 −
Θ∗) = φ1φ2. Thus,

V̇ (t) ≤−Θ∗
(
φ2V1 +

φ1

λM (P )
V2

)
− ηζ

N∑
i=1

δi(t)

+ φ1C5

[
N∑
i=1

δi(t)

ci
(lnκ− ln ξi (t))

]

≤−Θ∗
(
φ2V1 +

φ1

λM (P )
V2

)
− ηζ

N∑
i=1

δi(t)

+
φ1C5

mini{ci}
(lnκ− ln a)

N∑
i=1

δi(t)

=−Θ∗(φ2V1 +
φ1

λM (P )
V2)− ηζ

2

N∑
i=1

δi(t)

≤− kvV (t), (33)

where kv = min
{

Θ∗, Θ∗

λM (P ) ,
η
2

}
. By LaSalle’s invari-

ance principle (Khalil (2002)), we conclude that εx and
εy converge to zero exponentially.

Remark 11 From (33), we can see that kv > 0 is the
actual lower bound on the convergence rate, and it de-
pends on Θ∗, λM (P ), and η. The variable δi(t) plays an
important role in the convergence analysis. If ξi(t) is a
strictly positive constant, the above analysis will still be
applicable since the stochastic event trigger is an exten-
sion of the corresponding deterministic event trigger.

Remark 12 We prove that the proposed algorithm
achieves the exact NE with an exponential convergence
rate, while Yu et al. (2022) and Xu et al. (2022) showed
that their event-triggered algorithms converge to a neigh-
borhood of the NE, and Tsang et al. (2020) guaranteed
that its optimization algorithm converges to the proxim-
ity of the optimal point with arbitrary accuracy. From
this perspective, our algorithm and analysis provide a
better convergence guarantee.

4.3 Analysis on Zeno Behavior

Theorem 13 For a multi-agent system, the distributed
NE algorithm composed of (4) and (6) under the stochas-

tic event-triggering law (13) does not exhibit Zeno behav-
ior.

PROOF. Inspired from Yi et al. (2018), we demon-
strate Zeno behavior exclusion by contradiction. Sup-
pose Zeno behavior exists. Then there must exist a
player i such that for some finite T > 0,

lim
k→∞

tik = T, ∀i ∈ V.

In Theorem 10, we have proven the convergence of the
algorithm, which indicates that there exists a constant
Z0 > 0, such that

|ẋi (t) | ≤ Z0, ‖ẏi (t)‖ ≤ Z0, ∀i ∈ V. (34)

Let h0 =
√

lnκ
2
√

2Z0
e−

1
2ηT > 0. Then based on the property

of limit, there exists k0 > 0 such that

tik ∈ [T − h0, T ], ∀k ≥ k0.

Under the stochastic event-triggering law (13), we have

exi (t)
2

+ ‖eyi
(t)‖2

≤ σi

∥∥∥∥∥∥
N∑
j=1

aij∆ij (t)

∥∥∥∥∥∥
2

+ δ(t) (lnκ− ln ξi(t)) ,

for t ∈
[
tik0 , t

i
k0+1

)
. In order for the player to trigger at

tik0+1, a necessary condition is that

exi

(
ti−k0+1

)2
+
∥∥eyi

(
ti−k0+1

)∥∥2

>σi

∥∥∥∥∥∥
N∑
j=1

aij∆ij

(
ti−k0+1

)∥∥∥∥∥∥
2

+ δ
(
ti−k0+1

) (
lnκ− ln ξi

(
ti−k0+1

))
>e

ηti−
k0+1 lnκ,

(35)

where ti−k0+1 is the time instant right before tik0+1. Ac-

cording to (34), we can derive that

exi

(
ti−k0+1

)2
+
∥∥eyi

(
ti−k0+1

)∥∥2

=
[
x
(
tik0
)
− x

(
ti−k0+1

)]2
+
∥∥y (tik0)− y

(
ti−k0+1

)∥∥2

=

(∫ ti−
k0+1

ti
k0

ẋi (t) dt

)2

+

∥∥∥∥∥
∫ ti−

k0+1

ti
k0

ẏi (t) dt

∥∥∥∥∥
2

≤ 2
[
Z0

(
ti−k0+1 − t

i
k0

)]2
. (36)
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Combining (35) and (36), there is

√
2Z0

(
ti−k+1 − t

i
k

)
≥
√

lnκ e
− 1

2ηt
i−
k0+1 ≥

√
lnκ e−

1
2ηT .

(37)
Then we can infer that

tik0+1 − tik0 ≥ t
i−
k0+1 − t

i
k0 ≥ 2h0, (38)

which contradicts tik0+1 ∈ [T − h0, T ]. Thus, Zeno be-
havior does not exist.

Remark 14 Excluding Zeno behavior validates the well-
posedness of the proposed stochastic event-triggered algo-
rithm (13).

5 Numerical Simulations

We consider the spectrum access game in energy har-
vesting BSNs introduced in Section 1. Based on the for-
mulation in Niyato and Hossain (2007), the spectrum
access problem can be formulated as an oligopoly mar-
ket where N = 5 BSNs compete with each other in
terms of leasing the spectrum size xi ∈ [0, 16] supplied
by the primary base station to minimize their own cost,
and the cost of the spectrum is determined by a pricing

function pi(x) = mc
i + qi

(∑N
j=1 xj

)τ
, where mc

i , qi ≥ 0,

for i ∈ {1, 2, . . . , 5}, and τ ≥ 1. With the allocated
spectrum, the BSN can improve the transmission per-
formance using the adaptive modulation, and thus it re-
ceives the revenue ri per unit of the achievable trans-
mission rate. If each BSN utilizes uncoded quadrature
amplitude modulation with a square constellation, the
spectral efficiency of the transmission for BSN i is cal-
culated as:

ui = log2

1 +
1.5si

ln
(

0.2
BERtar

i

)
 , (39)

where si is the received signal-to-noise ratio (SNR), in-
dicating the quality of the signal received by the health
center, and BERtar

i is the target bit error rate level in
the single-input single-output Gaussian noise channel.
Then, we can obtain the revenue of the BSN i from
riuixi. Hence, the cost of the BSN i can be obtained as:

fi(x) = xipi(x)− riuixi. (40)

In this simulation, we let BSNs communicate with each
other via the directed graph shown in Fig. 1. We set
aij = 1 if aij > 0, τ = 1, BERtar

i = 10−4, ri = 20
for i = {1, 2, . . . , 5}, mc

1 = 5.7, mc
2 = 10.7, mc

3 =
10.3, mc

4 = 9.7, mc
5 = 15, q1 = 1.1, q2 = 1.2, q3 =

1.3, q4 = 1.4, q5 = 1.5, and s1 = 12 dB, s2 = 14 dB,
s3 = 15 dB, s4 = 16 dB, s5 = 18 dB. By centralized

1 2

54

3

Fig. 1. Communication topology for BSNs.

calculation, we can obtain that the NE for this sys-
tem is x∗ = [2.000, 3.987, 6.011, 8.018, 9.990]T . The ini-
tial actions are x(0) = [14, 12, 10, 4, 2]T , and the ini-
tial estimates are y1(0) = [0, 1.5, 2.5, 3.5, 4.5]T , y2(0) =
[2.5, 3.5, 4.5, 5.5, 6.5]T , y3(0) = [4.5, 5.5, 6.5, 7.5, 8.5]T ,
y4(0) = [6.5, 7.5, 8.5, 9.5, 10.5]T , and y5(0) = [8.5, 9.5,
10.5, 11.5, 12.5]T . We set step sizes as α = 0.14, and
β = 1.5. For the stochastic event-triggering law (13), we
choose η = 10, κ = 1.075, σi = 0.8/dini , ci = 1, and
a = 0.05.

The action and estimates evolutions are illustrated in
Fig. 2, where the estimates and x∗ are shown as blue lines
and black dashed lines, respectively, indicating that all
players’ actions and estimates converge to the NE as ex-
pected. Fig. 3 presents the triggering times for each BSN,

0 5 10 15 20 25 30 35
0

5

10

15

Fig. 2. The evolution of BSNs’ actions and estimates.

illustrating that continuous communication is avoided
under (13).

To instantiate the advantage of the proposed stochastic
event-triggering law, we compare it with a static one
used in Yu et al. (2022), as well as a dynamic one pro-
posed in Zhang et al. (2021). Due to the randomness
of (13), we run the simulation 100 times and obtain the
empirical mean. The comparison of average communi-
cation rates is shown in Fig. 4. We observe that (13)
achieves the lowest Γ(t). Besides, for the stochastic
event-triggered mechanism, the peak of the average
communication rate is much lower than those of oth-
ers, implying that the bandwidth can be significantly
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Fig. 3. The triggering times for each BSN.
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Fig. 4. Average communication rates for the static, dynamic
and stochastic event-triggering laws.

reduced under (13). Moreover, to observe the triggering
times and communication intervals of the three event-
triggering laws more intuitively, some involved metrics
for all players are summarized in Table 1, indicating
that triggering times of (13) are mostly fewer and com-
munication intervals are mostly larger than those of
other laws.

Intuitively, the stochastic event-triggered algorithm can
reduce the communication cost by relaxing the trigger-
ing conditions. It is difficult to mathematically charac-
terize the communication rates under different event-
triggering laws since this is equivalent to calculate the
frequency of ρi > 0 for deterministic event triggers or
ξi(t) > κ exp(−ciρi(t)/δi(t)) for stochastic ones. There-
fore, in the literature, most works on distributed algo-
rithms with event-triggered mechanisms only provide
convergence analysis without theoretical estimates on

Table 1
Triggering counts and statistics of communication intervals
for players.

Player 1 2 3 4 5

Trigger
count

Static 430 420 392 215 407

Dynamic 220 185 172 92 234

Stochastic 50 81 82 70 49

Max
interval

Static 0.100 0.150 0.175 0.225 0.150

Dynamic 0.325 0.200 0.275 0.550 0.225

Stochastic 1.050 0.875 0.775 1.125 1.250

Mean
interval

Static 0.078 0.080 0.086 0.157 0.083

Dynamic 0.154 0.182 0.197 0.367 0.144

Stochastic 0.675 0.416 0.413 0.478 0.688

Min
interval

Static 0.050 0.050 0.050 0.075 0.050

Dynamic 0.125 0.125 0.125 0.200 0.075

Stochastic 0.250 0.200 0.200 0.200 0.225

the communication rate (Cao and Başar (2020); Nowzari
et al. (2019); Qian and Wan (2021); Tsang et al. (2019,
2020); Xia et al. (2022); Yi et al. (2018); Zhang et al.
(2021); Zhao et al. (2021)). Usually, numerical simula-
tions are provided to illustrate the reduction of commu-
nication cost through the proposed event trigger, as we
do in our work. Although some works offer the lower
bounds of the minimum inter-event time by proving the
exclusion of Zeno behavior, these bounds are too loose
to be compared (Nowzari et al. (2019); Qian and Wan
(2021); Tsang et al. (2020); Zhao et al. (2021)). It is a
challenging future work to quantify the communication
rate accurately.

Fig. 5 shows that (13) preserves comparable conver-
gence performances even with a slightly faster conver-
gence rate under much lower communication cost. In
other words, (13) can better balance communication ef-
ficiency and convergence performance.

6 Conclusion and Future Work

In this paper, we proposed a novel stochastic event-
triggered algorithm for the distributed constrained NE
seeking problem to improve communication efficiency. In
particular, a player transmits its message with a prob-
ability increased with the value of the triggering func-
tion. We proved the exponential convergence to the exact
NE and the non-existence of Zeno behavior. Numerical
examples illustrate the significance of our proposed al-
gorithm in practical applications, including much lower
communication rates and a slightly faster convergence
rate.

Potential future work includes the rigorous analysis of a
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Fig. 5. Convergence performance for the static, dynamic and
stochastic event-triggering laws in semi-log scale.

tradeoff between the communication rate and the con-
vergence rate, as well as a systematic design of the pa-
rameters in the algorithm.
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