
ar
X

iv
:2

00
9.

08
89

0v
1 

 [
m

at
h.

A
P]

  1
8 

Se
p 

20
20
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Abstract

In this section, we consider the heat equation on a plate with thickness h > 0 being heated by a heat source
on upper and lower faces of the plate. We obtain an asymptotic profile of the solution as the thickness h > 0
approaches to zero.
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1. Introduction

Industries have used focused surface heating for engineering purposes. Food industry has employed
infrared (IR) energy to heat surface of foods for blanching, drying, roasting, and thawing processes [17, 18].
Manufacturing industries also have done the IR surface heating for metal forming [9, 12] and soldering
[1, 10] processes. Many of these industrial applications have based on trial and error experiences, study of
mathematical analysis has not been sufficiently reported. A few studies of the focused IR heating analysis
are about design of the reflectors in IR heating [11, 13], multiphysics simulation [14], and friction stir welding
HSBS. Specically, this problem is modelled by the following heat equation with Robin boundary condition

∂tU(x, t)−∆U(x, t) = 0 in Ωh × [0,∞)
U(x, 0) = G(x) on Ωh

∂U
∂x3

(x, t) = F (x, t) + a[T0 − U(x, t)] on P × {h} × [0,∞)
∂U
∂x3

(x, t) = −F (x, t)− a[T1 − U(x, t)] on P × {0} × [0,∞)
∂U
∂ν (x, t) = 0 on ∂P × [0, h]× [0,∞),

(1.1)

where Ωh = P × [0, h] is a plate with small thickness h > 0 and P ⊂ R
2. In this paper, we are interested

in asymptotic profile of solution U(x, t) to (1.1) as the thickness h > 0 of the plate approaches to zero. In
(1.1) no heat change is assumed on ∂P × [0, h] as the surface measure of ∂P × [0, h] is much smaller than
that of the upper and lower boundary P × {0, h}.

In the literature, there have been a lot of interest in studying a similar problem to (1.1), namely the
reaction diffusion equation on thin domains with Neumann boundary condition

∂tU(x, t)−∆U(x, t) = f(U)(x, t) in Ωh × [0,∞)
U(x, 0) = G(x) on Ωh
∂U
∂ν (x, t) = 0 on ∂Ωh × [0,∞).

(1.2)

The mathematical analysis for the asymptotic limit h → 0 of (1.2) was initiated by Hale and Raugel [7]
where the authors raised a general question: If we consider an evolution equation on a spatial domain Ω
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such that Ω is small in a direction, is it possible to approximate the dynamics by an equation on a lower

dimensional spatial domain? This question was answered affirmatively for problem (1.2) in [7] and extended
to various settings [8, 16, 15, 5, 2]. More precisely, Hale and Raguel [7] showed that the solution U(x, t) to
(1.2) is approximated by the two dimensional problem

∂tu(x, t)−∆u(x, t) = f(u)(x, t) in P × [0,∞)
u(x, 0) = g(x) on P
∂u
∂ν (x, t) = 0 on ∂P × [0,∞)

(1.3)

as the thickness h > 0 get close to zero, where g : P → R is properly chosen in terms of G.
The problem (1.1) models a thin plate with an heat source F on boundary and the main concern is the

effect of the heat source F on temperature of plate when h > 0 is very small. Therefore it is admissible to
consider the case that the initial state G is static, i.e.,

−∆G(x) = 0 in Ωh
∂G
∂x3

(x) = a[T0 −G(x)] on P × {h}
∂G
∂x3

(x) = −a[T1 −G(x)] on P × {0}
∂G
∂ν (x) = 0 on ∂P × [0, h].

As far as we know, there has been no results on the asymptotic profile for the heat equation with the Robin
boundary condition on thin plate. We observe in problem (1.1) that the termperature on plate interacts
with the outside termperature since the convection coefficient a > 0 is nonzero. Therefore the asymptotic
behavior as h → 0 should be different from the case a = 0 because the interaction could effect more the
temperature inside of the plate if the thickness of plate is more thin. Now we state the main result of this
paper.

Theorem 1.1. Let U ∈ C2([0,∞); Ωh) be a solution to (1.1) with F ∈ L∞([0,∞); Ωh). We assume that

h ∈ (0, 1/3a) and let α1 = α1(h) be the smallest positive solution of

tan(hq) =
2aq

q2 − a2
. (1.4)

Then for each (x, x3) ∈ P × [0, h] and t ≥ 0, the solution U satisfies

∣

∣

∣

∣

∣

U((x, x3), t)−
(

G(x, x3) +
α2
1

2a

∫ t

0

∫

P×{0,h}
e−α2

1(t−s)W (x, t, y, s)F (y, y3, s)dSyds

)∣

∣

∣

∣

∣

≤ 19h

3
‖F‖L∞([0,t])

where W (x, t, y, s) denotes the Green’s function of the heat equation on the two dimensional domain P with

Neumann boundary condition

∂tu(x, t)−∆u(x, t) = 0 in P × [0,∞)
u(x, 0) = g(x) on P
∂u(x,t)

∂ν = 0 on ∂P × [0,∞).

Here we denoted by
∫

P×{0,h} f(y, y3)dSy the sum
∫

P f(y, 0)dy +
∫

P f(y, h)dy for integrable function f :

P × {0, h} → R and ‖F‖L∞([0,t]) := sup(y,y3,s)∈P×{0,h}×[0,t] |F (y, y3, s)|.

For the value α1 = α1(h) defined in Theorem 1.1, we will prove that it satisfies limh→0
α1(h)√
2a/h

= 1 (see

Lemma 3.3). Based on this property and the integral represntation of Theorem 1.1, we will investigate the
effect of the thickness h > 0 and the material property of the plate on the focused IR heating.

In order to prove Theorem 1.1, we consider the Green’s function Kh associated to (1.1) and write the
solution U(x, t) to (1.1) in terms of Kh. The Green’s function Kh is known to admits a series expansion of
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which term depends on h > 0 and the proof of of Theorem 1.1 is reduced to study the asymptotic profile of
the series expansion of Kh when h > 0 is small. We will show that the first term of the series is dominant
and the contribution of the other terms can be estimates as O(h).

This paper is organized as follows. In Section 2, we recall the Green’s function associated to (1.1) and
study its series expansion. In Section 3 we obtain estimates on the terms in the expansion. This will enable
us to prove Theorem 1.1.

2. Green’s formula

In this section, we study the Green’s function Kh(x, t,y, s) : Πh → R
+ associated to (1.1) defined on

Πh = {(x, t,y, s) ∈ (Ωh × [0,∞))2 : t > s}

satisfying for each (x, t) ∈ Ωh × [0,∞) that

∂sKh(x, t,y, s)−∆yKh(x, t,y, s) = 0 in Ωh × [0, T ]
∂Kh

∂ny
(x, t,y, s) + aKh(x, t,y, s) = 0 on (y, s) ∈ P × {0, h}

∂Kh

∂ny
(x, t,y, s) = 0 on ∂P × [0, h]× [0, T ]

and that
lim
t→s

Kh(x, t,y, s) = δx(y).

The solution U(x, t) to (1.1) is then written as

U(x, t) =

∫

Ωh

Kh(x, t,y, 0)G(y)dy

+

∫ t

0

∫

∂P×{h}
Kh(x, t,y, s)[F (y, s) + aT0]dSyds

+

∫ t

0

∫

∂P×{0}
Kh(x, t,y, s)[F (y, s) + aT1]dSyds.

Since G(x) is a static state of (1.1), we have

U(x, t) =G(x) +

∫ t

0

∫

∂P×{0,h}
Kh(x, t,y, s)[F (y, s)]dSyds. (2.1)

As the domain Ωh equals to the product P × [0, h], the Green’s function Kh is also a product of two Green’s
functions corresponding to P and [0, h] described as follows.

Let Ψ = {(x, t, y, s) ∈ (P × [0, T ])2 : t > s} and W : Ψ → R
+ be the Green’s function to the problem

∂tu(x, t)−∆u(x, t) = 0 (x, t) ∈ P × (0, T )
u(x, 0) = g(x) x ∈ P

∂u
∂n (x, t) = 0 on ∂P × [0, T ].

(2.2)

The existence of the Green’s function for the above problem was proved in [4] for any smooth domain P ⊂ R
2.

Next we consider Φh := {(z, t, w, s) ∈ ([0, h]× [0,∞))2 : t > s} and the Green’s function Gh : Φh → R
+ to

the problem
∂tu(z, t)−∆u(z, t) = 0 (z, t) ∈ [0, h]× [0, T ]

u(z, 0) = g(z) z ∈ [0, h]
∂u
∂ν (z, t) + au(z, t) = f(z, t) (z, t) ∈ {0, h} × [0, T ].

The explicit formula of Gh was obtained in [3] as in (2.7). Now we can state the product formula of Kh

appeared in [6]:
Kh(x, x3, t, y, y3, s) = W (x, t, y, s)Gh(x3, t, y3, s). (2.3)
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Here x, y ∈ R
2 and x3, y3 ∈ R. In order to study the asymptotic behavior of U(x, t) with the formula (2.1),

we shall investigate the asymptotic behavior of Kh. In view of (2.3), it is reduced to study the behavior of
Gh for small h > 0. By using the formula of Gh obtained in [3] we have the following lemma.

Lemma 2.1. We have

Gh(z, t, w, s) =

∞
∑

m=1

Pm(z, t, w, s), (2.4)

where for each m ∈ N,

Pm(z, t, w, s) =
2e−α2

m(t−s)[αm cos(αmz) + a sin(αmz)][αm cos(αmw) + a sin(αmw)]

2a+ h(a2 + α2
m)

, (2.5)

and αm is the m-th positive solution q > 0 of equation

tan(hq) =
2aq

q2 − a2
, (2.6)

arranged in increasing order.

Proof. We recall from [3, 605 page] the formula of Gh given as

Gh(z, t, w, s) =
∞
∑

m=1

Pm(z, t, w, s), (2.7)

where

Pm(z, t, w, s) =
2

h
e−β2

m(t−s)/h2

[βm cos(βmz/h) + B sin(βmz/h)]

× [βm cos(βmw/h) +B sin(βmw/h)]

(β2
m +B2)[1 +B/(β2

m +B2)] +B
.

(2.8)

Here βm are positive solutions to

tanβm =
2βmB

β2
m −B2

with B = ah, (2.9)

arranged in increasing order for m ∈ N. Letting αm = βm/h in (2.8), we find that

Pm(z, t, w, s)

=
2he−α2

m(t−s)[αm cos(αmz) + a sin(αmz)][αm cos(αmw) + a sin(αmw)]

2ah+ h2(a2 + α2
m)

=
2e−α2

m(t−s)[αm cos(αmz) + a sin(αmz)][αm cos(αmw) + a sin(αmw)]

2a+ h(a2 + α2
m)

.

Also equation (2.9) is written as

tan(hαm) =
2h2aαm

h2α2
m − h2a2

=
2aαm

α2
m − a2

.

The proof is finished.
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3. Estimates for the asymptotic formula

In this section, we obtain the estimates for the terms in the expansion of Gh given by (2.7). First we
shall show that the effect of Pm in (2.7) with m ≥ 2 to the solution U of (1.1) are relatively very small when
h > 0 is close to zero. For this aim we begin with the following lemma.

Lemma 3.1. For m ≥ 2 we have

∫ t

0

∫

P×{0,h}
W (x, t, y, s)Pm(x3, t, y3, s)F (y, y3, s)dSyds ≤

8

hα2
m

‖F‖L∞([0,t]).

Proof. We estimate (2.5) as follows

Pm(x3, t, y3, s) ≤
2e−α2

m(t−s)(αm + a)2

2a+ h(a2 + α2
m)

≤ 4e−α2
m(t−s)(α2

m + a2)

h(a2 + α2
m)

=
4

h
e−α2

m(t−s).

(3.1)

Using this we obtain

A :=

∫ t

0

∫

P×{0,h}
W (x, t, y, s)Pm(x3, t, y3, s)F (y, y3, s)dSyds

≤ ‖F‖L∞([0,t])

∫ t

0

∫

P×{0,h}
W (x, t, y, s)

4

h
e−α2

m(t−s)dSyds

(3.2)

In view of the fact that taking g ≡ 1 in (2.2) implies u(x, t) ≡ 1, one has

∫

P

W (x, t, y, s)dy = 1. (3.3)

Using this in (3.2) we obtain

A ≤ 2‖F‖L∞([0,t])

∫ t

0

4

h
e−α2

msds

≤ 2‖F‖L∞([0,t])

∫ t

0

4

h
e−α2

msds =
8‖F‖L∞([0,t])

hα2
m

∫ α2
mt

0

e−sds

≤ 8‖F‖L∞([0,t])

hα2
m

.

The proof is finished.

Next we find the following estimates on αm for m ≥ 2.

Lemma 3.2. Assume that h < π
2a . For m ≥ 2, we have αm ∈

[

(m−1)π
h , (m−1)π

h + π
2h

]

.

Proof. For q ≥ 0 we let Φ(q) = 2aq
q2−a2 . From (2.6) we see that αm is the m-th positive solution of

tan(hq) = Φ(q).

Using an elementary calculus, we find that

• For q ∈ (0, a), the function Φ(q) is negative and decreasing function with

Φ(0) = 0 and lim
q→a−

Φ(q) = −∞. (3.4)

5



• For q ∈ (a,∞), the function Φ(q) is positive and decreasing function with

lim
q→a+

Φ(q) = ∞ and lim
x→∞

Φ(q) = 0. (3.5)

By the way the funcction q → tan(hq) is a periodic function with period π/h. Taking this account with
(3.4) and (3.5), we find that

α1 ∈
(

0,
π

2h

)

and for m ≥ 2,

αm ∈
(

(m− 1)π

h
,
(m− 1)π

h
+

π

2h

)

.

The proof is done.

For the first solution α1 to (2.6), we have the following result.

Lemma 3.3. Assume that ha ≤ 1. Then we have

α1 ≤
√

a2 +
2a

h
≤

√
3a√
h
. (3.6)

In addition, if we further assume that ha ≤ 1/3, then we have

√

a2 +
2a

h+ 2ah2
≤ α1

From the above estimates, we find that limh→0
α1√
2a/h

= 1.

Proof. Recall from Lemma 2.1 that α1 > 0 is the smallest positive solution q > 0 to

tan(hq) =
2aq

q2 − a2
. (3.7)

By an elementary calculus, the function z → tan z has the following estimate

z +
z3

3
≤ tan z ≤ z +

2z3

3
for z ∈ [0, 1]. (3.8)

We see that z → tan(hz) is increasing for z ∈ (0, π/2h). Let us set z0 =
√

2a
h + a2. If z0 < π

2h we have

tan(hz0) ≥ hz0 =
2az0

z20 − a2
. (3.9)

Combining this with (3.4) and (3.5) we deduce α1 ≤ z0. In the case z0 ≥ π
2h , we have α1 ≤ z0 by Lemma

3.2. Hence the first inequality of (3.6) holds true. This also implies α1 ≤
√
3a√
h

because we have a2 ≤ a
h from

the condition ha ≤ 1.
Assume that ha ≤ 1/3. Then we have hα1 ≤

√
3ah ≤ 1. Combining this with the second inequality of

(3.8), we deduce

2aα1

α2
1 − a2

= tan(hα1) ≤ hα1 +
2(hα1)

3

3
≤ hα1 + 2h2aα1,

where we used hα1 ≤
√
3ah in the second inequality. Rearranging this, we get

a2 +
2a

h+ 2h2a
≤ α2

1.

This completes the proof of this lemma.
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Lemma 3.4. For 0 ≤ z, w ≤ h with h ≤ 1
3a we have

∣

∣

∣

∣

P1(z, t, w, s)−
α2
1

2a
e−α2

1(t−s)

∣

∣

∣

∣

≤ 5

2
hα2

1e
−α2

1(t−s). (3.10)

Proof. We recall from (2.5) that P1(z, t, w, s) is given by

P1(z, t, w, s) =
2e−α2

1(t−s)[α1 cos(α1z) + a sin(α1z)][α1 cos(α1w) + a sin(α1w)]

2a+ h(a2 + α2
1)

.

Throughout the proof, we keep in mind that α2
1z

2 ≤ α2
1h

2 ≤ 3ha ≤ 1 from Lemma 3.3. Since 1 − v2

2 ≤
cos v ≤ 1 for v ∈ R, we have

1− α2
1z

2

2
≤ cos(α1z) ≤ 1.

It then follows using α2
1z

2 ≤ 3ha that

α1

(

1− 3ha

2

)

≤ α1 cos(α1z) ≤ α1,

which gives

α1

(

1− 3ha

2

)

≤ α1 cos(α1z) + a sin(α1z) ≤ α1(1 + ha),

where we used 0 ≤ α1z ≤ hα1 ≤ 1. From this we obtain

α2
1

(

1− 3ha

2

)2

≤ [α1 cos(α1z) + a sin(α1z)][α1 cos(α1w) + a sin(α1w)] ≤ α2
1(1 + ha)2. (3.11)

From Lemma 3.3 we find
2a

1 + 2ah
+ a2h ≤ hα2

1 ≤ 2a+ a2h. (3.12)

Combining this with (3.12) we find that D := 2a+ h(a2 + α2
1) satisfies

D ≥
(

2a

1 + 2ah
+ a2h

)

+ 2a+ ha2 ≥ 4a− 2a2h (3.13)

and
D ≤

(

2a+ a2h
)

+ 2a+ ha2 ≤ 4a+ 2a2h. (3.14)

Combining (3.11) with (3.13) and (3.14) we deduce

2e−α2
1(t−s)α

2
1(1 − 2ha)2

4a+ 2a2h
≤ P1(z, t, w, s) ≤ 2e−α2

1(t−s)α
2
1(1 + 3ah)

4a− 2a2h
. (3.15)

Using that ah ≤ 1/3 we have

(1 − 2ha)2

4a+ 2a2h
≥ (1− 4ha)

1

4a(1 + ah/2)
≥ 1

4a
(1 − 4ha)(1− ah/2) ≥ 1

4a
− 9h

16
.

Similarly,

1 + 3ah

4a− 2a2h
=

1 + 3ah

4a(1− ah/2)
≤ 1

4a
[(1 + 3ah)(1 + ah)] ≤ 1

4a
(1 + 5ah) =

1

4a
+

5h

4
.

Gathering the above two estimates in (3.15), we obtain

2e−α2
1(t−s)α2

1

(

1

4a
− 9h

16

)

≤ P1(z, t, w, s) ≤ 2e−α2
1(t−s)α2

1

(

1

4a
+

5h

4

)

.
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From this we find
∣

∣

∣

∣

P1(z, t, w, s)−
α2
1

2a
e−α2

1(t−s)

∣

∣

∣

∣

≤ 5

2
α2
1e

−α2
1(t−s)h.

The proof is finished.

Lemma 3.5. Assume that ah ≤ 1/3. Then we have

∣

∣

∣

∣

∣

∫ t

0

∫

P×{0,h}
W (x, t, y, s)P1(x3, t, y3, s)F (y, y3, s)dSyds

−
∫ t

0

∫

P×{0,h}
2e−α2

1(t−s)α
2
1

4a
W (x, t, y, s)F (y, y3, s)dSyds

∣

∣

∣

∣

∣

≤ 5h‖F‖L∞([0,t]).

Proof. Using (3.10) and (3.3) we deduce

∣

∣

∣

∣

∣

∫ t

0

∫

P×{0,h}
W (x, t, y, s)P1(x3, y, y3, s)F (y, y3, s)dSyds

−
∫ t

0

∫

P×{0,h}

α2
1

2a
e−α2

1(t−s)W (x, t, y, s)F (y, y3, s)dSyds

∣

∣

∣

∣

∣

≤ 5h

2

∣

∣

∣

∣

∣

∫ t

0

∫

P×{0,h}
α2
1e

−α2
1(t−s)W (x, t, y, s)F (y, y3, s)dSyds

∣

∣

∣

∣

∣

≤ 5h‖F‖L∞([0,t])

(
∫ ∞

0

e−sds

)

= 5h‖F‖L∞([0,t]).

The proof is finished.

Now we give the proof of Theorem 1.1.

Proof. From (2.1), (2.3), and (2.7) we have

U((x, x3), t)

= G(x, x3) +

∞
∑

m=1

∫ t

0

∫

P×{0,h}]
W (x, t, y, s)Pm(x3, t, y3, s)[F (y, y3, s)]dSyds.

(3.16)

Using Lemma 3.1 we deduce

∞
∑

m=2

∫ t

0

∫

P×{0,h}]
W (x, t, y, s)Pm(x3, t, y3, s)[F (y, y3, s)]dSyds

≤
∞
∑

m=2

8

hα2
m

‖F‖L∞([0,t]),

(3.17)

and the estimate of Lemma 3.2 enables us to obtain

∞
∑

m=2

1

hα2
m

≤
∞
∑

m=2

h

(m− 1)2π2
=

h

6
.
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Gathering this together with (3.17) and Lemma 3.5, we finally deduce from (3.16) the following estimate

∣

∣

∣

∣

∣

U((x, x3), t)−
(

G(x, x3) +

∫ t

0

∫

P×{0}
2e−α2

1(t−s)α
2
1

4a
W (x, t, y, s)F (y, y3, s)dSyds

)∣

∣

∣

∣

∣

≤
(

5 +
4

3

)

h‖F‖L∞([0,t]).

The proof is finished.
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