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Abstract

We present a new smoothness result for Caputo-type fractional ordinary differential equations,
which reveals that, subtracting a non-smooth function that can be obtained by the information
available, a non-smooth solution belongs to Cm for some positive integer m.
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1 Introduction

Let us consider the following model problem: seek 0 < h 6 a and

y ∈
{
v ∈ C[0, h] : ‖v − c0‖C[0,h] 6 b

}
such that {

Dα
∗ y = f(x, y), 0 6 x 6 h,

y(0) = c0,
(1.1)

where a > 0, b > 0, 0 < α < 1, c0 ∈ R, and

f ∈ C ([0, a]× [c0 − b, c0 + b]) .

Above, the Caputo-type fractional differential operator Dα
∗ : C[0, h]→ C∞0 (0, h)′ is given by

Dα
∗ z := DJ1−α(z − z(0)

)
(1.2)

for all z ∈ C[0, h], where D denotes the well-known first order generalized differential operator, and the
Riemann-Liouville fractional integral operator J1−α : C[0, h]→ C[0, h] is defined by

J1−αz(x) :=
1

Γ(1− α)

∫ x

0

(x− t)−αz(t) dt, 0 6 x 6 h,

for all z ∈ C[0, h].
By [2, Lemma 2.1], the above problem is equivalent to seeking solutions of the following Volterra

integration equation:

y(x) = c0 +
1

Γ(α)

∫ x

0

(x− t)α−1f
(
t, y(t)

)
dt. (1.3)

Diethelm and Ford [2] proved that, if f is continuous, then (1.3) has a solution y ∈ C[0, h] for some
0 < h 6 a, and this solution is unique if f is Lipschitz continuous. A natural question arises whether y
can be smoother than being continuous. This is not only of theoretical value, but also of great importance
in developing numerical methods for (1.3).
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To this question, Miller and Feldstein [5] gave the first answer: if f is analytic, then y is analytic in
(0, h) for some 0 < h 6 a. Then Lubich [4] considered the behavior of the solution near 0. He showed
that, if f is analytic at the origin, then there exists a function Y of two variables that is analytic at the
origin such that

y(x) = Y (x, xα), 0 6 x 6 h,

for some 0 < h 6 a. The above work suggests that non-smoothness of the solution to (1.1) is generally
unavoidable. However, Diethelm [1] established a sufficient and necessary condition under which y is
analytic on [0, h] for some 0 < h 6 a. But, since we have already seen that non-smoothness of y is
generally unavoidable, it is not surprising that this condition is unrealistic. Recently, Deng [3] proposed
two conditions: under the first condition the solution belongs to Cm for some positive integer m; under
the second one the solution is a polynomial. It should be noted that, the second condition is just the one
proposed in [1], and the first condition is also unrealistic.

The main result of this paper is that, although the solution y of (1.1) does not generally belong to
Cm for some positive integer m, we can still construct a non-smooth function of the form

S(x) := c0 +

n∑
j=1

cjx
γj ,

such that
y − S ∈ Cm,

provided f is sufficiently smooth. Most importantly, given c0 and f , we can obtain S by a simple
computation. This is significant in the development of numerical methods for (1.1). In addition, we obtain
a sufficient and necessary condition under which y ∈ Cm. We note that this condition is essentially the
same as the first condition mentioned already in [3, Theorem 2.8], but the necessity was not considered
therein.

The rest of this paper is organized as follows. In Section 2 we introduce some basic notation and
preliminaries. In Section 3 we state the main results of this paper, and present their proofs in Section 4.

2 Notation and Preliminaries

Let 0 < h <∞. We use C[0, h] to denote the space of all continuous real functions defined on [0, h]. For
any k ∈ N>0 and 0 6 γ 6 1, define

Ck[0, h] :=
{
v ∈ C[0, h] : v(j) ∈ C[0, h] for j = 1, 2, . . . , k

}
, (2.1)

Ck,γ [0, h] :=

{
v ∈ Ck[0, h] : max

06x<y6h
|v|Ck,γ [0,h] <∞

}
, (2.2)

and endow the above two spaces with two norms respectively by

‖v‖Ck[0,h] := max
06j6k

max
06x6h

∣∣∣v(j)(x)
∣∣∣ for all v ∈ Ck[0, h], (2.3)

‖v‖Ck,γ [0,h] := max
{
‖v‖Ck[0,h] , |v|Ck,γ [0,h]

}
for all v ∈ Ck,γ [0, h] . (2.4)

Here the semi-norm |·|Ck,γ [0,h] is given by

|v|Ck,γ [0,h] := sup
06x<y6h

∣∣v(k)(x)− v(k)(y)
∣∣

(y − x)γ

for all v ∈ Ck,γ [0, h], and it is obvious that Ck[0, h] coincides with Ck,0[0, h].
For any s ∈ N>0, define

Λs :=
{
β = (β1, β2, . . . , βs) ∈ {1, 2}s

}
,

and, for any β ∈ Λs, we use the following notation:

∂βg :=
∂

∂xβs

∂

∂xβs−1

· · · ∂

∂xβ1

g(x1, x2),
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where g is a real function of two variables. In addition, we define

Λ0 := {∅} ,

and denote by ∂∅ the identity mapping.

3 Main Results

Let us first make the following assumption on f .

Assumption 1. There exist a positive integer n, and a positive constant M such that

f ∈ Cn ([0, a]× [c0 − b, c0 + b]) ,

max
(x,y)∈[0,a]×[c0−b,c0+b]

max
06i6n
06j6n
i+j6n

∣∣∣∣ ∂i∂xi ∂j∂yj f(x, y)

∣∣∣∣ 6M.

Throughout this paper, we assume that the above assumption is fulfilled.
Define J ∈ N and a strictly increasing sequence {γi}Ji=1 by

{γj : 1 6 j 6 J} = {i+ jα : i, j ∈ N, 0 < i+ jα < m} , (3.1)

where
m := max {j ∈ N : j < nα} . (3.2)

Define c1, c2, . . . , cJ ∈ R by

Q(x)− S(x) + c0 ∈ span
{
xi+jα : i, j ∈ N, i+ jα > m

}
, (3.3)

where

Q(x) :=

n−1∑
s=0

∑
β∈Λs

∂βf(0, c0)

Γ(α)

∫ x

0

(x− t0)α−1 dt0

s∏
k=1

∫ tk−1

0

1 + (−1)βk+1

2
+

1 + (−1)βk

2

J∑
j=1

γjcjt
γj−1
k dtk,

(3.4)
and

S(x) := c0 +
J∑
j=1

cjx
γj . (3.5)

Above and throughout, a product of a sequence of integrals should be understood in expanded form. For
example, (3.4) is understood by

Q(x) :=

n−1∑
s=0

∑
β∈Λs

∂βf(0, c0)

Γ(α)

∫ x

0

(x− t0)α−1 dt0

∫ t0

0

1 + (−1)β1+1

2
+

1 + (−1)β1

2

J∑
j=1

γjcjt
γj−1
1 dt1

∫ t1

0

1 + (−1)β2+1

2
+

1 + (−1)β2

2

J∑
j=1

γjcjt
γj−1
2 dt2

. . .∫ ts−1

0

1 + (−1)βs+1

2
+

1 + (−1)βs

2

J∑
j=1

γjcjt
γj−1
s dts.

Remark 3.1. It is easy to see that we can express Q in the form

Q(x) =

L∑
j=1

djx
γj ,

where {γj}Lj=J+1 is a strictly increasing sequence such that γJ < γJ+1 and

{γj : 1 6 j 6 L} = {i+ jα : i, j ∈ N, i 6 n− 1, 1 6 j 6 1 + (n− 1)γJ} .
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Moreover, for 1 6 j 6 J , the value of dj only depends on c0, c1, . . . , cj−1, and f (more precisely,
∂βf(0, c0), β ∈ Λs, 1 6 s 6 n − 1). Obviously, there exist(s) uniquely c1, c2, . . . , cJ such that (3.3)
holds, and hence c1, c2, . . . , cJ are/is well-defined. Furthermore, if γJ + α−m > 0, then

Q− S ∈ Cm,γJ+α−m[0, a];

and if γJ + α−m = 0, then
Q− S ∈ Cm,α[0, a].

Remark 3.2. Note that, S only depends on c0 and

{∂βf(0, c0) : β ∈ Λs, 0 6 s < n} .

Since c0 and f are already available, we can obtain S by a simple calculation.

Define

h∗ := min

{
a,

(
bΓ(1 + α)

M

) 1
α

}
.

By [2, Theorem 2.2] we know that there exists a unique solution y∗ ∈ C[0, h∗] to (1.1). Now we state the
most important result of this paper in the following theorem.

Theorem 3.1. There exist two positive constant C0 and C1 that only depends on a, α and M , such that,
for any 0 < h 6 h∗ and K > 0 such that

‖(Q− S)′‖Cm−1[0,h] + C1h
α + C0h

α
m∑
j=1

Kj 6 K,

we have y∗ − S ∈ Cm[0, h] and
‖(y∗ − S)′‖Cm−1[0,h] 6 K. (3.6)

Corollary 3.1. There exists 0 < h 6 h∗ such that y∗ ∈ Cm[0, h] if, and only if,

∂i

∂xi
f(0, c0) = 0 for all 0 6 i < m. (3.7)

Remark 3.3. Corollary 3.1 states that y∗ ∈ C1[0, h] for some 0 < h 6 h∗ if and only if f(0, c0) = 0. So
we only have y∗ ∈ C[0, h] \ C1[0, h], if f(0, c0) 6= 0. This yields great difficulty in developing high order
numerical methods for (1.1), although y∗ ∈ Cm(0, h]. Many numerical methods for (1.1) may not even
converge theoretically, since they require that y∗ ∈ Cm[0, h] for some positive integer m. However, we can
obtain the numerical values of y∗ at some left-most nodes by solving the following problem (y∗ = y + S):

seek y ∈ Cm[0, h̃] such that

y(x) = c0 − S(x) +
1

Γ(α)

∫ x

0

(x− t)α−1f
(
t, y(t) + S(t)

)
dt, 0 6 x 6 h̃,

where h̃� h. Then we start the numerical methods for (1.1).

Remark 3.4. Assuming that f satisfies f(x, c0) = 0 for all 0 6 x 6 a, it is easy to see that

ci = 0 for all 1 6 i 6 J,

and hence S = c0. Then Theorem 3.1 implies y∗ ∈ Cm[0, h]. Actually, in this case, it is easy to see that
y∗ = c0.

Remark 3.5. Put
Θ := {1 6 j 6 J : γj 6∈ N} .

Obviously, ∑
j∈Θ

cjx
γj

is the singular part (compared to the Cm regularity) in S, and thus the singular part in y∗. Corollary 3.1
essentially claims that (3.7) holds if and only if cj = 0 for all j ∈ Θ. Since (3.7) is rare, we can consider
singularity as an intrinsic property of solutions to fractional differential equations. In addition, we have
the following result: that cj = 0 for all 1 6 j 6 J is equivalent to that cj = 0 for all j ∈ Θ. This is
contained in the proof of Corollary 3.1 in Section 4.3.
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4 Proofs

Let 0 < h <∞. For any k ∈ N and γ ∈ [0, 1], define

Ck,γ [0, h] :=
{
v ∈ Ck,γ [0, h] : v(j)(0) = 0, j = 0, 1, 2, . . . , k

}
, (4.1)

Ĉk,γ [0, h] :=
{
v ∈ Ck,γ [0, h] : ‖v + S − c0‖C[0,h] 6 b

}
. (4.2)

In particular, we use Ck[0, h] and Ĉk[0, h] to abbreviate Ck,0[0, h] and Ĉk,0[0, h] respectively for k ∈ N>0,

and use C[0, h] and Ĉ[0, h] to abbreviate C0[0, h] and Ĉ0[0, h] respectively. In addition, for a function v
defined on (0, h] with h > 0, by v ∈ Ck,γ [0, h] we mean that, setting v(0) := 0, the function v belongs to
Ck,γ [0, h].

In the remainder of this paper, unless otherwise specified, we use C to denote a positive constant that
only depends on α, a and M , and its value may differ at each occurrence. By the definitions of c1, c2,
. . . , cJ , it is easy to see that |cj | 6 C for all 1 6 j 6 J , and we use this implicitly in the forthcoming
analysis.

4.1 Some Auxiliary Results

We start by introducing some operators. For 0 < h 6 a, define P1,h : Ĉm[0, h]→ C[0, h], P2,h : Ĉm[0, h]→
C[0, h], and P3,h : Ĉm[0, h]→ C[0, h], respectively, by

P1,hz(x) :=
1

Γ(α)

∫ x

0

(x− t)α−1G1,hz(t) dt, (4.3)

P2,hz(x) :=
1

Γ(α)

∫ x

0

(x− t)α−1G2,hz(t) dt, (4.4)

P3,hz(x) :=
1

Γ(α)

∫ x

0

(x− t)α−1G3,hz(t) dt, (4.5)

for all z ∈ Ĉm[0, h], where G1,hz, G2,hz, G3,hz ∈ C[0, h] are given respectively by

G1,hz(t0) :=

n∑
s=1

∑
β∈Λs
βs=2

s−1∏
k=1

∫ tk−1

0

1 + (−1)βk+1

2
+

1 + (−1)βk

2

J∑
j=1

γjcjt
γj−1
k dtk

∫ ts−1

0

z′(ts)∂βf
(
ts, z(ts) + S(ts)

)
dts, (4.6)

G2,hz(t0) :=
∑
β∈Λn
βn=2

n−1∏
k=1

∫ tk−1

0

1 + (−1)βk+1

2
+

1 + (−1)βk

2

J∑
j=1

γjcjt
γj−1
k dtk

∫ tn−1

0

∂βf
(
tn, z(tn) + S(tn)

) J∑
j=1

γjcjt
γj−1
n dtn, (4.7)

G3,hz(t0) :=
∑
β∈Λn
βn=1

n−1∏
k=1

∫ tk−1

0

1 + (−1)βk+1

2
+

1 + (−1)βk

2

J∑
j=1

γjcjt
γj−1
k dtk

∫ tn−1

0

∂βf
(
tn, z(tn) + S(tn)

)
dtn, (4.8)

for all 0 6 t0 6 h.
Then let us present the following important results for the above operators.

Lemma 4.1. Let 0 < h 6 a. For any z ∈ Ĉm[0, h], we have

1

Γ(α)

∫ x

0

(x− t)α−1f
(
t, z(t) + S(t)

)
dt = Q(x) + P1,hz(x) + P2,hz(x) + P3,hz(x) (4.9)

for all 0 6 x 6 h.
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Proof. Let β ∈ Λs with 1 6 s < n. For any 0 < ts 6 h, applying the fundamental theorem of calculus
yields

∂βf
(
ts, z(ts) + S(ts)

)
= ∂βf

(
ε, z(ε) + S(ε)

)
+

∫ ts

ε

∂β̃f
(
ts+1, z(ts+1) + S(ts+1)

)
dts+1 +

∫ ts

ε

z′(ts+1) +

J∑
j=1

γjcjt
γj−1
s+1

 ∂≈
β
f
(
ts+1, z(ts+1) + S(ts+1)

)
dts+1

for all 0 < ε 6 ts, where β̃ := (β1, β2, . . . , βs, 1) and
≈
β := (β1, β2, . . . , βs, 2). Taking limits on both sides

of the above equation as ε approaches 0+, we obtain

∂βf
(
ts, z(ts) + S(ts)

)
= ∂βf

(
0, c0)

)
+

∫ ts

0

∂β̃f
(
ts+1, z(ts+1) + S(ts+1)

)
dts+1 +

∫ ts

0

z′(ts+1) +

J∑
j=1

γjcjt
γj−1
s+1

 ∂≈
β
f
(
ts+1, z(ts+1) + S(ts+1)

)
dts+1.

Using this equality repeatedly, we easily obtain (4.9). This completes the proof. �

Lemma 4.2. Let 0 < h 6 a. For any z ∈ Ĉm[0, h], we have P1,hz ∈ Cm,α[0, h] and

‖(P1,hz)
′‖Cm−1[0,h] 6 Ch

α
m∑
j=1

‖z′‖jCm−1[0,h] , (4.10)

∣∣∣(P1,hz)
(m)
∣∣∣
C0,α[0,h]

6 C
m∑
j=1

‖z′‖jCm−1[0,h] . (4.11)

Lemma 4.3. Let 0 < h 6 a. For any z ∈ Ĉm[0, h], we have P2,hz, P3,hz ∈ Cm,α[0, h] and

‖(P2,hz)
′‖Cm−1[0,h] + ‖(P3,hz)

′‖Cm−1[0,h] 6 Ch
α, (4.12)∣∣∣(P2,hz)

(m)
∣∣∣
C0,α[0,h]

+
∣∣∣(P3,hz)

(m)
∣∣∣
C0,α[0,h]

6 C. (4.13)

To prove the above two lemmas, we need several lemmas below.

Lemma 4.4. Let 0 < h 6 a and g ∈ Cm[0, h]. We have w ∈ Cm,α[0, h] and

‖w′‖Cm−1[0,h] 6 Ch
α ‖g′‖Cm−1[0,h] , (4.14)∣∣∣w(m)

∣∣∣
C0,α[0,h]

6 C
∥∥∥g(m)

∥∥∥
C[0,h]

, (4.15)

where

w(x) :=

∫ x

0

(x− t)α−1g(t) dt, 0 6 x 6 h.

Proof. Since g ∈ Cm[0, h] we have

w(i)(x) =

∫ x

0

(x− t)α−1g(i)(t) dt, 1 6 i 6 m.

Then w ∈ Cm[0, h] and (4.14) follow, and (4.15) follows from [6, Theorem 3.1]. This completes the
proof. �

Lemma 4.5. Let 0 < h 6 a, and k, l ∈ N such that k 6 m and lα 6 1. For any g ∈ Ck,lα[0, h], define

w(x) :=

∫ x

0

J∑
j=1

γjcjt
γj−1g(t) dt, 0 < x 6 h.

Then we have the following results:

6



• If (l + 1)α 6 1, then we have w ∈ Ck,(l+1)α[0, a] and

‖w‖Ck,(l+1)α 6 C ‖g‖Ck,lα .

• If (l + 1)α > 1, then we have w ∈ Ck+1,(l+1)α−1[0, a] and

‖w‖Ck+1,(l+1)α−1 6 C ‖g‖Ck,lα .

For any 0 < h 6 a, w ∈ C[0, h], and β ∈ Λs with 1 6 s 6 n, define Tw,β,h : Ĉm[0, h]→ C[0, h] by

Tw,β,hz(x) := w(x)∂βf
(
x, z(x) + S(x)

)
,

for all z ∈ Ĉm[0, h].

Lemma 4.6. For 0 6 k 6 m, we have Tw,β,hz ∈ Cmin{k,n−s}[0, h] and

‖Tw,β,hz‖Cmin{k,n−s}[0,h] 6 C ‖w‖Ck[0,h]

min{k,n−s}∑
j=0

‖z′‖jCm−1[0,h] (4.16)

for all 0 < h 6 a, w ∈ Ck[0, h], β ∈ Λs with 1 6 s 6 n, and z ∈ Ĉm[0, h].

The proofs of Lemmas 4.5 and 4.6 are presented in Appendix A. In the rest of this subsection, we give
the proofs of Lemmas 4.2 and 4.3.
Proof of Lemma 4.2. By (4.3), (4.6), and Lemma 4.4, it suffices to show that, for each β ∈ Λs with
βs = 2, we have g0 ∈ Cm[0, h] and

‖g0‖Cm[0,h] 6 C
min{m,n−s+1}∑

j=1

‖z′‖jCm−1[0,h] , (4.17)

where, if s = 1, then

g0(x) :=

∫ x

0

z′(t)∂2f
(
t, z(t) + S(t)

)
dt;

if 2 6 s 6 n, then

g0(x) :=

∫ x

0

1 + (−1)β1+1

2
+

1 + (−1)β1

2

J∑
j=1

γjcjt
γj−1

 g1(t) dt,

g1(x) :=

∫ x

0

1 + (−1)β2+1

2
+

1 + (−1)β2

2

J∑
j=1

γjcjt
γj−1

 g2(t) dt,

...

gs−2(x) :=

∫ x

0

1 + (−1)βs−1+1

2
+

1 + (−1)βs−1

2

J∑
j=1

γjcjt
γj−1

 gs−1(t) dt,

gs−1(x) :=

∫ x

0

z′(t)∂βf
(
t, z(t) + S(t)

)
dt.

To do so, we proceed as follows. If s = 1, then by Lemma 4.6 we obtain g0 ∈ Cm[0, h] and (4.17). Let
us suppose that 2 6 s 6 n. By Lemma 4.6 it follows gs−1 ∈ Cmin{m,n−s+1}[0, h] and

‖gs−1‖Cmin{m,n−s+1}[0,h] 6 C
min{m,n−s+1}∑

j=1

‖z′‖jCm−1[0,h] .

Then, by the simple estimate
(n− s+ 1) + (s− 1)α > m,

7



applying Lemma 4.5 to gs−2, gs−3, . . . , g0 successively yields g0 ∈ Cm[0, h] and (4.17). This completes
the proof of Lemma 4.2. �
Proof of Lemma 4.3. Let us first show that G2,hz ∈ Cm[0, h] and

‖G2,hz‖Cm[0,h] 6 C. (4.18)

By (4.7) it suffices to show that, for any β ∈ Λn with βn = 2, we have g0 ∈ Cm[0, h] and

‖g0‖Cm[0,h] 6 C, (4.19)

where

g0(x) :=

∫ x

0

1 + (−1)β1+1

2
+

1 + (−1)β1

2

J∑
j=1

γjcjt
γj−1

 g1(t) dt,

g1(x) :=

∫ x

0

1 + (−1)β2+1

2
+

1 + (−1)β2

2

J∑
j=1

γjcjt
γj−1

 g2(t) dt,

...

gn−2(x) :=

∫ x

0

1 + (−1)βs−1+1

2
+

1 + (−1)βs−1

2

J∑
j=1

γjcjt
γj−1

 gs−1(t) dt,

gn−1(x) :=

∫ x

0

∂βf
(
t, z(t) + S(t)

) J∑
j=1

γjcjt
γj−1 dt,

for all 0 6 x 6 h. Noting the fact that

∂βf
(
·, z(·) + S(·)

)
∈ C[0, h],

and γj > α for all 1 6 j 6 J , we easily obtain gn−1 ∈ C0,α[0, h] and

‖gn−1‖C0,α[0,h] 6 C.

Then, applying Lemma 4.5 to gn−2, gn−3, . . . , g0 successively, and using the fact nα > m, we obtain
g0 ∈ Cm[0, h] and (4.19). Thus we have showed G2,hz ∈ Cm[0, h] and (4.18).

Similarly, we can show that G3,hz ∈ Cm[0, h] and ‖G3,hz‖Cm[0,h] 6 C. Consequently, by (4.4), (4.5),

and Lemma 4.4, we infer that P2,hz, P3,hz ∈ Cm,α[0, h], and (4.12) and (4.13) hold. This completes the
proof. �

4.2 Proof of Theorem 3.1

By Lemmas 4.2 and 4.3 there exist two positive constants C0 and C1 that only depend on a, α and M ,
such that

‖(P1,hz)
′‖Cm−1[0,h] 6 C0h

α
m∑
j=1

‖z′‖jCm−1[0,h] , (4.20)

‖(P2,hz)
′‖Cm−1[0,h] + ‖(P3,hz)

′‖Cm−1[0,h] 6 C1h
α, (4.21)

for all 0 < h 6 a and z ∈ Ĉm[0, h]. Let 0 < h 6 h∗ and K > 0 such that

‖(Q− S)′‖Cm−1[0,h] + C1h
α + C0h

α
m∑
j=1

Kj 6 K. (4.22)

Define J : V → C[0, h] by

J z(x) := c0 − S(x) +
1

Γ(α)

∫ x

0

(x− t)α−1f
(
t, z(t) + S(t)

)
dt, (4.23)

for all z ∈ V and x ∈ [0, h], where

V :=
{
v ∈ Ĉm[0, h] : ‖v′‖Cm−1[0,h] 6 K

}
. (4.24)
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Remark 4.1. It is clear that V is a bounded, closed, convex subset of Cm[0, h].

Remark 4.2. Let δ > 0. If we put

K := ‖(Q− S)′‖Cm−1[0,h] + C1a
α + δ,

h := min

h∗,
δ−1C0

m∑
j=1

Kj

− 1
α

 ,

then (4.22) holds.

For the operator J , we have the following key result.

Lemma 4.7. For each z ∈ V , we have J z ∈ V and∣∣∣(J z)(m)
∣∣∣
C0,γ [0,h]

6
∣∣∣(Q− S)(m)

∣∣∣
C0,γ [0,h]

+ C

m∑
j=0

Kj , (4.25)

where γ := α if γJ + α = m, and γ := γJ + α−m if γJ + α > m.

Proof. Let us first show J z ∈ V . Using (4.23) and the fact h 6
(
bΓ(1+α)

M

) 1
α

, we have

|J z(x) + S(x)− c0| =
1

Γ(α)

∣∣∣∣∫ x

0

(x− t)α−1f
(
t, z(t) + S(t)

)
dt

∣∣∣∣ 6 Mhα

Γ(1 + α)
6 b

for all x ∈ [0, h], and so
‖J z + S − c0‖C[0,h] 6 b.

By Lemma 4.1 we have

J z(x) = c0 − S(x) +Q(x) + P1,hz(x) + P2,hz(x) + P3,hz(x), (4.26)

and then, by Lemmas 4.2 and 4.3, and the fact c0 − S + Q ∈ Cm[0, h], we obtain J z ∈ Cm[0, h]. It
remains, therefore, to show that

‖(J z)′‖Cm−1[0,h] 6 K. (4.27)

To this end, note that, by (4.26), (4.20) and (4.21) we obtain

‖(J z)′‖Cm−1[0,h] 6 ‖(Q− S)′‖Cm−1[0,h] + C1h
α + C0h

α
m∑
j=1

Kj ,

and then (4.27) follows from (4.22). We have thus showed J z ∈ V .
Finally, let us show (4.25). By Lemmas 4.2 and 4.3 we obtain∣∣∣(P1,hz)

(m)
∣∣∣
C0,α[0,h]

+
∣∣∣(P2,hz)

(m)
∣∣∣
C0,α[0,h]

+
∣∣∣(P3,hz)

(m)
∣∣∣
C0,α[0,h]

6 C
m∑
j=0

‖z′‖jCm−1[0,h] 6 C
m∑
j=0

Kj .

From the fact γ 6 α it follows∣∣∣(P1,hz)
(m)
∣∣∣
C0,γ [0,h]

+
∣∣∣(P2,hz)

(m)
∣∣∣
C0,γ [0,h]

+
∣∣∣(P3,hz)

(m)
∣∣∣
C0,γ [0,h]

6 C
m∑
j=0

Kj .

Using this estimate and the fact that (Q − S)(m) ∈ C0,γ by the definitions of Q and S, the desired
estimate (4.25) follows from (4.26). This completes the proof. �

By the famous Arzelà-Ascoli Theorem and Lemma 4.7, it is evident that J : V → V is a compact
operator, where V is endowed with norm ‖·‖Cm[0,h]. Therefore, since V is a bounded, closed, convex

subset of Cm[0, h], using the Schauder Fixed-Point Theorem gives that there exists z ∈ V such that

J z = z.
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Putting
y(x) := z(x) + S(x), 0 6 x 6 h,

we obtain

y(x) = c0 +
1

Γ(α)

∫ x

0

(x− t)α−1f
(
t, y(t)

)
dt, 0 6 x 6 h.

By [2, Lemma 2.1], the above y is a solution of (1.1), and then, since y∗ is the unique solution of (1.1)
on [0, h∗], we have y∗ = y on [0, h]. Therefore, it is obvious that y∗ − S ∈ Cm[0, h] and (3.6) hold. This
completes the proof of Theorem 3.1.

4.3 Proof of Corollary 3.1

Let us first state the following fact. For each 1 6 j 6 J , by the definition of cj , a straightforward
computing yields

cj =
∑

t∈Υj,1∪Υj,2

t, (4.28)

where

Υj,1 :=
⋃

16s<n
s+α=γj

{
B(α, 1 + s)∂s1f(0, c0)

Γ(α)

}
, (4.29)

Υj,2 :=

n−1⋃
s=1

s⋃
k=1

⋃
β∈Λs
#β=k
Γβ 6=∅

B
(
α, 1 + s− k +

∑k
l=1 γil

)
∂βf(0, c0)

Γ(α)
∏k
l=1 γil

k∏
l=1

cilγil : (i1, i2, . . . , ik) ∈ Ξβ,j

 . (4.30)

Above, B(·, ·) denotes the standard beta function, and

#β :=
∑

16i6s
βi=2

1,

Ξβ,j :=

(i1, i2, . . . , i#β) : α+ s−#β +

#β∑
j=1

γij = γj

 ,

for all 1 6 s < n and β ∈ Λs.
To prove Corollary 3.1, by Theorem 3.1 it suffices to show that (3.7) is equivalent to

cj = 0 for all j ∈ Θ, (4.31)

where
Θ := {1 6 j 6 J : γj 6∈ N} .

But, by (4.28), (4.29) and (4.30), an obvious induction gives

cj = 0 for all 1 6 j 6 J , (4.32)

if (3.7) holds. Therefore, it remains to show that (4.31) implies (3.7).
To this end, let us assume that (4.31) holds. Note that we have (4.32). If this statement was false,

then let
j0 := min {1 6 j 6 J : cj 6= 0} .

Obviously, we have j0 > 1 and γj0 ∈ N, and in this case, Υj0,1 is empty. Thus, by (4.28) we have

cj0 =
∑

t∈Υj0,2

t.

But, by the definition of Υj0,2 and the fact that cj = 0 for all 1 6 j < j0, it is straightforward that
cj0 = 0, which is contrary to the definition of j0. Therefore (4.32) holds indeed. Using this result, from
(4.28) and (4.30) it follows

cj =
∑
t∈Υj,1

t for all 1 6 j 6 J ,

and then, using (4.32) again, we obtain (3.7). This completes the proof of Corollary 3.1.
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Appendix A Proofs of Lemmas 4.5 and 4.6

To prove Lemma 4.5, we need the following two lemmas.

Lemma A.1. Let h > 0, γ > 0 and g ∈ C1[0, h]. We have w ∈ C1[0, h] and

w′(x) =

∫ x

0

tγ−1g′(t) dt. (A.1)

where

w(x) :=

∫ x

0

tγ−1g(t) dt, 0 6 x 6 h.

Since the proof of this lemma is straightforward, it is omitted.

Lemma A.2. Let 0 < h 6 a, and l ∈ N>0 such that lα 6 1 < (l + 1)α. For any g ∈ C0,lα[0, h], we have
w ∈ C0,(l+1)α−1[0, h] and

‖w‖C0,(l+1)α−1[0,h] 6 C ‖g‖C0,lα[0,h] ,

where

w(x) :=

J∑
j=1

γjcjx
γj−1g(x), 0 < x 6 h.

Proof. It suffices to prove that, for any 1 6 j 6 J , we have v ∈ C[0, h] and

‖v‖C0,(l+1)α−1[0,h] 6 C ‖g‖C0,lα[0,h] ,

where v(x) := xγj−1g(x), 0 < x 6 h. Noting the fact that lα+γj > 1 and g ∈ C0,lα[0, h], we easily obtain
v ∈ C[0, h] and

‖v‖C[0,h] 6 C ‖g‖C0,lα[0,h] .

It remains, therefore, to prove that

|v(y)− v(x)| 6 C(y − x)(l+1)α−1 ‖g‖C0,lα[0,h]

for all 0 < x < y 6 h. Moreover, since it holds

|v(y)− v(x)| =
∣∣yγj−1g(y)− xγj−1g(x)

∣∣
=
∣∣yγj−1

(
g(y)− g(x)

)
+ (yγj−1 − xγj−1)g(x)

∣∣
6
(
yγj−1(y − x)lα +

∣∣yγj−1 − xγj−1
∣∣xlα) ‖g‖C0,lα[0,h] ,

by the fact g ∈ C0,lα[0, h], we only need to prove that

yγj−1(y − x)lα +
∣∣yγj−1 − xγj−1

∣∣xlα 6 C(y − x)(l+1)α−1 (A.2)

for all 0 < x < y 6 h.
Let us first consider the case of γj < 1. A simple algebraic calculation gives

(xγj−1 − yγj−1)xlα = (y − x)lα+γj−1
(
Aγj−1 − (1 +A)γj−1

)
Alα,

where A := x
y−x . If 0 6 A 6 1, then by the fact lα+ γj − 1 > 0 we have(

Aγj−1 − (1 +A)γj−1
)
Alα < Alα+γj−1 6 1.

If A > 1, then using the Mean Value Theorem and the fact lα+ γj − 2 < 0 gives(
Aγj−1 − (1 +A)γj−1

)
Alα < (1− γj)Alα+γj−2 < (1− γj) < 1.

Consequently, we obtain
(xγj−1 − yγj−1)xlα < (y − x)lα+γj−1,
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which, together with the trivial estimate

yγj−1(y − x)lα < (y − x)γj−1(y − x)lα = (y − x)lα+γj−1,

yields (A.2).
Then, since (A.2) is evident in the case of γj = 1, let us consider the case of 1 < γj < 2. Since

0 < γj − 1 < 1, we have
yγj−1 − xγj−1 < (y − x)γj−1.

By the definition of γj it is clear that

γj − 1 > (l + 1)α− 1.

Using the above two estimates, we obtain∣∣yγj−1 − xγj−1
∣∣xlα 6 C(yγj−1 − xγj−1) 6 C(y − x)(l+1)α−1,

which, together with the estimate

yγj−1(y − x)lα 6 C(y − x)lα 6 C(y − x)(l+1)α−1,

indicates (A.2).
Finally, let us consider the case of γj > 2. Using the Mean Value Theorem gives∣∣yγj−1 − xγj−1

∣∣xlα 6 C(y − x)(l+1)α−1.

and then, by the obvious estimate

yγj−1(y − x)lα 6 C(y − x)(l+1)α−1,

we obtain (A.2). This completes the proof. �

Proof of Lemma 4.5 Since g ∈ Ck,lα[0, h], by Lemma A.1 we have w ∈ Ck[0, h] and

w(i)(x) =

∫ x

0

J∑
j=1

γjcjt
γj−1g(i)(t) dt, i = 0, 1, 2, . . . , k. (A.3)

It follows
‖w‖Ck[0,h] 6 C ‖g‖Ck[0,h] .

Therefore, it remains to prove that ∣∣∣w(k)
∣∣∣
C0,(l+1)α[0,h]

6 C ‖g‖Ck,lα[0,h] (A.4)

if (l + 1)α 6 1; and that w(k+1) ∈ C0,(l+1)α−1[0, h] and∥∥∥w(k+1)
∥∥∥
C0,(l+1)α−1[0,h]

6 C ‖g‖Ck,lα[0,h] (A.5)

if (l + 1)α > 1.
Let us first consider (A.4). Noting the fact that g(k) ∈ C0,lα[0, h] and γj > α for all 1 6 j 6 J , by

(A.3) a simple computing gives that∣∣∣w(k)(y)− w(k)(x)
∣∣∣ 6 C ∣∣∣g(k)

∣∣∣
C0,lα[0,h]

(y − x)(l+1)α

for all 0 6 x < y 6 h, which implies (A.4).
Then let us consider (A.5). Since g(k) ∈ C0,lα, by Lemma A.2 we have v ∈ C0,(l+1)α−1[0, h] and

‖v‖C0,(l+1)α−1[0,h] 6 C
∥∥∥g(k)

∥∥∥
C0,lα[0,h]

,

where

v(x) :=

J∑
j=1

γjcjx
γj−1g(k)(x), 0 < x 6 h.

Then, by (A.3) we readily obtain w(k+1) ∈ C0,(l+1)α−1 and (A.5), and thus complete the proof of this
lemma. �

Before proving Lemma 4.6, let us introduce the following lemma.
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Lemma A.3. Let 0 < h 6 a and γ > 0. For any g ∈ Ck[0, h] with 1 6 k 6 m, we have w ∈ Ck−1[0, h]
and

‖w‖Ck−1[0,h] 6 C
∥∥∥g(k)

∥∥∥
C[0,h]

,

where
w(x) := g(x)xγ−1, 0 < x 6 h,

and C is a positive constant that only depends on a, k and γ.

Proof. If k = 1, then, by the Mean Value Theorem and the fact g(0) = 0, this lemma is evident. Thus,
below we assume that 2 6 k 6 m. In the rest of this proof, for ease of notation, the symbol C denotes a
positive constant that only depends on a, k and γ, and its value may differ at each occurrence.

Let us first show that, for 0 6 i < k, we have wi ∈ C[0, h] and

‖wi‖C[0,h] 6 C
∥∥∥g(k)

∥∥∥
C[0,h]

, (A.6)

where
wi(x) := w(i)(x), 0 < x 6 h.

To this end, let 0 6 i < k, and note that an elementary computing gives

wi(x) =

i∑
j=0

cijg
(j)(x)xγ−1−i+j , 0 < x 6 h, (A.7)

where cij is a constant that only depends on γ, i and j, for all 0 6 j 6 i. Since g ∈ Ck[0, h], we have
g(j) ∈ Ck−j [0, h], and then, applying Taylor’s formula with integral remainder yields

g(j)(x) =
1

(k − j − 1)!

∫ x

0

(x− t)k−j−1g(k)(t) dt, 0 6 x 6 h.

It follows that ∣∣∣g(j)(x)xγ−1−i+j
∣∣∣ 6 ∥∥g(k)

∥∥
C[0,h]

(k − j)!
xγ+k−(i+1), 0 < x 6 h. (A.8)

Since γ + k − (i+ 1) > γ > 0, this implies g(j)(x)xγ−i−1+j ∈ C[0, h] and∥∥∥g(j)(·)(·)γ−i−1+j
∥∥∥
C[0,h]

6 C
∥∥∥g(k)

∥∥∥
C[0,h]

.

Therefore, by (A.7) it follows wi ∈ C[0, h] and (A.6).
Then let us proceed to prove this lemma. Let i < k − 1. Note that by (A.7) we have

w′i(x) = wi+1(x), 0 < x 6 h.

Since we have already proved that wi, wi+1 ∈ C[0, h], by the Mean Value Theorem it is evident that
wi ∈ C1[0, h] and

w′i(x) = wi+1(x), 0 6 x 6 h.

It follows w0 ∈ Ck−1[0, h] and

w
(i)
0 = wi, 0 6 i < k,

and hence, by (A.6) we have

‖w0‖Ck−1[0,h] 6 C
∥∥∥g(k)

∥∥∥
C[0,h]

.

Noting the fact w = w0, this completes the proof. �

Proof of Lemma 4.6 Below we employ the well-known principle of mathematical induction to prove
this lemma. Firstly, it is clear that (4.16) holds in the case k = 0. Secondly, assuming that (4.16) holds
for k = l where 0 6 l < m− 1, let us prove that (4.16) holds for k = l+ 1. To this end, a straightforward
computing gives

(Tw,β,hz)′(x) = Tw′,β,hz(x) + Tw,β̃,hz(x) + T
w̃,

≈
β,h
z(x) (A.9)
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for all 0 < x 6 h, where β̃ := (β1, β2, . . . , βs, 1),
≈
β, := (β1, β2, . . . , βs, 2), and

w̃(x) := w(x)

z′(x) +

J∑
j=1

γjcjx
γj−1

 .

Since w ∈ Ck[0, h], we have w′ ∈ Ck−1[0, h], and by Lemma A.3 we have w̃ ∈ Ck−1[0, h]; consequently,
Tw′,β,hz and T

w̃,
≈
β,h
z are well-defined, and they both belong to C[0, h]. Therefore, by the Mean Value

Theorem, and the fact Tw,β,hz ∈ C[0, h], it follows that Tw,β,hz ∈ C1[0, h], and (A.9) holds for all 0 6 x 6 h.
By our assumption, we have the following results: Tw′,β,hz ∈ Cmin{k−1,n−s}[0, h] and

‖Tw′,β,hz‖Cmin{k−1,n−s}[0,h] 6 C ‖w
′‖Ck−1[0,h]

min{k−1,n−s}∑
j=0

‖z′‖jCm−1[0,h] ;

Tw,β̃,hz ∈ C
min{k−1,n−s−1}[0, h] and

∥∥∥Tw,β̃,hz∥∥∥
Cmin{k−1,n−s−1}[0,h]

6 C ‖w‖Ck−1[0,h]

min{k−1,n−s−1}∑
j=0

‖z′‖jCm−1[0,h] ;

T
w̃,

≈
β,h
z ∈ Cmin{k−1,n−s−1}[0, h] and

∥∥∥∥Tw̃,≈β,hz
∥∥∥∥
Cmin{k−1,n−s−1}[0,h]

6 C ‖w̃‖Ck−1[0,h]

min{k−1,n−s−1}∑
j=0

‖z′‖jCm−1[0,h] .

In addition, by Lemma A.3 we easily obtain

‖w̃‖Ck−1[0,h] 6 C ‖w‖Ck[0,h]

(
1 + ‖z′‖Ck−1[0,h]

)
.

As a consequence, we obtain Tw,β,hz ∈ Cmin{k,n−s} and

‖(Tw,β,hz)′‖Cmin{k−1,n−s−1}[0,h] 6 C ‖w‖Ck[0,h]

min{k,n−s}∑
j=0

‖z′‖jCm−1[0,h] .

Then (4.16) follows from the obvious estimate

‖Tw,β,hz‖C[0,h] 6 C ‖w‖C[0,h] .

This completes the proof of Lemma 4.6. �
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