UNIQUE CONTINUATION FOR A MEAN FIELD GAME SYSTEM

¹ OLEG IMANUVILOV, ² HONGYU LIU AND ³ MASAHIRO YAMAMOTO

ABSTRACT. For a mean field game system, we prove the unique continuation which asserts that if Cauchy data are zero on arbitrarily chosen lateral subboundary, then the solution identically vanishes.

1. INTRODUCTION AND KEY CARLEMAN ESTIMATE

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary $\partial \Omega$, let T > 0, and $Q := \Omega \times (0, T)$. In this article, we consider a system of the mean field game:

$$\partial_t u(x,t) + a_1(x,t)\Delta u(x,t) - \frac{1}{2}\kappa(x,t)|\nabla u(x,t)|^2 - h(x,t)u = F,$$

$$\partial_t v(x,t) - \Delta(a_2(x,t)v) - \operatorname{div}\left(\kappa(x,t)v(x,t)\nabla u(x,t)\right) = G \quad \text{in } Q.$$
(1.1)

Throughout this article, we assume

$$a_1, a_2 \in C^2(\overline{Q}), > 0 \quad \text{on } \overline{Q}, \quad \kappa \in C^{1,0}(\overline{Q}), \quad h \in L^\infty(Q).$$
 (1.2)

Here and henceforth we set $C^{2,2}(\overline{Q}) := \{a \in C(\overline{Q}); \partial_t^k a, \partial_i \partial_j a, \partial_i a, a \in C(\overline{Q}) \text{ for } 0 \le k \le 2$ and $1 \le i, j \le n\}$, $C^{1,0}(\overline{Q}) := \{a \in C(\overline{Q}); \partial_j a \in C(\overline{Q}), 1 \le j \le n\}$ and $H^{2,1}(Q) := \{w \in L^2(Q); w, \partial_t w, \partial_i w, \partial_i \partial_j w \in L^2(Q) \text{ for } 1 \le i, j \le n\}.$

In (1.1), x and t are the state and the time variables, and u and v denote the value of the game and the population density of players respectively (e.g., Achdou, Cardaliaguet, Delarue, Porretta and Santambrogio [1], Lasry and Lions [10]).

The main purpose of this article is establish the unique continuation for (1.1): **Theorem 1.** Let $\gamma \subset \partial \Omega$ be arbitrarily chosen non-empty relatively open subboundary. We

¹ Department of Mathematics, Colorado State University, 101 Weber Building, Fort Collins CO 80523-1874, USA e-mail: oleg@math.colostate.edu

² Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong SAR, China email: hongyliu@cityu.edu.hk

³ Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8914, Japan e-mail: myama@ms.u-tokyo.ac.jp.

assume that $(u, v), (\widetilde{u}, \widetilde{v}) \in H^{2,1}(Q) \times H^{2,1}(Q)$ satisfy (1.1) and

$$u, \nabla u, \Delta u, \widetilde{u}, \nabla \widetilde{u}, \Delta \widetilde{u} \in L^{\infty}(Q),$$

$$v, \nabla v, \widetilde{v}, \nabla \widetilde{v} \in L^{\infty}(Q), \quad \partial_t (u - \widetilde{u}), \partial_t (v - \widetilde{v}) \in L^2((\partial \Omega \setminus \Gamma) \times (0, T)).$$

(1.3)

Then $u = \widetilde{u}$, $\nabla u = \nabla \widetilde{u}$, $v = \widetilde{v}$ and $\nabla v = \nabla \widetilde{v}$ on $\Gamma \times (0, T)$ implies $u = \widetilde{u}$ and $v = \widetilde{v}$ in Q.

The unique continuation for a single parabolic equation is well-known and as early works we can refer to Mizohata [15], Saut and Scheurer [16] among many other works.

The mean field game system is a mixed type of backward and forward parabolic equations for u and v respectively, and so the initial boundary value problem requires special cares. However, it is straightforward to establish a Carleman estimate which is applicable to the unique continuation and other problems such as inverse problems.

It is known that a relevant Carleman estimate can derive the conditional stability in determining u and v by Cauchy data on $\Gamma \times (0, T)$. For example we can refer to Klibanov and Timonov [9] under geometric constraints on Γ . We can establish the conditional stability from arbitrary subboundary by the same way as Huang, Imanuvilov and Yamamoto [3], but here we omit the details.

Our key Carleman estimate is stated as Theorem 2 in Section 2, and is derived directly thanks to that the second-order coupling terms of u appear in the equation in v as Δu . For general cases, such coupling should be a linear combination of $\partial_i \partial_j u$, $1 \leq i, j \leq n$. The derivation of a relevant Carleman estimate is more complicated and in a forthcoming work we will pursue.

As for inverse problems, we refer to Klibanov [5], Klibanov and Averboukh [6], Klibanov, Li and Liu [7], [8], Liu, Mou and Zhang [11], Liu and Yamamoto [12], Liu and Zhang [13], [14]

This article is composed of three sections. In Section 2, we prove a key Carleman estimate for (1.1) and Section 3 is devoted to the completion of the proof of Theorem 1.

2. Key Carleman estimate

For subboundary $\Gamma \subset \partial \Omega$, we see that there exists $d \in C^2(\overline{\Omega})$ such that

$$d > 0$$
 in Ω , $|\nabla d| > 0$ on $\overline{\Omega}$, $d = 0$ on $\partial \Omega \setminus \Gamma$, $\nabla d \cdot \nu \leq 0$ on $\partial \Omega \setminus \Gamma$ (2.1)

(e.g. Imanuvilov [4]). Here ν denotes the unit outward normal vector to $\partial\Omega$.

For arbitrarily fixed $t_0 \in (0, T)$ and $\delta > 0$ such that $0 < t_0 - \delta \le t_0 + \delta < T$, we set

$$I = (t_0 - \delta, t_0 + \delta), \quad Q_I = \Omega \times I.$$

We set

$$P_k v(x,t) := \partial_t v + (-1)^k a(x,t) \Delta v + R(x,t,v), \quad k = 1, 2,$$

where $a \in C^2(\overline{Q_I}), > 0$ on $\overline{Q_I}$, and

$$|R(x,t,v)| \le C_0(|v(x,t)| + |\nabla v(x,t)|), \quad (x,t) \in Q_I.$$
(2.2)

Moreover, let

$$\varphi(x,t) = e^{\lambda(d(x) - \beta(t - t_0)^2)},$$

where $\lambda > 0$ is a sufficiently large parameter and $\beta > 0$ is arbitrarily given. Henceforth C > 0 denote generic constants which independent of s > 0, but depends on λ, β, C_0 in (2.2). Then

Lemma 1. There exist constants $s_0 > 0$ and C > 0 such that

$$\int_{Q_I} \left(\frac{1}{s} (|\partial_t v|^2 + |\Delta v|^2) + s |\nabla v|^2 + s^3 |v|^2 \right) e^{2s\varphi} dx dt \le C s^4 \int_{Q_I} |P_k v|^2 e^{2s\varphi} dx dt + C\mathcal{B}(v), \quad k = 1, 2$$
(2.3)

for all $s > s_0$ and $v \in H^{2,1}(Q_I)$ satisfying $v \in H^1(\partial \Omega \times I)$. Here and henceforth we set

$$\begin{aligned} \mathcal{B}(v) &:= e^{Cs} \|v\|_{H^1(\Gamma \times I)}^2 + s^3 \int_{(\partial \Omega \setminus \Gamma) \times I} (|v|^2 + |\nabla_{x,t}v|^2) e^{2s} dS dt \\ &+ s^2 \int_{\Omega} (|v(x,t_0-\delta)|^2 + |\nabla v(x,t_0-\delta)|^2 + |v(x,t_0+\delta)|^2 + |\nabla v(x,t_0+\delta)|^2) e^{2s\varphi(x,t_0-\delta)} dx. \end{aligned}$$

The proof of the lemma with k = 1 is done similarly to Lemma 7.1 (p.186) in Bellassoued and Yamamoto [2] or Theorem 3.2 in Yamamoto [17] by keeping all the boundary integral terms $v|_{\partial Q}$ which are produced by integration by parts and using $d|_{\partial\Omega\setminus\Gamma} = 0$ in (2.1). The proof for k = 2 follows directly from the case k = 1 by setting $V(x, t) := v(x, 2t_0 - t)$ and using $\varphi(x, t) = \varphi(x, 2t_0 - t)$ for $(x, t) \in Q_I$.

We emphasize that the backward parabolic Carleman estimate is the same as the forward parabolic Carleman estimate thanks to the symmetry of the weight $\varphi(x, t)$ with respect to t centered at t_0 .

Using the Carleman estimate (2.3) we prove a Carleman estimate for a mean field game system. Setting $y := u - \tilde{u}$ and $z := v - \tilde{v}$ and subtracting the system (1.1) with $(\tilde{u}, \tilde{v}, \tilde{F}, \tilde{G})$ from (1.1) with (u, v, F, G), we reach

$$\begin{cases} \partial_t y + a_1(x,t)\Delta y + R_1(x,t,y) = h(x,t)z + F - \widetilde{F}, \\ \partial_t z - a_2(x,t)\Delta z + R_2(x,t,z) = \kappa v\Delta y + R_3(x,t,y) + G - \widetilde{G} & \text{in } Q_I. \end{cases}$$
(2.4)

Here by (1.2) and (1.3), we can verify

$$|R_j(x,t,y)| \le C_0 \sum_{k=0}^1 |\nabla^k y(x,t)|, \quad j = 1,3, \quad |R_2(x,t,z)| \le C_0 \sum_{k=0}^1 |\nabla^k z(x,t)|, \quad (x,t) \in Q_I.$$
(2.5)

We apply Carleman estimate (2.3) to the first equation in (2.4), and multiply the resulting equality by s: y and obtain

$$\int_{Q_I} (|\partial_t y|^2 + |\Delta y|^2 + s^2 |\nabla y|^2 + s^4 |y|^2) e^{2s\varphi} dx dt$$

$$\leq C \int_{Q_I} s |hz|^2 e^{2s\varphi} dx dt + C \int_{Q_I} s |F - \widetilde{F}|^2 e^{2s\varphi} dx dt + Cs \mathcal{B}(y) \tag{2.6}$$

for all $s > s_0$. In terms of (2.5), application of (2.3) with k = 1 to z yields

$$\int_{Q_I} \left(\frac{1}{s} (|\partial_t z|^2 + |\Delta z|^2) + s |\nabla z|^2 + s^3 |z|^2 \right) e^{2s\varphi} dx dt$$

$$\leq C \int_{Q_I} (|\kappa \Delta y|^2 + |y|^2 + |\nabla y|^2) e^{2s\varphi} dx dt + C \int_{Q_I} |G - \widetilde{G}|^2 e^{2s\varphi} dx dt + C \mathcal{B}(z)$$
(2.7)

for all $s > s_0$.

Using $\kappa \in L^{\infty}(Q_I)$ and substituting (2.6) into the terms including $\Delta y, \nabla y, y$ on the righthand side of (2.7), we have

$$\int_{Q_I} \left(\frac{1}{s} (|\partial_t z|^2 + |\Delta z|^2) + s |\nabla z|^2 + s^3 |z|^2 \right) e^{2s\varphi} dx dt$$
$$\leq C \int_{Q_I} s |z|^2 e^{2s\varphi} dx dt + C \int_{Q_I} (s|F - \widetilde{F}|^2 + |G - \widetilde{G}|^2) e^{2s\varphi} dx dt + Cs(\mathcal{B}(y) + \mathcal{B}(z))$$

for all large s > 0. Absorbing the first term on the right-hand side into the left-hand side by choosing s > 0 sufficiently large, we see

$$\int_{Q_I} \left(\frac{1}{s} (|\partial_t z|^2 + |\Delta z|^2) + s |\nabla z|^2 + s^3 |z|^2 \right) e^{2s\varphi} dx dt$$
$$\leq C \int_{Q_I} (s|F - \widetilde{F}|^2 + |G - \widetilde{G}|^2) e^{2s\varphi} dx dt + Cs(\mathcal{B}(y) + \mathcal{B}(z))$$
(2.8)

for all $s > s_0$. Adding (2.8) and (2.6) and choosing s > 0 large again to absorb the term $\int_{Q_I} s |hz|^2 e^{2s\varphi} dx dt$ on the right-hand side into the left-hand side, we obtain

Theorem 2 (Carleman estimate for a mean field game). There exist constants $s_0 > 0$ and C > 0 such that

$$\begin{split} &\int_{Q_I} \left(|\partial_t (u - \widetilde{u})|^2 + |(\Delta(u - \widetilde{u})|^2 + s^2 |\nabla(u - \widetilde{u})|^2 + s^4 |u - \widetilde{u}|^2 + \frac{1}{s} (|\partial_t (v - \widetilde{v})|^2 + |\Delta(v - \widetilde{v})|^2) \right) \\ &+ s |\nabla(v - \widetilde{v})|^2 + s^3 |v - \widetilde{v}|^2 \right) e^{2s\varphi} dx dt \le C \int_{Q_I} (s|F - \widetilde{F}|^2 + |G - \widetilde{G}|^2) e^{2s\varphi} dx dt \\ &+ Cs (\mathcal{B}(u - \widetilde{u}) + \mathcal{B}(v - \widetilde{v})) \quad for \ all \ s > s_0. \end{split}$$

3. Proof of Theorem 1

We arbitrarily choose $t_0 \in (0, T)$ and $\delta > 0$ such that $0 < t_0 - \delta < t_0 + \delta < T$. We define

$$d_0 := \min_{x \in \overline{\Omega}} d(x), \quad d_1 := \max_{x \in \overline{\Omega}} d(x), \quad 0 < r < \left(\frac{d_0}{d_1}\right)^{\frac{1}{2}} < 1.$$
 (3.1)

We note that 0 < r < 1.

We now show

Lemma 2. Under regularity condition (1.3), if $u = \tilde{u}$, $v = \tilde{v}$, $\nabla u = \nabla \tilde{u}$ and $\nabla v = \nabla \tilde{v}$ on $\Gamma \times (t_0 - \delta, t_0 + \delta)$ imply $u = \tilde{u}$ and $v = \tilde{v}$ in $\Omega \times (t_0 - r\delta, t_0 + r\delta)$.

For the proof of Theorem 1, it suffices to prove Lemma 2. Indeed, since $t_0 \in (0, T)$ and $\delta > 0$ can be arbitrarily chosen and the Carleman estimate is invariant with respect to t_0 provided that $0 < t_0 - \delta < t_0 + \delta < T$, we can apply Lemma 2 by changing t_0 over $(\delta, T - \delta)$ to obtain $u = \tilde{u}$ and $v = \tilde{v}$ in $\Omega \times ((1 - r)\delta, T - (1 - r)\delta)$. Since $\delta > 0$ can be arbitrary, this means that $u = \tilde{u}$ and $v = \tilde{v}$ in $\Omega \times (0, T)$.

Proof of Lemma 2. Once we derived the relevant Carleman estimate in Theorem 2, the proof of Lemma 2 is done similarly to Proposition 2 in [3] as follows. First we determine the constant $\beta > 0$ in the weight of the Carleman estimate such that

$$\frac{d_1 - d_0}{\delta^2 - r^2 \delta^2} < \beta < \frac{d_0}{r^2 \delta^2}.$$
(3.2)

Here we note that (3.1) verifies $0 < \frac{d_1-d_0}{\delta^2-r^2\delta^2} < \frac{d_0}{r^2\delta^2}$, which allows us to choose β satisfying (3.2).

For short descriptions, we set

$$M_{1} := \sum_{k=0}^{1} (\|\nabla_{x,t}^{k}(u-\widetilde{u})\|_{L^{2}((\partial\Omega\setminus\Gamma)\times I)}^{2} + \|\nabla_{x,t}^{k}(v-\widetilde{v})\|_{L^{2}((\partial\Omega\setminus\Gamma)\times I)}^{2}),$$
$$M_{2} := \sum_{k=0}^{1} (\|(u-\widetilde{u})(\cdot,t_{0}+(-1)^{k}\delta)\|_{H^{1}(\Omega)}^{2} + \|(v-\widetilde{v})(\cdot,t_{0}+(-1)^{k}\delta)\|_{H^{1}(\Omega)}^{2})$$

and $\mu_1 := e^{\lambda(d_1 - \beta \delta^2)}$. Since $u = \widetilde{u}$ and $v = \widetilde{v}$ on $\Gamma \times I$, Theorem 2 yields

$$s^{3} \int_{Q_{I}} (|u - \widetilde{u}|^{2} + |v - \widetilde{v}|^{2}) e^{2s\varphi} dx dt \le Cs^{5} M_{1} e^{2s} + Cs^{5} M_{2} e^{2s\mu_{1}}$$

for all large s > 0. We shrink the integration region of the left-hand side to $\Omega \times (t_0 - r\delta, t_0 + r\delta)$. Then, since $\varphi(x, t) = e^{\lambda (d(x) - \beta (t - t_0)^2)} \ge e^{\lambda (d_0 - \beta r^2 \delta^2)} =: \mu_2$ in $\Omega \times (t_0 - r\delta, t_0 + r\delta)$, we obtain

$$e^{2s\mu_2} \int_{\Omega \times (t_0 - r\delta, t_0 + r\delta)} (|u - \widetilde{u}|^2 + |v - \widetilde{v}|^2) dx dt \le Cs^2 M_1 e^{2s} + Cs^2 M_2 e^{2s\mu_1},$$

that is,

$$\|u - \widetilde{u}\|_{L^{2}(\Omega \times (t_{0} - r\delta, t_{0} + r\delta))}^{2} + \|v - \widetilde{v}\|_{L^{2}(\Omega \times (t_{0} - r\delta, t_{0} + r\delta))}^{2} \le Cs^{2}M_{1}e^{-2s(\mu_{2} - 1)} + Cs^{2}M_{2}e^{-2s(\mu_{2} - \mu_{1})}$$

$$(3.3)$$

for all large s > 0. Here, by (3.2), we see that $\mu_2 > \max\{1, \mu_1\}$, and so we let $s \to \infty$ in (3.3), so that $u = \tilde{u}$ and $v = \tilde{v}$ in $\Omega \times (t_0 - r\delta, t_0 + r\delta)$. Thus the proof of Lemma 2, and so Theorem 1 are complete.

Acknowledgments. The work was supported by Grant-in-Aid for Scientific Research (A) 20H00117 of Japan Society for the Promotion of Science.

References

- Y. Achdou, P. Cardaliaguet, F. Delarue, A. Porretta and F. Santambrogio, *Mean field games*, Cetraro, Italy 2019, Lecture Notes in Mathematics, C.I.M.E. Foundation Subseries, Volume 2281, Springer, 2019.
- [2] M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer-Japan, Tokyo, 2017.
- [3] X. Huang, O.Y. Imanuvilov and M. Yamamoto, Stability for inverse source problems by Carleman estimates, Inverse Problems 36 (2020) 125006
- [4] O.Y. Imanuvilov, Controllability of parabolic equations, Sbornik Math. 186 (1995) 879-900.
- M. V. Klibanov, The mean field games system: Carleman estimates, Lipschitz stability and uniqueness, published online in J. Inverse and Ill-posed Problems, 2023 arXiv:2303.03928
- [6] M. V. Klibanov and Y. Averboukh, Lipschitz stability estimate and uniqueness in the retrospective analysis for the mean field games system via two Carleman estimates, preprint arXiv:2302.10709
- M. V. Klibanov, J. Li and H. Liu, Hölder stability and uniqueness for the mean field games system via Carleman estimates, preprint, arXiv:2304.00646
- [8] M. V. Klibanov, J. Li and H. Liu, On the mean field games system with the lateral Cauchy data via Carleman estimates, preprint, arXiv:2303.07556
- M. V. Klibanov and A.A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004.
- [10] J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007) 229-260.
- [11] H. Liu, C. Mou and S. Zhang, Inverse problems for mean field games, preprint, arXiv:2205.11350
- [12] H. Liu and M. Yamamoto, Stability in determination of states for the mean field game equations, preprint, arXiv:2304.05896
- [13] H. Liu and S. Zhang, On an inverse boundary problem for mean field games, preprint, arXiv:2212.09110
- [14] H. Liu and S. Zhang, Simultaneously recovering running cost and Hamiltonian in mean field games system, preprint, arXiv:2303.13096
- [15] S. Mizohata, Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques, Mem. College Sci. Univ. Kyoto A31 (1958) 219-239.

- [16] J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations, J. Diff. Eqns 66 (1987) 118-139.
- [17] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems 25 (2009) 123013