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An improved time-delay implementation

of derivative-dependent feedback

Anton Selivanov, Emilia Fridman

School of Electrical Engineering, Tel Aviv University, Israel

Abstract

We consider an LTI system of relative degree r ≥ 2 that can be stabilized using r − 1 output derivatives. The derivatives are
approximated by finite differences leading to a time-delayed feedback. We present a new method of designing and analyzing such
feedback under continuous-time and sampled measurements. This method admits essentially larger time-delay/sampling period
compared to the existing results and, for the first time, allows to use consecutively sampled measurements in the sampled-data
case. The main idea is to present the difference between the derivative and its approximation in a convenient integral form. The
kernel of this integral is hard to express explicitly but we show that it satisfies certain properties. These properties are employed
to construct the Lyapunov-Krasovskii functional that leads to LMI-based stability conditions. If the derivative-dependent control
exponentially stabilizes the system, then its time-delayed approximation stabilizes the system with the same decay rate provided
the time-delay (for continuous-time measurements) or the sampling period (for sampled measurements) are small enough.

Key words: LTI systems; delay-induced stabilization; derivative approximation; LMIs

1 Introduction

Control laws that depend on output derivatives are used
to stabilize LTI systems with relative degrees greater than
one. To estimate the derivatives, which can hardly be mea-
sured directly, one can use the finite differences, i.e., ẏ ≈
(y(t) − y(t − h))/h. Such approximation leads to time-
delayed feedback that preserves the stability if the delay
h > 0 is small enough [1–3]. For a given h, the delay-
induced stability can be checked using frequency-domain
techniques [4–7] or complete Lyapunov-Krasovskii func-
tionals [8–10], which give necessary and sufficient condi-
tions.

The delay-induced stability can be also studied using linear
matrix inequalities (LMIs) [11–13]. The advantage of LMIs
is that, though being conservative, they allow for perfor-
mance and robustness analysis, can cope with certain types
of nonlinearities [14], and can deal with stochastic pertur-
bations [15,16]. Simple and yet efficient LMIs for the delay-
induced stability were obtained in [15,16]. The key idea was
to use the Taylor’s expansion of the delayed terms with the
remainders in the integral form that are compensated by
appropriate terms in the Lyapunov-Krasovskii functional.

⋆ Supported by Israel Science Foundation (grant No. 1128/14).
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Compared to [11–13], the resulting LMIs have a lower or-
der, contain less decision variables, and were proved to be
feasible for small delays if the derivative-dependent feed-
back stabilizes the system.

Another advantage of LMI-based conditions is that they
can be extended to sampled-data systems. This has
been done using discretized Lyapunov functionals with a
Wirtinger-based term in [17]. Another LMIs for sampled-
data stabilization were derived in [18] by employing im-
pulsive system representation and looped Lyapunov func-
tionals. The high-order LMIs obtained in [17] and [18]
contain many decision variables, which make them hard to
solve numerically. Using the ideas of [15,16], simple LMIs
for sampled-data delay-induced stabilization were derived
in [19]. These conditions were proved to be feasible for
a small enough sampling period if the continuous-time
derivative-dependent feedback stabilizes the system.

In this paper, we essentially improve the results of [16] for
continuous-time measurements (Section 2) and the results
of [19] for sampled measurements (Section 3). Namely, we
derive simple LMIs that are feasible for significantly larger
values of time-delay (Remark 2) and sampling period (Re-
mark 3). Such improvement is achieved using an origi-
nal integral representation of the difference between the
derivative and its approximation (Proposition 1). The ker-
nel of this integral is hard to express explicitly but we show
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that it satisfies certain properties (Proposition 2). These
properties are employed to construct Lyapunov-Krasovskii
terms that bound the approximation errors and lead to
LMI-based stability conditions. Compared to [16,19], such
approach leads to a more natural design of the controller
gains in the delayed feedback. Moreover, the considered
sampled-data delayed controller uses consecutive measure-
ments, while [19] used distant measurements (cf. (25) and
(29)). All these improvements allow to use less memory
and slower sampling when one uses time-delays to imple-
ment derivative-dependent feedback. Finally, we show that
if the derivative-dependent controller exponentially stabi-
lizes the system with a decay rate α′ > 0, then the LMIs
are feasible for any decay rate α < α′ and small enough
time-delay/sampling period.

The part of this paper corresponding to the sampled-data
implementation of the first order derivative was presented
in [20]. These results were used in [21] to study sampled-
data implementation of PID control.

Notations: N0 = N ∪ {0}, 1r = [1, . . . , 1]T ∈ R
r, Im ∈

R
m×m is the identity matrix, ⊗ stands for the Kronecker

product, diag{Ri}
r−1
i=1 is the block-diagonal matrix with Ri

being on the diagonal, 0 < P ∈ R
n×n denotes that P is

symmetric and positive-definite, Ci is a class of i times
continuously differentiable functions.

Auxiliary lemmas

Lemma 1 (Exponential Wirtinger inequality [22])
Let f : [a, b] → R

n be an absolutely continuous function
with a square integrable first order derivative such that
f(a) = 0 or f(b) = 0. Then

∫ b

a
e2αtfT (t)Wf(t) dt

≤ e2|α|(b−a) 4(b−a)2

π2

∫ b

a
e2αtḟT (t)Wḟ(t) dt

for any α ∈ R and 0 ≤W ∈ R
n×n.

Lemma 2 (Jensen’s inequality [23]) Let ρ : [a, b] →
[0,∞) and f : [a, b] → R

n be such that the integration
concerned is well-defined. Then for any 0 < Q ∈ R

n×n,

[∫ b

a
ρ(s)f(s) ds

]T
Q
[∫ b

a
ρ(s)f(s) ds

]

≤
∫ b

a
ρ(s) ds

∫ b

a
ρ(s)fT (s)Qf(s) ds.

2 Continuous-time control

Consider the LTI system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
x ∈ R

n, u ∈ R
m, y ∈ R

l (1)

with relative degree r ≥ 2, i.e.,

CAiB = 0, i = 0, 1, . . . , r − 2, CAr−1B 6= 0. (2)

Relative degree is how many times the output y(t) needs to
be differentiated before the input u(t) appears explicitly.
In particular, (2) implies

y(i) = CAix, i = 0, 1, . . . , r − 1. (3)

To prove (3), note that it is trivial for i = 0 and, if it has
been proved for i < r − 1, it holds for i+ 1:

y(i+1) =
(
y(i)

)′ (3)
= (CAix)′

(1)
= CAi[Ax+Bu]

(2)
= CAi+1x.

For LTI systems with relative degree r, it is common to
look for a stabilizing controller of the form

u(t) = K̄0y(t) + K̄1y
(1)(t) + . . .+ K̄r−1y

(r−1)(t). (4)

Remark 1 The control law (4) essentially reduces the sys-
tem’s relative degree from r ≥ 2 to r = 1. Indeed, due to
(2), the transfer matrix of (1) has the form

W (s) =
βrs

n−r + · · ·+ βn
sn + α1sn−1 + · · ·+ αn

with βr = CAr−1B 6= 0. Taking u(t) = K̂0u0(t) +

K̂1u
(1)
0 (t) + · · ·+ K̂r−1u

(r−1)
0 (t), one has

ỹ(s) =
(βrs

n−r + · · ·+ βn)(K̂r−1s
r−1 + · · ·+ K̂0)

sn + α1sn−1 + · · ·+ αn

ũ0(s),

where ỹ and ũ0 are the Laplace transforms of y and u0. If
βrK̂r−1 6= 0, the latter system has relative degree one. If it
can be stabilized by u0 = Ky then (1) can be stabilized by

(4) with K̄i = K̂iK.

The controller (4) depends on the output derivatives, which
are hard to measure directly. Instead, the derivatives can
be approximated by finite-differences ỹi(t) ≈ y(i)(t):

ỹ0(t) = y(t),

ỹi(t) =
ỹi−1(t)− ỹi−1(t− h)

h
= 1

hi

∑i
k=0

(
i
k

)
(−1)ky(t− kh), i ∈ N

(5)

with a delay h > 0 and the binomial coefficients
(
i
k

)
=

i!
k!(i−k)! . Replacing y

(i) in (4) with their approximations ỹi,

we obtain the delay-dependent control

u(t) =
∑r−1

i=0 K̄iỹi(t)
(5)
=

∑r−1
i=0 Kiy(t− ih), (6)

where we set 1 y(t) = y(0) for t < 0 and

Ki = (−1)i
r−1∑

j=i

(
j

i

)
1

hj
K̄j , i = 0, . . . , r − 1. (7)

If (1) can be stabilized by the derivative-dependent con-
trol (4), then it can be stabilized by the delay-dependent
control (6) with small enough delays [3]. In this section,
we derive simple and yet efficient LMIs that allow to ob-
tain appropriate value of the delay h > 0. The first step
is to present the approximation error y(i)(t) − ỹi(t) in a
convenient form suitable for the analysis via Lyapunov-
Krasovskii functionals.

1 Then y(i)(0) with i > 0 are approximated by 0
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Fig. 1. Change of the integration order in I

Proposition 1 If y ∈ Ci and y(i) is absolutely continuous
with i ∈ N, then ỹi defined in (5) satisfies

ỹi(t) = y(i)(t)−

∫ t

t−ih

ϕi(t− s)y(i+1)(s) ds, (8)

where ϕ1(ξ) =
h−ξ
h

and for i ∈ N,

ϕi+1(ξ) =





∫ ξ

0
ϕi(λ)

h
dλ+ h−ξ

h
, ξ ∈ [0, h],

∫ ξ

ξ−h

ϕi(λ)
h

dλ, ξ ∈ (h, ih),
∫ ih

ξ−h

ϕi(λ)
h

dλ, ξ ∈ [ih, ih+ h].

(9)

Proof. For i ∈ N, Taylor’s expansion with the remainder in
the integral form gives

y(i−1)(t−h) = y(i−1)(t)−y(i)(t)h−

∫ t

t−h

(t−h−s)y(i+1)(s) ds.

Reorganizing the terms, we obtain

y(i−1)(t)−y(i−1)(t−h)
h

=y(i)(t)−
∫ t

t−h

h−(t−s)
h

y(i+1)(s)ds. (10)

Relations (5) and (10) imply (8) for i = 1. Let (8) be true
for some i ≥ 1. Then

ỹi+1(t)
(5)
=

ỹi(t)− ỹi(t− h)

h

(8)
=
y(i)(t)− y(i)(t− h)

h
− I

(10)
= y(i+1)(t)−

∫ t

t−h

h− (t− s)

h
y(i+2)(s) ds− I,

where

I =
∫ t

t−ih

ϕi(t−ζ)
h

y(i+1)(ζ) dζ

−
∫ t−h

t−h−ih

ϕi(t−h−ζ)
h

y(i+1)(ζ) dζ

=
∫ t

t−ih

ϕi(t−ζ)
h

[
y(i+1)(ζ)− y(i+1)(ζ − h)

]
dζ

=
∫ t

t−ih

ϕi(t−ζ)
h

∫ ζ

ζ−h
y(i+2)(s) ds dζ

Fig.1
=

∫ t

t−h

[∫ t

s

ϕi(t−ζ)
h

dζ
]
y(i+2)(s) ds

+
∫ t−h

t−ih

[∫ s+h

s

ϕi(t−ζ)
h

dζ
]
y(i+2)(s) ds

+
∫ t−ih

t−ih−h

[∫ s+h

t−ih

ϕi(t−ζ)
h

dζ
]
y(i+2)(s) ds.

Fig. 2. Plots of ϕi for i = 1, . . . , 5

Therefore, (8) holds for i+ 1 with

ϕi+1(t−s)=





∫ t

s

ϕi(t−ζ)
h

dζ+ h−(t−s)
h

, s∈ [t−h, t],
∫ s+h

s

ϕi(t−ζ)
h

dζ, s∈(t−ih, t−h),
∫ s+h

t−ih

ϕi(t−ζ)
h

dζ, s∈ [t−ih−h, t−ih].

Taking λ = t− ζ and ξ = t− s, we obtain (9). �

Using (3), the closed-loop system (1), (4) can be written as

ẋ(t) = Dx(t), D = A+B
∑r−1

i=0 K̄iCA
i. (11)

Using (3) and (8), the system (1), (6) can be written as

ẋ(t) = Dx(t) +B
∑r−1

i=1 κi(t) (12)

with the same D and

κi(t)=−K̄i

∫ t

t−ih
ϕi(t−s)y

(i+1)(s) ds, i=1, . . . , r−1. (13)

If (4) stabilizes (1), then D is Hurwitz. In our analysis we
derive the conditions ensuring that the errors κi do not
ruin the stability of (12). For that sake we need several
properties of the functions ϕi (see Fig. 2).

Proposition 2 The functions ϕi defined in (9) satisfy

1) ϕi ∈ C1[0, ih],
2) ϕ′

i ≤ 0,
3) 0 ≤ ϕi ≤ 1,
4) ϕi(ξ) + ϕi(ih− ξ) = 1,

5)
∫ ih

0
ϕi(ξ) dξ =

ih
2 .

Proof. Most properties are proved using induction on i.

1) Clearly, ϕ1(ξ) =
h−ξ
h

∈ C1[0, h]. If ϕi ∈ C1, then

ϕ′
i+1(ξ) =





ϕi(ξ)
h

− 1
h

ξ ∈ [0, h],
ϕi(ξ)−ϕi(ξ−h)

h
ξ ∈ (h, ih),

−ϕi(ξ−h)
h

ξ ∈ [ih, ih+ h]

(14)

is continuous on [0, (i+1)h]. (Continuity at h and ih follows
from ϕi(0) = 1 and ϕi(ih) = 0, respectively.)

2) For i = 1 we have

ϕ′
1(ξ) =

(
h−ξ
h

)′

= − 1
h
< 0.

If 2) holds for some i ≥ 1, then all expressions in (14) are
negative since ϕi(0) = 1, ϕ′

i ≤ 0, and ϕi ≥ 0.

3) Relation 0 ≤ ϕi easily proved using induction and (9).
Relations ϕi(0) = 1 and ϕ′

i ≤ 0 imply ϕi ≤ 1.
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4) Clearly, it is enough to prove 4) for ξ ∈ [0, ih2 ]. For i = 1,

ϕ1(ξ) + ϕ1(h− ξ) = h−ξ
h

+ h−(h−ξ)
h

= 1.

Let 4) be true for some i ≥ 1. If ξ ∈ [0, h], the change of

variable λ̃ = ih− λ in the second integral leads to

ϕi+1(ξ) + ϕi+1((i+ 1)h− ξ)

= 1
h

∫ ξ

0
ϕi(λ) dλ+ h−ξ

h
+ 1

h

∫ ih

ih−ξ
ϕi(λ) dλ

= 1
h

∫ ξ

0
ϕi(λ) dλ+ h−ξ

h
+ 1

h

∫ ξ

0
ϕi(ih− λ̃) dλ̃

4)
= 1

h

∫ ξ

0
1 dλ+ h−ξ

h
= 1.

If ξ ∈ (h, ih2 ], the change of variable λ̃ = ih − λ in the
second integral leads to

ϕi+1(ξ) + ϕi+1((i+ 1)h− ξ)

= 1
h

∫ ξ

ξ−h
ϕi(λ) dλ+ 1

h

∫ ih−ξ+h

ih−ξ
ϕi(λ) dλ

= 1
h

∫ ξ

ξ−h
ϕi(λ) dλ+ 1

h

∫ ξ

ξ−h
ϕi(ih− λ̃) dλ̃

4)
= 1

h

∫ ξ

ξ−h
1 dλ = 1.

5) Using the change of variable ξ̃ = ih− ξ, we obtain

∫ ih

0
ϕi(ξ) dξ =

∫ ih
2

0
ϕi(ξ) dξ +

∫ ih
ih
2
ϕi(ξ) dξ

=
∫ ih

2

0
ϕi(ξ) dξ +

∫ ih
2

0
ϕi(ih− ξ̃) dξ̃

=
∫ ih

2

0
[ϕi(ξ) + ϕi(ih− ξ)] dξ,

which implies 5) in view of 4). �

Theorem 1 Consider the LTI system (1) of relative degree
r ≥ 2, i.e., satisfying (2).

(i) The delay-dependent feedback (6) with a time-delay
h > 0 and controller gains (7) exponentially stabilizes
(1) with a decay rate α > 0 if there exist

0 < P ∈ R
n×n, 0 < Ri ∈ R

m×m, i = 1, . . . , r − 1

such that 2 M < 0, where M is the symmetric matrix
composed from

M11 = DTP + PD + 2αP

+
∑r−2

i=1
(ih)2

4

[
K̄iCA

i+1
]T
Ri

[
K̄iCA

i+1
]
,

M12 = 1T
r−1 ⊗ PB,

M13 = (r−1)h
2

[
K̄r−1CA

r−1D
]T
Rr−1,

M22 = − diag{e−2αihRi}
r−1
i=1 ,

M23 = (r−1)h
2 1r−1 ⊗

[
K̄r−1CA

r−1B
]T
Rr−1,

M33 = −Rr−1

with D = A+B
∑r−1

i=0 K̄iCA
i.

2 MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/Aut18a

(ii) If the derivative-dependent feedback (4) with controller
gains K̄i ∈ R

m×l, i = 0, . . . , r−1, stabilizes (1) with a
decay rateα′ > 0, then for anyα ∈ (0, α′) there exists a
sufficiently small h > 0 such that the delay-dependent
control (6) with the controller gains (7) stabilizes (1)
with the decay rate α.

Proof. (i) Consider V = V0 +
∑r−1

i=1 Vκi, where

V0 = xTPx,

Vκi =
ih
2

∫ t

t−ih
e−2α(t−s)ψi(t− s)×

[
K̄iy

(i+1)(s)
]T
Ri

[
K̄iy

(i+1)(s)
]
ds

(15)

with

ψi(ξ) =

∫ ih

ξ

ϕi(λ) dλ, i = 1, . . . , r − 1. (16)

Due to the properties of ϕi given in Proposition 2, we have

ψi ∈ C1[0, ih], ψi(ξ) ≥ 0, ∀ξ ∈ [0, ih].

Therefore, V ≥ 0 is smooth for t ≥ (r − 1)h. We have

V̇0 + 2αV0
(12)
= 2xTPDx+ 2xTPB

∑r−1
i=1 κi + 2αxTPx

with κi defined in (13). Proposition 2 implies
∫ t

t−ih
ϕi(t− s) ds = ψi(0) =

ih
2 , i ∈ N.

Moreover, (16) implies

ψi(ih) = 0, ψ′
i(ξ) = −ϕi(ξ).

Using these properties, we obtain

V̇κi + 2αVκi = (ih)2

4

[
K̄iy

(i+1)(t)
]T
Ri

[
K̄iy

(i+1)(t)
]

− ih
2

∫ t

t−ih
e−2α(t−s)ϕi(t− s)×

[
K̄iy

(i+1)(s)
]T
Ri

[
K̄iy

(i+1)(s)
]
ds

Lem.2
≤ (ih)2

4

[
K̄iy

(i+1)(t)
]T
Ri

[
K̄iy

(i+1)(t)
]

−e−2αihκTi (t)Riκi(t).

(17)

Substituting y(i+1) (3)
= CAi+1x for i = 1, . . . , r − 2 and

y(r) = CAr−1ẋ, we obtain

V̇ + 2αV ≤ µT
[
M11 M12

MT
12 M22

]
µ

+ (r−1)2h2

4 ẋT
[
K̄r−1CA

r−1
]T
Rr−1

[
K̄r−1CA

r−1
]
ẋ,

where µ = col{x, κ1, . . . , κr−1}. Substituting (12) for ẋ
and using the Schur complement, we deduce that M <
0 guarantees V̇ ≤ −2αV , which implies the exponential
stability.

(ii) If (4) stabilizes (1) with a decay rate α′ > 0, for any
α ∈ (0, α′) there exists 0 < P ∈ R

n×n such that

DTP + PD + 2αP < 0. (18)

By the Schur complement, M < 0 is equivalent to
[
M̃11 M12

MT
12 M22

]
+ h2F < 0, −Rr−1 < 0, (19)

4



Fig. 3. Example 1 (Chain of three integrators): dynamics of (1),
(21) under the derivative-dependent feedback (4) (black solid
line), time-delay feedback (6) with h = 2.529 (blue dashed line),
and sampled-data feedback (25) with h=1.436 (red dotted line).

where M̃11 = DTP+PD+2αP and symmetric F does not

depend on h. Due to (18),
[
M̃11 M12

MT
12 M22

]
< 0 forRi = cIm with

large enough c ∈ R. Therefore, (19) holds for small enough
h implying M < 0. By Theorem 1(i), (6) exponentially
stabilizes (1) with the decay rate α. �

Remark 2 A different approach to the analysis of (1), (6)
has been proposed in [16], where Taylor’s expansion was
used for each y(t− ih) with i = 1, . . . , r − 1:

y(t− ih) =
∑r−1

j=0
y(j)(t)

j! (−ih)j +
∫ t

t−ih
ϕ̄i(t− s)y(r)(s) ds.

(20)

Here

ϕ̄i(ξ) = − (ξ−ih)r−1

(r−1)! , i = 1, . . . , r − 1.

The approximation errors were bounded using functionals

similar to Vκi from (15). The values
∫ ih

0
ϕ̄i(ξ) dξ play a

key role in such analysis: the smaller these values are, the
smaller the effect of the errors is (see (17)). When h→ ∞,

|
∫ ih

0
ϕ̄i(ξ) dξ| =

(ih)r

r! grow faster than
∫ ih

0
ϕi(ξ) dξ = ih

2
used here. Thus, our results admit larger time-delay h.

Moreover, in [16], the errors were multiplied byKi that grow
when h→ 0 (similarly to (7)), while we multiply the errors
by K̄i independent of h (see (13)). This allows to obtain
larger interval for the time-delay h (see Example 2).

These benefits are achieved using an original representation
(8), where the errors are related to the finite differences
ỹi defined in (5), while in [16] the errors were related to
y(t− ih). However, for r = 2 the results coincide, since (8)
and (20) are equivalent.

Fig. 4. Example 2 (Chain of four integrators): dynamics of (1),
(23) under the derivative-dependent feedback (4) (black solid
line), time-delay feedback (6) with h = 0.169 (blue dashed line),
and sampled-data feedback (25) with h = 0.1 (red dotted line).

Example 1 (Chain of three integrators). Consider (1) with


A B

C 0


 =



0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 . (21)

These parameters satisfy (2) with the relative degree r = 3.
The derivative-dependent control (4) with

K̄0 = −2× 10−4, K̄1 = −0.06, K̄2 = −0.342 (22)

stabilizes (1), (21). The LMIs of Theorem 1 are feasible for
h ∈ (0, 2.529], α = 0. Therefore, the delay-dependent con-
troller (6) also stabilizes the system (1), (21). The method
developed in [16] leads to a smaller interval h ∈ (0, 2.32].
Fig. 3 shows ‖x‖ for x(0) = [1,−1, 1]T .

Example 2 (Chain of four integrators). Consider (1) with


A B

C 0


 =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


 . (23)

These parameters satisfy (2) with the relative degree r = 4.
The derivative-dependent control (4) with

K̄0 = −0.0208, K̄1 = −0.32, K̄2 = −1.18, K̄3 = −0.7 (24)

stabilizes (1), (23). These gains are taken from [16]. The
LMIs of Theorem 1 are feasible for h ∈ (0, 0.169], α = 0.
Therefore, the delay-dependent controller (6) also stabi-
lizes the system (1), (23). The method developed in [16]
leads to a smaller interval h ∈ (0, 0.138]. Fig. 4 shows ‖x‖
for x(0) = [1, 0, 0,−1]T .

3 Sampled-data control

In this section, we assume that only sampled in time mea-
surement y(tk) are available to the controller, where tk =
kh are the sampling instants with a sampling period h > 0
and k ∈ N0. The derivative-dependent controller (4) is ap-
proximated by the sampled-data controller

u(t) =
∑r−1

i=0 K̄iỹi(tk) =
∑r−1

i=0 Kiy(tk−i),

t ∈ [tk, tk+1), k ∈ N0 (25)
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with ỹi from (5) and Ki from (7). We set 3 y(tk−i) = y(t0)
for k < i. For t ∈ [tk, tk+1) with k ≥ r − 1, we present the
sampled measurements as

ỹ0(tk) = y(t)−
∫ t

tk
˙̃y0(s) ds = y(t)−

∫ t

tk
ẏ(s) ds,

ỹi(tk) = ỹi(t)−
∫ t

tk
˙̃yi(s) ds

(8)
= y(i)(t)−

∫ t

t−ih
ϕi(t−s)y

(i+1)(s) ds−
∫ t

tk
˙̃yi(s) ds,

i = 1, . . . , r − 1.

Then the controller (25) can be written as

u =
∑r−1

i=0 K̄iy
(i) + δ0 +

∑r−1
i=1 (δi + κi),

where, for t ∈ [tk, tk+1),

δi(t) = −K̄i

∫ t

tk
˙̃yi(s) ds, i = 0, . . . , r − 1,

κi(t) = −K̄i

∫ t

t−ih
ϕi(t− s)y(i+1)(s) ds, i = 1, . . . , r − 1.

(26)

The closed-loop system (1), (25) takes the form (cf. (12))

ẋ = Dx+Bδ0 +B
∑r−1

i=1 (δi + κi) (27)

with D defined in (11). If (4) stabilizes (1), then D is Hur-
witz. In our analysis we derive the conditions ensuring that
the errors δi and κi do not ruin the stability of (27).

Theorem 2 Consider the LTI system (1) of relative degree
r ≥ 2, i.e., satisfying (2).

(i) The sampled-data feedback (25) with a sampling period
h > 0 and controller gains (7) exponentially stabilizes
(1) with a decay rate α > 0 if there exist

0 < P ∈ R
n×n, 0 < W0 ∈ R

m×m,

0 < Wi ∈ R
m×m, 0 < Ri ∈ R

m×m, i = 1, . . . , r − 1

such that 4 N < 0, where N is the symmetric matrix
composed from

N11 = DTP + PD + 2αP

+
∑r−2

i=0 h
2e2αih

[
K̄iCA

i+1
]T
Wi

[
K̄iCA

i+1
]

+
∑r−2

i=1
(ih)2

4

[
K̄iCA

i+1
]T
Ri

[
K̄iCA

i+1
]
,

N12 = 1T
r ⊗ PB,

N13 = 1T
r−1 ⊗ PB,

N14 = h
[
K̄r−1CA

r−1D
]T
H,

N22 = −π2

4 e
−2αh diag{Wi}

r−1
i=0 ,

N24 = h1r ⊗
[
K̄r−1CA

r−1B
]T
H,

N33 = − diag{e−2αihRi}
r−1
i=1 ,

N34 = h1r−1 ⊗
[
K̄r−1CA

r−1B
]T
H,

N44 = −H

3 Then y(i)(0) with i > 0 are approximated by 0
4 MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/Aut18a

with

D = A+B
∑r−1

i=0 K̄iCA
i,

H = e2α(r−1)hWr−1 +
(
r−1
2

)2
Rr−1.

(28)

(ii) If the derivative-dependent feedback (4) with controller
gains K̄i ∈ R

m×l, i = 0, . . . , r − 1, stabilizes (1) with
a decay rate α′ > 0, then for any α ∈ (0, α′) there
exists a sufficiently small sampling period h > 0 such
that the sampled-data control (25) with the controller
gains (7) stabilizes (1) with the decay rate α.

Proof. (i) For t ≥ (r − 1)h consider the functional

V = V0 + Vδ0 +
∑r−1

i=1 (Vδi + Vyi + Vκi),

where V0, Vκi are given in (15) and

Vδi = h2
∫ t

tk
e−2α(t−s)

[
K̄i

˙̃yi(s)
]T
Wi

[
K̄i

˙̃yi(s)
]
ds

−π2

4 e
−2αh

∫ t

tk
e−2α(t−s)δTi (s)Wiδi(s) ds, t ∈ [tk, tk+1)

Vyi = h2e2αih
∫ t

t−ih
e−2α(t−s)ϕi(t− s)×
[
K̄iy

(i+1)(s)
]T
Wi

[
K̄iy

(i+1)(s)
]
ds.

Since δ̇i(t) = −K̄i
˙̃yi(t) and δi(tk) = 0, Lemma 1 implies

Vδi ≥ 0 for i = 0, . . . , r − 1. Since ϕi ≥ 0 and ψi ≥ 0, we
have V ≥ 0. Calculating the derivatives, we obtain

V̇0 + 2αV0
(27)
= 2xTPDx+ 2xTPBδ0

+ 2xTPB
∑r−1

i=1 (δi + κi) + 2αxTPx,

V̇δi + 2αVδi = h2
[
K̄i

˙̃yi
]T
Wi

[
K̄i

˙̃yi
]
− π2

4 e
−2αhδTi Wiδi.

The functional Vyi is introduced to compensate the term

h2[K̄i
˙̃yi]

TWi[K̄i
˙̃yi] in the above expression. Since ϕi(0) =

1, ϕi(ih) = 0, and ϕ′
i ≤ 0 (Proposition 2),

V̇yi+2αVyi=h
2e2αih

[
K̄iy

(i+1)
]T
Wi

[
K̄iy

(i+1)
]
+h2e2αih×

∫ t

t−ih
e−2α(t−s)ϕ′

i(t− s)
[
K̄iy

(i+1)(s)
]T
Wi

[
K̄iy

(i+1)(s)
]
ds

Lem.2
≤ h2e2αih

[
K̄iy

(i+1)
]T
Wi

[
K̄iy

(i+1)
]

− h2
(∫ t

t−ih
(−ϕ′

i(t− s)) ds
)−1 ∫ t

t−ih
ϕ′
i(t− s)×

[
K̄iy

(i+1)(s)
]T
ds Wi

∫ t

t−ih
ϕ′
i(t− s)

[
K̄iy

(i+1)(s)
]
ds.

Differentiating (8), we obtain

˙̃yi = −
∫ t

t−ih
ϕ′
i(t− s)y(i+1)(s) ds, i ∈ N.

The latter and
∫ t

t−ih

(−ϕ′
i(t− s)) ds = ϕi(0)− ϕi(ih) = 1

lead to

V̇yi + 2αVyi ≤ h2e2αih
[
K̄iy

(i+1)
]T
Wi

[
K̄iy

(i+1)
]

− h2
[
K̄i

˙̃yi
]T
Wi

[
K̄i

˙̃yi
]
.

The term −h2[K̄i
˙̃yi]

TWi[K̄i
˙̃yi] in the above expression will

cancel the positive term of V̇δi + 2αVδi. The derivative of
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Vκi is given in (17). Substituting y(i+1) (3)
= CAi+1x for

i = 1, . . . , r − 2 and y(r) = CAr−1ẋ, we obtain

V̇ +2αV ≤ ηT N̄η+ ẋTh2[K̄r−1CA
r−1]TH[K̄r−1CA

r−1]ẋ,

where η = col{x, δ0, . . . , δr−1, κ1, . . . , κr−1}, H is defined
in (28), and N̄ is obtained from N by removing the last
block-column and block-row. Substituting (27) for ẋ and
using the Schur complement, we deduce that N < 0 guar-
antees V̇ ≤ −2αV , which implies the exponential stability.

(ii) The proof is similar to the proof of Theorem 1(ii). �

Remark 3 In [19], the system (1) was studied under the
sampled-data feedback

u(t) =
∑r−1

i=0 Kiy(tk− qih), t ∈ [tk, tk+1), k ∈ N0 (29)

with integer delays 0 = q0 < q1 < · · · < qr−1. In [19], the
errors due to sampling y(tk − qih)− y(t− qih) were multi-
plied byKi that grow when qih→ 0. Consequently, one had
to increase discrete delays qi while reducing the sampling
period h to maintain Ki bounded. Here, due to the repre-
sentation u(t) =

∑r−1
i=0 K̄iỹi(t) (see (6)), we can consider

the errors due to sampling ỹi(tk)− ỹi(t) that are multiplied
by K̄i independent of h (see δi in (26)). This allows to use
qi = i (cf. (25) and (29)) and, therefore, smaller memory
is required to implement (25) (see Example 1).

In addition, the results of [19] are based on [16], therefore,
all the benefits of the current analysis mentioned in Re-
mark 2 remain relevant for the sampled-data case if r > 2.

Example 1 (Chain of three integrators). Consider (1) with
the parameters given in (21). The LMIs of Theorem 2 are
feasible for the controller gains (22) with h ∈ (0, 1.436],
α = 10−3. Therefore, the sampled-data controller (25) ex-
ponentially stabilizes the system (1), (21). Fig. 3 shows
‖x‖ for x(0) = [1,−1, 1]T . The same example has been
considered in [19], where a significantly smaller interval
h ∈ (0, 0.044] was obtained. Moreover, [19] used (29) with
q1 = 30, q2 = 60, what required to keep 61 measurements
y(tk), . . . , y(tk − q2h) to implement the controller, while
(25) uses only the last three: y(tk), y(tk−1), y(tk−2).

Example 2 (Chain of four integrators). Consider (1) with
the parameters given in (23). The LMIs of Theorem 2
are feasible for the controller gains (24) with h ∈ (0, 0.1],
α = 0.01. Therefore, the sampled-data controller (25) ex-
ponentially stabilizes the system (1), (23). Fig. 4 shows ‖x‖
for x(0) = [1, 0, 0,−1]T . The conditions of [19] are feasible
for the controller (29) with h ∼ 10−6 and qi ∼ 104.

Example 3 (Furuta pendulum [24]). Consider the linearized

Fig. 5. Furuta pendulum 5

Fig. 6. Example 3 (Furuta pendulum): dynamics of (1), (30)
under the derivative-dependent feedback (4) (black solid line)
and sampled-data feedback (25) with h=0.104 (red dotted line).

model of the Furuta pendulum given by (1) with

[
A B

C 0

]
=




0 1 0 0 0
37.377 −0.515 0 0.142 −35.42

0 0 0 1 0
−8.228 0.113 0 −0.173 43.28

1 0 0 0 0
0 0 1 0 0




(30)

and x = col{θ, θ̇, φ, φ̇}, where θ is the angular position of
the pendulum and φ is the angle of the rotational arm (see
Fig. 5). The control input u is proportional to the motor
induced torque. Using the pole placement, we find that for

K̄0 =
[
1.2826 0.0013

]
, K̄1 =

[
0.1209 0.0086

]

the eigenvalues of D defined in (11) are −1, −1.1, −1.2,
−1.3. Therefore, the derivative-dependent controller (4)
stabilizes the system (1), (30). The conditions of Theorem 2
(with α = 0) are feasible for h ∈ (0, 0.104]. Taking h =
0.104 in (7), we deduce that the sampled-data controller
(25) with

K0 =
[
2.4453 0.0837

]
, K1 =

[
−1.1627 −0.0824

]
,

and tk = 0.104 · k, k ∈ N0, exponentially stabilizes the
Furuta pendulum (1), (30). Fig. 6 shows ‖x‖ for x(0) =
[π, 0, 0, 0]T . The conditions of [19] are feasible for the con-
troller (29) with h ∼ 10−4 and q1 ∼ 103.

5 The picture is taken from [25]
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Control. Birkhäuser Basel, 2014.

[15] E. Fridman and L. Shaikhet, “Delay-induced stability of
vector second-order systems via simple Lyapunov functionals,”
Automatica, vol. 74, pp. 288–296, 2016.

[16] ——, “Stabilization by using artificial delays: An LMI
approach,” Automatica, vol. 81, pp. 429–437, 2017.

[17] K. Liu and E. Fridman, “Wirtinger’s inequality and Lyapunov-
based sampled-data stabilization,” Automatica, vol. 48, no. 1,
pp. 102–108, 2012.

[18] A. Seuret and C. Briat, “Stability analysis of uncertain sampled-
data systems with incremental delay using looped-functionals,”
Automatica, vol. 55, pp. 274–278, may 2015.

[19] A. Selivanov and E. Fridman, “Sampled-Data Implementation
of Derivative-Dependent Control Using Artificial Delays,” IEEE

Transactions on Automatic Control, p. in press, 2018.

[20] ——, “Improved sampled-data implementation of derivative-
dependent control,” in 9th IFAC Symposium on Robust Control

Design. Florianopolis: IFAC, 2018, pp. 323–326.

[21] ——, “Robust sampled-data implementation of PID controller,”
in 57th Conference on Decision and Control, Miami, 2018, p.
in press.

[22] ——, “Observer-based input-to-state stabilization of networked
control systems with large uncertain delays,” Automatica,
vol. 74, pp. 63–70, 2016.

[23] O. Solomon and E. Fridman, “New stability conditions for
systems with distributed delays,” Automatica, vol. 49, no. 11,
pp. 3467–3475, 2013.

[24] T. Ortega-Montiel, R. Villafuerte-Segura, C. Vázquez-Aguilera,
and L. Freidovich, “Proportional Retarded Controller to
Stabilize Underactuated Systems with Measurement Delays:
Furuta Pendulum Case Study,” Mathematical Problems in

Engineering, pp. 1–12, 2017.

[25] M. Ramı́rez-Neria, H. Sira-Ramı́rez, R. Garrido-Moctezuma,
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