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Abstract

We pose the approximation problem for scalar nonnegative input/out-
put systems via impulse response convolutions of finite order, i.e. finite
order moving averages, based on repeated observations of input/output
signal pairs. The problem is converted into a nonnegative matrix factor-
ization with special structure for which we use Csiszár’s I-divergence as
the criterion of optimality. Conditions are given, on the input/output
data, that guarantee the existence and uniqueness of the minimum. We
propose an algorithm of the alternating minimization type for I-divergence
minimization, and present its asymptotic behavior. For the case of noisy
observations we give the large sample properties of the statistical version
of the minimization problem for different observation regimes. Numerical
experiments confirm the asymptotic results and exhibit fast convergence
of the proposed algorithm.

Keywords: moving average, finite order, positive system, alternating
minimization

AMS subject classification: 62B10, 62E20, 94A17, 93B30, 93E12

1 Introduction

In this paper we pose the problem of the time-domain approximation of non-
negative input/output systems by finite (nonnegative) impulse response con-
volutions of fixed order q, when input/output observations are available. In
principle, the order q ia a low number compared to the number of observations,
We propose an iterative algorithm to find the best approximation, and study
the asymptotical behavior of the algorithm. The present paper is a variation
on and complements [12], where the order of the convolution was not fixed, but
varies with the sample size. Contrary to contributions prior to, but in line with
[12], our treatment allows for m > 1 input/output pairs. This setting leads
easily to a statistical analysis when the output is observed with noise. We then
study large sample properties of the resulting parameter estimators when (1)
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the number of input/output pairs m grows unboundedly but the time horizon
is fixed, (2) the number of observations, the time horizon, N , tends to infinity,
but m is fixed and (3) a mixture of the previous two cases. It is noted that
the last two cases are not meaningful when the order of the convolution is not
fixed, as in [12]. Indeed, fixing the order q is the main difference with our earlier
contributions. Similar algorithms to ours for the case m = 1 has been studied
in [22] and [24]. Following the choice made in those early contributions our
criterion of optimality will be Csiszár’s I-divergence, which as argued in [5] (see
also [22]), is the best choice for approximation problems under nonnegativity
constraints.

We emphasize that our approach to the approximation of a given input/-
output system by a linear time invariant system is different from the usual
identification or realization of (nonnegative) linear systems, see [2] for a survey,
and for instance [19], [18], [13], [21], [1], [9]. From the mathematical point of
view, the techniques that we have used in [11] to analyse a nonnegative matrix
factorization algorithm have been shown to be very useful in the present context
as well, as demonstrated in [12], and provided several benefits over the analyses
contained in [22]. We will provide explicit conditions for the existence and
uniqueness of the minimizer of the criterion in terms of the data. The algorithm
that minimizes the informational divergence criterion is of the same alternating
minimization type as in [12], and the optimality conditions (the Pythagorean
relations) are shown satisfied at each step. As demonstrated in [12], these are
the core of a proof of convergence which is more transparent than other proofs
in the literature, e.g. [3], [22], and [24].

A different theoretical approach, in the frequency domain, has been followed
in [17] and in [16]. The contributions of the present paper are theoretical, possi-
ble applications of the algorithm are e.g. in the fields of image processing, emis-
sion tomography, industrial processes, charge routing networks, compartmental
systems, storage systems. For these we refer for instance to [8, 22, 20, 24, 10]
and references therein.

A brief summary of the paper follows. In Section 2 we state the problem and
formulate conditions for strict convexity of the objective function, and hence for
the existence and uniqueness of the solution. In Section 3 the original problem
is lifted into a higher dimensional setting, thus making it amenable to alternat-
ing minimization. The optimality properties (Pythagoras rules) of the ensuing
partial minimization problems are recalled here. Then we derive the iterative
minimization algorithm combining the solutions of the partial minimizations, we
present its first properties and the important result on the convergence of the
algorithm. In Section 4, taking advantage of the repeated input/output mea-
surements setup or the possibility of a growing time horizon, we give a concise
treatment of a statistical version of the approximation problem, focusing on its
large sample properties. In the last Section 5 we present numerical experiments
that confirm the asymptotic results and exhibit fast convergence properties of
the algorithm.

As mentioned above, the present paper is a follow up to [12], where the
dimension of the parameter was not fixed, but varies with the sample size.
Accordingly we often only highlight the differences and refer, unless extra or
different arguments are needed, to [12] for proofs. Main differences with [12]
are in Section 4, where we discuss asymptotic properties of estimators under
different observation regimes (including those where the time horizon tends
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to infinity), which can now be treated because of the fixed dimension of the
parameter.

2 Problem statement and preliminary results

A discrete time, causal, convolutional moving average system Sh of order q
maps input sequences (ut)t∈N ∈ RN into output sequences (yt)t∈N ∈ RN, and is
completely characterized by an impulse response vector h = (ht)t∈{0,...,q}, such
that

yt = Shut =

t∑
k=0

hkut−k, t ∈ N,

where hk is set to zero for k > q. Alternatively, one can also write

yt = Shut =

t∧q∑
k=0

hkut−k, t ∈ N, (2.1)

where we write t ∧ q for min{t, q}.
Throughout the paper we consider a time horizon N for which we assume

N ≥ q, a standing assumption. Hence we have to replace (2.1) by

yt = Shut =

t∧q∑
k=0

hkut−k, 0 ≤ t ≤ N. (2.2)

The special case where q = N has been treated in [12] and N < q yields a
redundancy, as the parameters hN+1, . . . , hq don’t play a role in (2.2). Rewriting
Equation (2.2) in matrix form, one gets the system of equations


y0
...
...
yN

 =



h0 0 · · · · · · · · · 0
...

. . .
. . .

...

hq
. . .

. . .

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 hq · · · h0




u0
...
...
uN

 , (2.3)

compactly written as
y = T (h)u, (2.4)

having introduced the notations u = (u0, . . . , uN )>, y = (y0, . . . , yN )> and
T (h) ∈ R(N+1)×(N+1) for the matrix in (2.3). For m input sequences uj , with
corresponding output sequences yj , where j = 1, . . . ,m, equation (2.4) becomes

Y = T (h)U, (2.5)

where Y = (y1, . . . , ym) ∈ R(N+1)×m and U = (u1, . . . , um) ∈ R(N+1)×m. Ele-
ments of Y and U are denoted Yij and Uij , instead of yji and uji .

In many practical contexts the inputs and outputs U and Y are directly
measured data, while h is not known or, more generally, a causal convolutional
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system Sh is not known to exist such that Y = T (h)U . In either of these cases
an interesting problem is to find h such that the approximate relation

Y ≈ T (h)U (2.6)

is the best possible with respect to a specified loss criterion.
In this paper we concentrate on this problem, under the extra condition

that (2.6) is the approximate representation of the behavior of a positive sys-
tem, i.e. all quantities in (2.6) are nonnegative real numbers. The goal is the
determination of the best nonnegative vector h = (h0, . . . , hq)

>, where the loss
criterion, chosen to measure the discrepancy between the left and the right
hand side in (2.6), is the I-divergence between nonnegative matrices. See [5] for
a justification from first principles.

For given nonnegative vectors, matrices, tensors M and N of the same size,
indexed by some variable α, the I-divergence between them is defined as

I(M ||N) :=
∑
α

(
Mα log

Mα

Nα
−Mα +Nα

)
≤ ∞. (2.7)

In definition (2.7) we also adopt the usual conventions 0
0 = 0, 0 log 0 = 0 and

p
0 =∞ for p > 0.

Problem 2.1 For given Y ≥ 0 and U ≥ 0, find a nonnegative vector h =
(h0, . . . , hq)

> ∈ H := Rq+1
+ such that F : H → [0,∞],

F (h) := I(Y ||T (h)U)

is minimized over H.

Problem 2.1 is well posed if there exists at least one h ∈ Rq+1
+ such that F (h)

is finite. Under a rather weak condition on the data (U, Y ), the loss F (h) is
strictly convex (and hence Problem 2.1 is well posed), a property that simplifies
the study of the existence and uniqueness of the solution of Problem 2.1.

Condition 2.2 For all i ∈ {0, . . . , N} there exists j ∈ {1, . . . ,m} such that
U0j > 0 and Yij > 0.

This condition holds e.g. under the (stronger) assumption that for some exper-
iment j, with initial input U0j > 0, the output trajectory Yij is strictly positive
for all i. Lemma 2.3 below is similar to [12, Lemma II.6], but its proof uses
different arguments.

Lemma 2.3 Under Condition 2.2 the loss F (h) is strictly convex on its effective
domain, i.e. the set {h ∈ H : F (h) <∞}.

Proof We exploit strict concavity of the logarithm. It is sufficient to prove
strict concavity of h 7→

∑
ij Yij log(T (h)U)ij . Note that all mappings h 7→

Yij log(T (h)U)ij are concave. Hence it is sufficient to show that at least on
of them is strictly concave. Fix i and choose j = j(i) such that Yij > 0 and
U0j > 0. We show that for at least on pair (i, j) one has strict concavity of h 7→
log(T (h)U)ij . Choose different vectors h0, h1 ∈ Rq+1

+ and let h̄ = (1− t)h0 + th1

for t ∈ (0, 1). We have to show that there is an i such that (T (h̄)U)ij is not
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equal to one of the (T (h0)U)ij and (T (h1)U)ij . Suppose on the contrary that
(T (h̄)U)ij = (T (h0)U)ij for all i. It is sufficient to restrict our attention to
i ≤ q, since we assumed N ≥ q. This is then equivalent to

∑q
l=0 vlUi−l,j = 0

for all i, where vl = h1l − h0l . This gives a linear system of q + 1 equations in
the vl in which the coefficient matrix is lower triangular with the U0,j(i) on the
diagonal. But these diagonal elements are all strictly positive, hence the vl are
all zero, which contradicts h0 6= h1. �

Remark 2.4 In solving Problem 2.1, minimizers h∗ at the boundary of H =
Rq+1

+ , i.e. with some zero components, are the rule rather than an exception
when q=N, see [12, Remark 10]. But, if N is much larger than q, it has been
observed that one often has interior solutions. See Section 5 for an illustration
of this remark.

We now state the existence and uniqueness result. The statement and its proof
are verbatim the same as for Proposition 7 in [12]. An important ingredient
of the proof is that the search for a minimizer can be confined to a suitable
compact set, on which the divergence is finite.

Proposition 2.5 Assume Condition 2.2 is satisfied, then Problem 2.1 admits
a unique solution.

Remark 2.6 Suppose that given the input sequences, the outputs are obtained
by a true convolutional system Y = T (h∗)U for some h∗ ∈ H. It follows from
Proposition 2.5 that under Condition 2.2, the minimizer of h 7→ F (h) is h∗ and
F (h∗) = 0. Note too that under the same Condition 2.2 the system of equations
T (h)U = T (h∗)U has the unique solution h = h∗.

If for the general case one wants to check whether a proposed vector h∗ is
a minimizer, it is by the convexity result of Lemma 2.3 sufficient to check the
Kuhn-Tucker conditions (see e.g. [25, Theorem 2.19]).

3 The algorithm

To solve Problem 2.1 we propose an alternating minimization algorithm, based
on a variation of the lifting technique pioneered by [7]. The same approach was
previously adopted in [12] for the solution of Problem 2.1 under the condition
q = N . The results of this section are in spirit the same as the corresponding
ones in [12, Section III] and can be derived in an analogous way. Proofs are
therefore omitted.

This leads to the following algorithm, almost identical to Algorithm 19
in [12], with minor differences only, see also Remark 3.2.

Algorithm 3.1 Initialize at a strictly positive vector h0 and define recursively
for t ≥ 0

ht+1 = I(ht),

where the map I acts on the components of ht as follows. For k = 0, . . . , q,

ht+1
k = Ik(ht) :=

htk∑N−k
l=0 Ul�

m∑
j=1

N∑
i=k

YijUi−k,j∑i∧q
p=0 h

t
pUi−p,j

. (3.1)
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If the data satisfy U0� > 0, as is the case under Condition 2.2, any h0 > 0
componentwise is sufficient for F (h0) <∞.

Remark 3.2 If q = N , Algorithm 3.1 is exactly the same as Algorithm 19 in
[12]. If q < N , one can add artificial parameters hk = 0 for k = q + 1, . . . , N .
Starting the algorithm in h0k = 0 for those k, we see that all iterated values htk
are zero as well. The extension of the algorithm with these iterates then also
yields the algorithm of [12], with the modification of the zero initial values for
k = q + 1, . . . , N . Note that, although Algorithm 3.1 can this be viewed as a
special case of [12, Algorithm 19], it requires separate derivation in principle.
The reason is that the algorithm follows from the two partial minimization
problems. The second one of which can be considered as a constraint version
of the second minimization problem in [12], the constraints being hk = 0 for
k = q + 1, . . . , N . Curiously enough the solution of the second minimization
problem coincides with the h∗k in the non-constrained problem in [12].

Here are a few properties, parallelling those in [12]. Positivity of the initial
values is preserved by the iterations; the algorithm decreases the divergence
I(Y ||T (ht)U) at each step; the recursion enjoys a stability property, if ht is such
that F is increasing (decreasing) in the k-th coordinate of ht, then ht+1

k < htk
(ht+1
k > htk); the vectors ht belong to a certain compact set, in fact a simplex.

Remark 3.3 Algorithm 3.1 has multiplicative update rules for the htk and all
iterates remain positive. In principle the algorithm risks to get trapped if some
component htk is (nearly) zero. But Theorem 3.4 below guarantees that the
algorithm converges to the minimizing h, and hence will not get trapped else-
where. This is in contrast with many other algorithms with a multiplicative
update rule. For further discussion on this issue see [15].

We close this section with a result concerning the asymptotic behaviour of Al-
gorithm 3.1, Theorem 3.4 below. Its omitted proof, much like the one of Theo-
rem 25 in [12], heavily relies on the optimality results for the partial minimiza-
tions and a series of lemmas as in the cited paper.

Theorem 3.4 The sequence of iterates ht converges to a limit h∞ which min-
imizes h→ I(Y ||T (h)U).

Here is a a very simple example.

Example 3.5 Suppose q = 0 and N ≥ 0. This is an instance in which Prob-

lem 2.1 has an explicit solution, h∗0 =
∑

ij Yij∑
ij Uij

. Starting with h00 > 0, Algo-

rithm 3.1 produces h10 = h∗0, so it reaches the minimizing value in one step.
When q > 0 there is no termination of the algorithm in finitely many steps that
achieves the minimizing vector h∗, but an explicit solution for q = 1, N = 1 is
available, see [12, Example II.9]. Depending on the data, there are boundary
solutions in the latter case.

4 Statistics

In the previous sections we focused on the minimization of F (h) = I(Y ||T (h)U)
over h ∈ Rq+1

+ , where Y and U were given matrices and we presented an al-
gorithm that asymptotically yields the minimizer. In the present section we
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concentrate on a statistical version of the minimization problem and its large
sample properties under different observation regimes. Specifically we study the
asymptotics when the number of input sequences grows and/or the time horizon
tends to infinity. The latter is possible in the present context, unlike in [12],
because of the fixed dimension of the parameter.

Recall that Y,U ∈ R(N+1)×m, but now random quantities. For each fixed
m,N , Algorithm 3.1 can be used to find the optimizing ĥN,m, which now be-
comes a random vector in Rq+1

+ . We will give limit results on consistency and

asymptotic normality for the ĥN,m in three cases. First for m → ∞, and the
columns U j of U (j = 1, . . . ,m) form an i.i.d. sample. Then for N → ∞, and
the rows Ui of U (i = 0, . . . , N) form an i.i.d. sample. Finally for N,m → ∞,
and all Uij (i = 0, . . . , N , j = 1, . . . ,m) form an i.i.d. sample.

Assumption 4.1 We assume throughout this section the ‘true’ relationships

Yij = (T (h∗)U j)iδij , i = 0, . . . , N, j = 1, . . . ,m, (4.1)

where h∗ is an interior point of Rq+1
+ , and the δij are nonnegative random

variables, representing multiplicative noise. We will always assume that the δij
form a double array of i.i.d. random variables, that all δij are independent of
all Uij and that E δij = 1.

Further assumptions will be detailed in the subsections below.

4.1 Asymptotics for m→∞, N fixed

For matrices Y,U one can write I(Y ||T (h)U) =
∑m
j=1 I(Y j ||T (h)U j), with the

Y j and U j the columns of the matrices Y and U respectively. In this section we
assume, next to Assumption 4.1, that the pairs (Y j , U j) are i.i.d. Let (y, u) be
a pair of random vectors that has the same distribution as each of the (Y j , U j).
Elements of y (and u) are denoted yi (and ui). Here is the first result, basically
the same as [12, Lemma 27].

Lemma 4.2 Assume the model (4.1), independence of ui and δi, Eui < ∞,
E δi = 1, and E δi| log δi| <∞. Then it holds for all h ∈ H that

E I(y||T (h)u)

= E I(T (h∗)u||T (h)u) +
∑
i

(E (T (h∗)u)iE (δi log δi).

Minimizing the function h 7→ E I(y||T (h)u) (referred to below as the limit
criterion) is therefore equivalent to minimizing h 7→ E I(T (h∗)u||T (h)u).

The following proposition parallels [12, Proposition 28] with some minor differ-
ences in the statement and the proof.

Proposition 4.3 Let P(u0 > 0) = 1 and Eu2j <∞ for all j. The limit criterion
h 7→ E I(y||T (h)u) is strictly convex on the set where it is finite (and hence on
a neighbourhood of h∗) and has a unique minimum for h = h∗.
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Proof We show that the Hessian H(h) ∈ R(q+1)×(q+1) at h of the limit criterion
is strictly positive definite on the set where the limit criterion is finite. A
computation shows that the kl-element of this matrix is equal to (recall the
convention ui = 0 for i < 0)

H(h)kl = E
N∑
j=0

(T (h∗)u)j
(T (h)u)2j

uj−kuj−l.

Hence, for any vector x = (x0, . . . , xN )> one has, using the convolution notation
(u ∗ x)j :=

∑
k xkuj−k,

x>H(h)x = E
N∑
j=0

(T (h∗)u)j
(T (h)u)2j

(u ∗ x)2j .

Suppose that x>H(h)x = 0 for some x ∈ Rq+1. Then E (T (h∗)u)j
(T (h)u)2j

(u ∗ x)2j has to

be zero for all j, in particular for j ∈ {0, . . . , q}. Hence
(T (h∗)u)j
(T (h)u)2j

(u∗x)2j = 0 a.s.

for j ∈ {0, . . . , q}. Since (T (h∗)u)j ≥ h∗ju0, which is strictly positive by the

assumptions, one can only have
(T (h∗)u)j
(T (h)u)2j

(u ∗ x)2j = 0 a.s. if (u ∗ x)j = 0 a.s.

for all j = 0, . . . , q. This gives a system of linear equations Ūx = 0, where
Ū ∈ R(q+1)×(q+1) is lower triangular with all diagonal elements equal to u0.
Using P(u0 > 0) = 1, we deduce that x = 0 iff x>H(h)x = 0. From Lemma 4.2
it follows that the limit criterion has a minimum at h = h∗, and by strict
convexity this must be the unique minimizer. �

As in the present case N is fixed, we simply write ĥm for the estimators, i.e.
the minimizers of Fm(h) =

∑m
j=1 I(Y j ||T (h)U j). The following proposition,

basically the same as [12, Proposition 29], describes the large sample behaviour

of the ĥm for the number of input sequences m→∞ and the observation horizon
N fixed. We include the proof for the sake of completeness.

Proposition 4.4 Let Assumption 4.1 be in force, in particular (4.1), and as-
sume that the random vectors U j form an i.i.d. sequence. Let P(U0j > 0) > 0
and EU2

ij <∞ for all i, j, moreover assume that h∗ is an interior point.

The estimators ĥm, defined as the minimizers of the objective function∑m
j=1 I(Y j ||T (h)U j) are consistent. Moreover, this sequence is asymptotically

normal, for some positive definite Σ ∈ R(q+1)×(q+1) we have
√
m(ĥm − h∗) d→

N(0,Σ).

Proof The limit criterion h 7→ E I(Y ||T (h)U) is strictly convex, continuous on
the set where it is finite. Therefore from [23, Problem 5.27] we conclude that the
conditions of [23, Theorem 5.7] are satisfied and consistency follows. To show

that the estimators ĥm are asymptotically normal with covariance function as
given in [23, Theorem 5.23], we have to show that the Hessian H(h∗) at h∗ of
the limit criterion is strictly positive definite. But this follows from the proof of
Proposition 4.3 taking h = h∗. �
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4.2 Asymptotics for N →∞, m fixed

The standing assumption is again Assumption 4.1. Let, as before, Y and U
be matrices. Write I(Y ||T (h)U) =

∑N
i=0 I(Yi||(T (h)U)i), with the Yi and

(T (h)U)i the rows of the matrices Y and T (h)U .
We’d like to have all rows Yi mutually independent, but row Yi partly uses

the same inputs as Yi+1, namely the rows Ui+1, . . . , Ui−q+1 (for i ≥ q). Consider
the rows Ui and Ui+q+1. The elements of these rows that are needed to com-
pute the convolutions (T (h)U)ij are Uij , . . . , Ui−q,j , whereas for (T (h)U)i+q+1,j

one needs Ui+q+1,j , . . . , Ui+1,j . We see that these sets of elements have empty
intersection. To have independence of rows (T (h)U)i and (T (h)U)i+q+1 we will
assume that the rows Ui are independent. The interpretation is that in the
collective experiments, at different times independent row vectors are used as
inputs.

Lemma 4.5 Assume that the rows Ui form an i.i.d. sequence, and that all
necessary expectations are finite. Consider the random criterion function

IN (h) =
1

N

N∑
i=0

I(Yi||(T (h)U)i).

Then one has, for N →∞ the a.s. convergence

IN (h)→ E I(Yq||(T (h)U)q).

Proof We split the sum
∑N
i=0 I(Yi||(T (h)U)i) into the q + 1 sums

b N
q+1 c∑
i=0

I(Yi(q+1)+l||(T (h)U)i(q+1)+l)

and a remainder term of at most q terms I(Yi||(T (h)U)i). The remainder term
divided by N tends to zero a.s. For each l the strong law applies because of the
independence properties and we have the a.s. convergence

1

N

b N
q+1 c∑
i=0

I(Yi(q+1)+l||(T (h)U)i(q+1)+l)→
1

q + 1
E I(Yq+1+l||(T (h)U)q+1+l).

Since the rows (Yi, (T (h))Ui) have the same distribution for all i ≥ q, one has the
identity E I(Yq+1+l||(T (h)U)q+1+l) = E I(Yq||(T (h)U)q). The result follows. �

Proposition 4.6 Assume the model (4.1), the rows Ui form an i.i.d. sequence,
and for all i, j, EUij <∞, E δij = 1, and E δij | log δij | <∞. Then it holds that

E I(Yq||(T (h)U)q)

= E I((T (h∗)U)q||(T (h)U)q)) +
∑
j

(E (T (h∗)U)qjE (δqj log δqj).

Moreover, the divergences E I((T (h∗)U)i||(T (h)U)i) are identical for all i ≥ q
and the limit criterion h 7→ E I(Yq||(T (h)U))q) is strictly convex, and hence
continuous, on the set where it is finite (and hence on a neighbourhood of h∗).
It has a unique minimum for h = h∗, if P(U0j > 0) > 0 for at least one j and
EU2

0j <∞ for all j.
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Proof The proof of the first assertion is like the one of Lemma 4.2. The second
assertion follows from the observation that for i ≥ q in the computation of
the divergence, one needs q + 1 inputs Ui, . . . , Ui−q and these have identical
distributions. Strict convexity and uniqueness are proved in the same way as
for Proposition 4.3. �

Minimizing the function h 7→ E I(Yq||(T (h)U))q) (referred to below as the limit
criterion) is thus equivalent to minimizing h 7→ E I((T (h∗)U)q||(T (h)U))q).

As in the present case m is fixed, we write ĥN for the estimators. The
following proposition describes the large sample behaviour of the ĥN forN →∞.

Proposition 4.7 Let Assumption 4.1 be in force, in particular (4.1), and as-
sume the rows Ui form an i.i.d. sequence. Let P(U0j > 0) > 0 for at least one j
and EU2

0j <∞ for all j, moreover assume that h∗ is an interior point.

The estimators ĥN , defined as the minimizers of the objective function∑N
i=0 I(Yi||(T (h)U)i) are consistent. Moreover, this sequence is asymptotically

normal, for some positive definite Σ ∈ R(q+1)×(q+1) we have
√
N(ĥN − h∗) d→

N(0,Σ).

Proof As the convolutions are not independent anymore, we cannot immedi-
ately follow the same path as in the proof of Proposition 4.4. Still, the key to
prove the result in the present case is the independence of the rows Ui and that
the δij are independent.

Recall that a sequence of random variables or vectors Xi is q-dependent if for
every possible time index t the (possibly infinite) sequences (. . . , Xt−1, Xt) and
(Xt+1+q, Xt+2+q, . . .) are independent, and that a q-dependent sequence is auto-
matically strong mixing. It follows from the assumptions that the (Yk, (T (U))k)
are q-dependent and so are the I(Yk||(T (h)U)k), which then trivially become a
strong mixing sequence. Hence, one can apply Ibragimov’s central limit theo-
rem [14] for strongly mixing stationary sequences to have

√
N(IN (h)−E IN (h))

converging to a zero mean normal distribution. The asymptotic normality re-
sult for the estimators follows by a Taylor argument for M-estimators combined
with the laws of large numbers and the CLT result for the IN (h) above (see [23,
pages 51 and 72]), or by application of the delta-method. See also [23, Chapters
5 and 19], in particular the proofs of the general Theorems 5.21 and 5.23, and
[23, Section 5.6] with results on the ‘classical case’. To verify the consistency
condition in these theorems, one needs strict convexity and continuity of the
limit criterion h 7→ E I(Yq||(T (h)U))q) and uniqueness of its minimizer, similar
to Proposition 4.3. From [23, Problem 5.27] one concludes that the conditions
of [23, Theorem 5.7] are satisfied and consistency follows. �

4.3 Asymptotics for N,m→∞
In this section we study the large sample behavior of the estimators hN,m when
both the time horizon N and the number of experiments m may tend to infin-
ity. The model is again (4.1) and next to Assumption 4.1 in this section it is
additionallly assumed that both the Uij and the δij are i.i.d. arrays with the
relevant expectations finite.
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We look again at the limit criteria of Lemma 4.2 and Lemma 4.5. The first
limit criterion becomes

∑N
i=0 E I(Yij ||(T (h)U)ij), with j arbitrary, which equals

L1
N :=

q−1∑
i=0

E I(Yij ||(T (h)U)ij) + (N + 1− q)E I(Yqj ||(T (h)U)qj)

by the assumed identity in distribution. The second limit criterion we can write
as
∑m
j=1 E I(Yqj ||(T (h)U)qj), equal to

L2
m := mE I(Yqj ||(T (h)U)qj)

by the assumed independence for this case. We see that limN→∞
1
NL

1
N =

limm→∞
1
mL

2
m = E I(Yqj ||(T (h)U)qj), j arbitrary, for instance j = 1. This

motivates the next result.

Lemma 4.8 Consider the random criterion function

IN,m(h) =
1

Nm

N∑
i=0

m∑
j=1

I(Yij ||(T (h)U)ij).

Then one has, for N,m→∞ the convergence in probability

IN,m(h)→ E I(Yq1||(T (h)U)q1), (4.2)

which has h∗ as its unique minimizer.

Proof For each j the random variables I(Yij ||(T (h)U)ij) are q-dependent and

hence the variance of
∑N
i=0 I(Yij ||(T (h)U)ij) can be shown to be (finite and)

of order N . As the latter sums are i.i.d. for different j the result is that the
variance of the double sum

∑N
i=0

∑m
j=1 I(Yij ||(T (h)U)ij) is of orderNm. Hence,

Chebychev’s inequality gives the result on the convergence.
The minimizing property of h∗ follows as in the proof of Proposition 4.3, us-

ing the additive decomposition of the limit in (4.2) into (T (h∗)U)q1)||(T (h)U)q1)
and a remainder term not involving h. �

Remark 4.9 Let ρN,m = N
m and ρ = limN,m→∞ ρN,m (assumed to exist). If

ρ = 0, the limit in Lemma 4.8 coincides with the result for fixed N , if ρ = ∞
one retrieves the result of Lemma 4.5, since under the present independence
assumptions I(Yq||(T (h)U)q) = mI(Yq1||(T (h)U)q1).

Proposition 4.10 Let Assumption 4.1 be in force, in particular (4.1), and
assume all Uij form an i.i.d. double array. Let P(Uij > 0) > 0 and EU2

ij < ∞
for all i, j, moreover assume that h∗ is an interior point. Let N,m → ∞. The
estimators ĥN,m, defined as the minimizers of the objective function IN,m(h) are
consistent. Moreover, this sequence is asymptotically normal, for some positive

definite Σ ∈ R(q+1)×(q+1) we have
√
Nm(ĥN,m − h∗) d→ N(0,Σ).

Proof For consistency one needs Lemma 4.8 and uniqueness of the minimizer
of the expectation in (4.2). The remainder follows as in the proof of Propo-
sition 4.7, using for any fixed j the q-dependence of the Yij , i ≥ 0 and the
independence, for fixed i of the Yij , j ≥ 1. �
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4.4 Misspecified models

The standing assumption in this section until now was Assumption 4.1 that
postulated the existence of a ‘true’ parameter h∗. In absence of this assumption
we have the following counterpart of Proposition 4.3 under the conditions of
Section 4.1. Similar results holds for the situations of Sections 4.2 and 4.3.

Proposition 4.11 Let P(u0 > 0) = 1 and Eu2j <∞ for all j. The limit crite-
rion h 7→ E I(y||T (h)u) is strictly convex on the set where it is finite and has a
unique minimum. The unique minimizer coincides with h∗ when Assumption 4.1
holds.

Proof The proof follows the lines of the proof of Proposition 4.3, but in the
computation of the Hessian one has to replace the quantities (T (h∗)u)j with Yj .
The Hessian is then again seen to be positive definite, and the existence of a
unique minimum follows.

That this minimizer coincides with h∗ under Assumption 4.1, follows from
Lemma 4.2. �

Calling the unique minimizer h∗, one obtains that all previous results on con-
sistency –under the presented conditions– continue to hold with the ‘true’ pa-
rameter replaced with this h∗. The same is true for the results for asymptotic
normality. See Example 5.25 in [23] for a similar discussion on maximum likeli-
hood estimation for misspecified models. In that situation the ‘true’ parameter
is replaced by the one that minimizes the Kullback-Leibler information between
the distribution of the data and the distribution given by the misspecified model.
The analogy with our setting is obvious.

5 Numerical experiments

In this section we provide the results of a number of numerical experiments
that illustrate the behaviour of Algorithm 3.1. All figures can be found at the
end of the paper. We have observed experimentally that usually the iterative
algorithm converges very fast in many instances, which is illustrated by the ex-
amples. In many cases 50 iterations would have sufficed. For the sake of graph
readability in the examples reproduced here the order q has been limited to
5, leading to a parameter vector h of length 6. Each of the graphs shows the
iterates htk (k = 0, . . . , 5) with the iteration number t on the horizontal axis,
and the 6 values of the impulse response htk on the vertical axis, different col-
ors representing the different k’s. As another simplification in the graphs we
sometimes omit the first iterates. In Figures 1–6 the diamonds at the right end
of the graph indicate the true h∗ target values. In all cases the Uij are gener-
ated as independent uniform U(0.1, 10) random variables. The precise features
underlying the different experiments are further detailed below. The different
experiments highlight the role of the parameters m and N , especially when the
system is observed with noise. Relatively small values of m compared to high
values of N give satisfactory results. For the asymptotics of Proposition 4.10 it
is important that only the product Nm is large.

In the first two examples, Figure 1 and Figure 2, we investigate whether the
algorithm is capable of retrieving the true parameter vector h∗, when the output
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data are actually generated by h∗. After that we investigate the behavior of the
algorithm when we have noisy observations of the output. Here we are in the
statistical setting of Section 4. The δij are taken as exp(Zij/10− 1/200), where
the Zij are independent standard normal random variables. Note that indeed
E δij = 1. Figures 3–6 illustrate the large sample behaviour of the estimators.
We see that for not too large values of N , already moderate values ofm give good
results, this illustrates Proposition 4.10. For small values of m, e.g. m = 1, one
needs a relatively large value of N to have satisfactory results. This is probably
partly due to the dependence between rows of Y . In the last examples the
input/output relation generating the outputs is that of an arbitrary positive
system. In this case the h generated by the algorithm is the impulse response
of the best convolutional system approximation to the given system. Figures 7
and 8 also illustrate Remark 2.4 on boundary solutions.

6 Conclusions

We posed the nonparametric approximation problem for scalar nonnegative in-
put/output systems via impulse response convolutions of finite order, based on
multiple observations of input/output signal pairs. The problem is converted
into a nonnegative matrix factorization with special structure for which we used
Csiszár’s I-divergence as the criterion of optimality. Conditions have been given
that guarantee the existence and uniqueness of the minimum. An algorithm
whose iterates converge to the unique minimizer has been presented. For the
case of noisy observations of a true system we also proved the consistency of the
parameter estimators under different large sample regimes (many observation
times, many inputs, or a mix of these). Numerical experiments confirm the
asymptotic results and often exhibit fast convergence to the minimizer of the
objective function.
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Figure 1: noiseless observations, m = 5, N = 10

Figure 2: noiseless observations, m = 10, N = 5
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Figure 3: noisy observations, m = 30, N = 20

Figure 4: noisy observations, m = 1, N = 100

17



Figure 5: noisy observations, m = 30, N = 5

Figure 6: noisy observations, m = 5, N = 30
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Figure 7: arbitrary system, m = 10, N = 8

Figure 8: arbitrary system, m = 10, N = 50
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