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Abstract

Elastomeric materials and soft biological tissues are made up of synthetic and protein
fibers, respectively. The uncoiling of these fibers during loading produces a non-
linear elastic macroscopic behavior in the regime of finite strains. Many hyperelastic
models have been developed to reproduce this behavior assuming the existence of a
strain energy function. In structure-based models, the analytical energy function is
obtained from the stored energy of all the material constituents. This stored energy
is given frequently by the entropy of the chain network obtained from Langevin
statistical treatment of the possible configurations adopted by the chains, and a
representative cell for their spatial distribution. One of the most used models is the
eight chain model, being its salient feature that it reproduces the overall response of
isotropic hyperelastic materials with only two material parameters obtained from a
tensile test. On the other hand, in WYPiWYG hyperelasticity the stored energies are
numerical instead of analytical and capture, to any precision, the experimental tests
on the material. However, due to their phenomenological nature, their determination
requires more tests. In this work, we develop a microstructure-based WYPiWYG
hyperelastic model in which the average chain behavior is obtained from macroscopic
tests through a simple automatic inverse procedure. We show that, without assuming
a probability distribution function nor any particular chain arrangement, we obtain,
at the same computational cost, better predictions than the 8-chain model. Code of
the model and of the examples in the Julia programming language are included.
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1. Introduction

During small elastic deformations, stresses and strains in a material are usu-
ally related through a linear relation [1]. However, because configurational entropy
governs their behavior, polymer-like materials as elastomers or soft biological tissues
exhibit a highly non-linear elastic behavior, sustaining very large strains [1, 2, 3, 4, 5].
Truly elastic behavior is characterized by the absence of dissipation during any type
of loading, e.g. cyclic loading [6, 7]. The hypoelastic nonlinear relations (extending
the small strain linear framework to nonlinear relations), do not guarantee conserva-
tive behavior [8, 7] unless some integrability conditions due to Bernstein are fulfilled
[9, 10]. These conditions guarantee the existence of a potential, but are difficult
to meet in general. Then, nonlinear elastic behavior is modeled in the framework
of hyperelasticity by assuming and formulating directly that potential: the strain
energy function [3, 5]. Traditionally, the models developed in this framework as-
sume an analytical expression for the shape of the strain energy function, which
is formulated in terms of a number of material parameters. These parameters are
determined by fitting the predictions of the model at hand with experimental data
through optimization algorithms. Hyperelastic models may be either phenomeno-
logical or structure-based, depending on whether or not the microstructure of the
material constituents is explicitly accounted for in reproducing the overall macro-
scopic behavior of the material.

Arguably, phenomenological models are simpler and give more flexibility in repro-
ducing the macroscopically observed behavior. A vast amount of phenomenological
models has been proposed, each one with a different analytical proposal and fre-
quently targeted at specific materials [11]. For isotropic, incompressible materials,
the simplest Neohookean and the successful Ogden models [12, 11] are probably the
most used phenomenological ones and are available in most finite element codes.
The accuracy of this type of models depends on the number of terms employed in
the analytical expressions, and thus, on the number of parameters. However, the
determination of the material parameters is usually not trivial [13, 14], so a large
amount of literature is dedicated just to that determination, see for example [15, 16].
A change of paradigm for phenomenological models has been given by Sussman and
Bathe [17] in their model for isotropic, incompressible materials. Instead of using
analytical functions, Sussman and Bathe used spline interpolations between values
obtained from a numerical solution of the equilibrium equations by means of the
Kearsley-Zapas formula [18]. We have extended these ideas to more complex materi-
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als, e.g. compressible materials [19] and anisotropic materials [20], [21], as well as for
unconventional materials [22]. We have coined this approach What-You-Prescribe
is What-You-Get (WYPiWYG) hyperelasticity, the reason being that in contrast to
formulations based on analytical functions, smooth experimental data are captured
to any desired precision because equilibrium equations are numerically solved. Obvi-
ously, the resulting stored energies may be immediately used in the general loading
conditions present at stress integration points during non-homogeneous finite ele-
ment simulations [19], [23]. Relevant aspects of the novel approach are that no
material parameters are employed and that noisy data are easily incorporated guar-
anteeing, when needed, some stability conditions [24]. Furthermore, the approach
allows for capturing material behavior where other models fail, like in the cases of
strong tension-compression asymmetry [25], where even a conventional small strain
treatment results to be exceedingly complex, see e.g. [26, 27]. However, the phe-
nomenological approach is arguably less satisfying from a scientific standpoint and
requires more experimental data to give good results under general loading condi-
tions. On the contrary, the second class of models, the microstructure-based models,
use some information about the material which allows to obtain good predictions
in general loading cases with substantially less experimental data and material pa-
rameters. In these models, a tensile test is often sufficient to characterize isotropic
materials.

In the case of polymeric-like materials, their microstructure consists of a network
of randomly oriented and coiled polymeric fibers which are gradually uncoiled when
they are stretched. This fiber uncoiling process decreases entropy, increases forces
and causes the macroscopic non-linear stress-strain behavior. The intermolecular
interaction is neglected in the stored energy so that the stored elastic energy of a
polymeric network can be obtained as the sum of the free energy of all the individual
chains [2, 4]. The determination of the strain energy function of a single polymeric
chain has been addressed through statistical mechanics, where a single fiber can
be modeled as a worm-like chain or a freely-joined chain. In the worm-like chain
approach, the chain is considered as a flexible and smooth beam with a continuous
change of curvature due to thermal fluctuations [28]. The worm-like chain has been
applied to reproduce soft tissues behavior [29] and biological remodeling [30, 31]. As
in the case of freely-joined chains, the strain energy is entropy-based.

The freely-joined chain consists of N segments with a constant length l, so the
contour length of the chain is L = Nl. These Khun segments are assumed rigid and
randomly coiled but free to rotate without modifying the internal energy. Thus, the
work of deformation of a single chain is considered to be given by the difference of
the chain entropy between its unstretched and stretched configurations. Each chain
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is characterized by the distance between the ends of the chain, rch, also called end-
to-end distance. The maximum entropy s (possible configurations) is obtained for
the isolated chain with rch = 0, whereas the initial length r0 =

√
Nl is given by

random walk statistics [2, 32]. This entropy decreases as the chain is stretched since
the number of configurations that the chain can adopt is reduced. The configuration
that a chain can achieve is mathematically expressed by a probability distribution
function. When a chain is stretched in the range of large strains, instead of using
the typical Gaussian distribution, a probability distribution function based on the
inverse Langevin function, L−1 (rch/Nl) = y, is adopted. This distribution accounts
for the limit extensibility of the chain when rch → Nl, in which case the entropy of
the chain is minimum because it has only one possible configuration. A background
on the statistical treatment of polymers can be found in the books from Treloar [2]
and Mark and Erman [4].

In structure-based models, proposed material parameters are related to that mi-
crostructure; for example two typical parameters are N (number of segments of a
typical chain) and n (chain density per unit volume). Thereafter, the spatial distri-
bution of chains is accounted for by a simplified ideal layout. Earlier 3D models are
the three-chain model [33] and the four chain model [34]. The material parameters
in all cases are G = nkT and N , where k is Boltzman’s constant and T is the abso-
lute temperature of the tests. However, the most popular model of this kind is the
Arruda-Boyce [32] eight chain model (with more than 2000 cites, and available in
most finite element programs), because using the same material constants obtained
by fitting a macroscopic tensile test, the model predicts much better the behavior un-
der a general case of deformation. The Arruda-Boyce model has also been extended
to anisotropy, see [30] and [35, 36].

The purpose of the present paper is to show that WYPiWYG hyperelasticiy
allows for a new approach also in microstructure-based hyperelasticity. In the phe-
nomenological approach, WYPiWYG hyperelasticity eliminated the need for pre-
scribing analytical functions and material parameters, leaving only the asumption
of the employed reduced form, which in turn is actually determined by the avail-
able experimental data to give a well-posed material determination procedure. For
the present microstructure-based approach, we show below that using WYPiWYG
hyperelasticity, we can bypass the need to assume the probability density function
of the chains and, hence, the material parameters. Furthermore, the assumptions
regarding the fully entropic nature of elastic energy or the type of structural behavior
of the single chain are not needed. With this proposal, the behavior of the average
chain or fiber in the material is obtained by an inverse procedure from a single test
(e.g. a tensile test) as a spline function. Then, the function may be used to derive
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the stress-strain behavior of the solid under any arbitrary condition. The model gives
better accuracy than the Arruda-Boyce model at the same computational cost. It
may further use information of different tests to obtain an improved average chain
behavior.

The WYPiWYG approach is mainly numerical, different from the analytical ones
employed in the literature. Hence claims in this paper must be verified through a
program. To this end, we include all code needed for the examples in this paper in
the programming language Julia. Julia is still not as extended a Matlab, but it is
an excellent freeware language for researchers working in computational mechanics,
which typically employ fortran for speed and Matlab for testing (and specially for
obtaining material parameters). Julia is easy to learn, with a visual structure very
close to that of both fortran and Matlab, but solves the two-languaje paradigm: it
is fast and productive. It is our believe that it will be soon the preferred programing
language in computational mechanics.

The rest of the manuscript is organized as follows. First we summarize the rele-
vant findings in chain-based models and we derive the relation between the average
chain behavior and that of a deformed continuum without assuming a specific cell.
Then we show that in fact, this relation is the same as that given by one of the eight
chains of the Arruda-Boyce model, so the diagonals of their hexaedron result to be
representative of the average chain. Then, following the WYPiWYG approach, in-
stead of assuming the behavior of that average chain, we obtain it directly, in spline
form, from macroscopic experimental data. We show that if we use the Arruda-Boyce
model to generate pseudoexperimental data, we are able to reproduce exactly its be-
havior under any loading condition without employing their entropy-based relations
and material parameters. Then we show the ability of the model to predict Treloar’s
tests in rubber materials [37] and explain the limitations regarding the equibiaxial
test predictions. The Julia code is described briefly in the Appendix.

2. The chain behavior and its relation to the macroscopic behavior

For an isotropic incompressible material, given the stored energy functionW (λ1, λ2, λ3),
the relation between the principal Cauchy stresses σi and the principal stretches λi
is [12]

σi = −p+ λi
∂W (λ1, λ2, λ3)

∂λi
i = 1, 2, 3 (1)

where p is the pressure-like Lagrange multiplier. The stored energyW of rubber-like
materials, when considering Gaussian chain statistics and randomly oriented chains,
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is given by the Neo-Hookean model [2]

W = 1
2
G (I1 − 3) (2)

so
σ1 − σ2 = G

(
λ21 − λ22

)
(3)

where G = nkT is the constant (shear-like modulus) defined above and

I1 = tr (C) = tr
(
XTX

)
= λ21 + λ22 + λ23 (4)

is the first invariant of the Cauchy-Green deformation tensor C = XTX, where
X is the deformation gradient (we note that the deformation gradient is frequently
denoted by F , but we follow the notation of [1, 38] and of our previous works). We
assume, as usual, that the material is incompressible, i.e. λ1λ2λ3 = 1. As it is well
known, Gaussian statistics do not account for the limiting extensibility of the chain.
The limit length of a chain is given by rch = L = Nl. The stretch of the chain
λch = rch/r0 then reaches a maximum value

λlock := max (λch) =
L

r0
=
√
N (5)

Using this fact, a better approximation for the probability distribution is given by
the Langevin function. With this non-Gaussian treatment, the entropy of a chain is
[2, 32]

s (rch) = k ln p (rch) = k

[
c−N

(
rch
Nl

y + ln
y

sinh y

)]
(6)

and the stored energy is

W = −Ts = kTN

(
rch
Nl

y + ln
y

sinh (y)

)
− kcT (7)

where p (rch) is the probability density and y = L−1 (rch/Nl) = L−1 (λchr0/Nl) =

L−1
(
λch/
√
N
)

is the inverse Langevin function, which analytical expression is un-

known, but that can be obtained in an approximate manner from its inverse, the
Langevin function

L (y) = coth y − 1

y
⇒ L−1

(
λch√
N

)
' 3

λch√
N

+
9

5

(
λch√
N

)2

+ ... (8)
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The tension force in the chain is obtained from the thermodynamic requirement

Fch (rch) = −T ds (rch)

drch
=
kT

l
L−1

(rch
Nl

)
=
kT

l
L−1

(
λch√
N

)
(9)

and the nominal stress

Pch (λch) = −T ds (λch)

dλch
= Fch (rch)

drch
dλch

=
√
Nl Fch (rch) (10)

For small values of rch/Nl, far away from locking, the Gaussian description is ob-
tained, where

L−1
(rch
Nl

)
' 3

rch
Nl

= 3
λch√
N

(11)

and

Fch (λch) = 3
kT

l

λch√
N

so Pch (λch) = 3kTλch (12)

but in the limit near the locking situation L−1 (1)→∞, so Fch (λlock)→∞ and by
equilibrium λch ≯ λlock. Note that the Gaussian chain is linear in stretches.

The Langevin treatment of the chain behavior is theoretically very satisfying, but
has some relevant limitations from a practical standpoint that should be beared in
mind:

• Since there is no analytical expression for the computation of the inverse
Langevin function, and the accuracy and efficiency in evaluating such func-
tion is extremely important at large strains [39], several approximants have
been proposed, many of them in the last five years [40, 41, 42, 43, 44, 45].
With computational efficiency in mind, the most accurate approximant of the
inverse Langevin function is our recent proposal, reaching near machine preci-
sion at the same cost of the most efficient approximants [46]. In this procedure,
spline interpolations are employed as in WYPiWYG hyperelasticity.

• The Langevin statistical treatment is a remarkable advance over the Gaussian
treatment because the former naturally captures the upturn behavior observed
in experiments, an aspect which the latter cannot predict. However, this ap-
proach is neither exact; it represents an approximation of the actual probabil-
ity distribution. It is accurate only for large enough values of N , say about
N = 25 ∼ 50, an important issue near the locking stretch (refer to Figs. 6.3
and 6.6 in [2]). Fitted values of N from macroscopic tests are often near this
limit (see e.g. Figs 11 and 14 in [32]).
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Figure 1: Network models. (a) Three chain model. (b) Four chain model. (c) Eight chain model
in non-deformed configuration. (d) Eight chain model in deformed configuration. (e) Isotropic
distribution of average-length chains; non-deformed configuration. (f) Isotropic distribution of
average-length chains; deformed configuration.

• Stress-induced crystallization is important in some polymers [47], especially
at large strains; see Fig. 1.9 in [2] and therein references. As noted in Ref.
[48], in natural rubbers the (internal) energy component cannot be ignored for
stretches larger than about 3.5 because of this phenomenon; see also discussions
of Fig. 3.5 of [48], Figs 3 and 4 in [34] and references [49, 50], among others.

For the case of non-Gaussian models, the extension of the single chain behavior
to compute the actual behavior of solids is performed through network models, as
those shown in Fig. 1. The simplest model is the three-chain model, Fig 1a. In
this model three chains are aligned with the coordinates of the problem (e.g. testing
directions) or with the principal stretches (in later implementations) and the resulting
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stress-strain behavior is [2, 51])

σi − σj =
G

3

√
N

[
λiL−1

(
λi√
N

)
− λjL−1

(
λj√
N

)]
(13)

which for the small values of Eq. (11) recovers the Neohookean relation Eq. (3).
The four chain model, shown in Fig 1b, consists of four chains tying a free node to
the vertices of a tetrahedron. It is usually considered as a non-affine model, where
the central node is not tied to the continuum deformation imposed through the
movement of the vertices, see [52]. The position of the central node is obtained solving
the nonlinear equilibrium equations through iterative procedures. The consideration
of non-affinity in this model results in substantialy different stress-strain behavior.
However, as remarked by Arruda and Boyce [32] (see requirements in [51]), the
model does not possess symmetry with respect to the principal stretch space. This
requirement is related to the fundamental properties of isotropy and frame invariance
[8]. Furthermore, these models did not capture correctly the difference in stress-
stretch curves of the uniaxial and equibiaxial tests; see Figs. 12 and 13 of [32].

Because of these reasons, Arruda and Boyce proposed their eight chain model, see
Fig. 1c. In their model, eight chains of length r0 =

√
Nl radiate from a central node

to the vertices of an hexaedron of dimension a0 = 2r0/
√

3. In order to guarantee the
mentioned symmetry, they aligned the edges to the principal strain directions, see
Figs. 1c and 1d. The vertices are subjected to the deformation of the continuum.
All eight chains have the same stretch under any arbitrary deformation, so the model
is affine (the internal node is always in equilibrium by the model symmetry respect
to principal deformations). By geometric requirements, the stretch of each chain is
directly related to the first invariant, see Fig. 1d

λch =
rch
r0

=
1
2

√
λ21a

2
0 + λ22a

2
0 + λ23a

2
0

1
2

√
a20 + a20 + a20

=

√
I1
3

(14)

Then, the strain energy function of the continuum is obtained from that of a single
chain, Eq. (7), multiplying by the density of chains n. Substituting the chain stretch
as a function of the macroscopic stretches, Eq. (14), and recalling that G = nkT ,
we obtain the relation

dW
dλi

=
G

3

√
N

λch
L−1

(
λch√
N

)
λi (15)
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which in turn, using Eq. (1), gives the following Cauchy stresses

σi − σj =
G

3

√
N

λch
L−1

(
λch√
N

)(
λ2i − λ2j

)
i 6= j (16)

This model also recovers the Gaussian-based behavior as it is immediate to check
using approximation Eq. (11) and comparing the result with Eq. (3). In contrast
to the previous models, the macroscopic limit stretch is different for uniaxial and
equibiaxial tests, but both are related to the same chain locking stretch. During
uniaxial tests,

λch√
N

=
1√
N

√
λ2 + 2/λ

3
(17)

To get L−1
(
λch/
√
N
)
→ ∞ we need λch/

√
N = 1 and λ2 + 2/λ = 3N so for large

λ we have a limit uniaxial stretch λlimu '
√

3N . In contrast, for equibiaxial tests

λch√
N

=
1√
N

√
2λ2 + 1/λ

3
(18)

so the limiting stretch is given by 2λ2+1/λ = 3N which for large λ is λlim e '
√

3N/2.
This gives the approximate relation for large stretches of

λlim e '
1√
2
λlimu (19)

For the pure shear test, λ2 + 1/λ = 3N and for large λ, λmin s '
√

3N , which is the
same limiting value obtained for uniaxial tests. This relation is qualitatively similar
to the one observed in the experimental tests from Treloar, see Fig. 11 in [32].
Noteworthy, the three-chain and four-chain models do not predict such differences.
Note for example that the three-chain Eq. (13) results in σ1 →∞ when λ1/

√
N ' 1,

so the limiting stretch, for large strains is λlim '
√
N for all cases (the locking stretch

of a single chain). In fact, the values of N obtained from tensile tests for the three
chain model are usually three times those of the Arruda-Boyce model, whereas the
values of G (the small strain shear modulus) are coincident (compare for example
Figs. 11 and 12 in [32]).

We mentioned that the Arruda-Boyce model is affine by construction, but a non-
affine extension can also be established, albeit it implies an increment in the number
of the model parameters [53, 54, 55]. The non-affinity has different relevance at dif-
ferent levels of deformation [2, 55]. The possibility of non-affinity is also considered
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in the well known micro-sphere model, which is not based on the eight chain model
but includes it as a particular case [56]. However, this model is substantially more
expensive (needs numerical integration in the microsphere) and includes more pa-
rameters to improve experimental fitting, but the improvements are not substantial
taking into account the significatively increased numerical effort [15]

To summarize the results explained in this section, we mention that the single
chain behavior obtained from statistical mechanics has some approximations which
may introduce relevant errors, and that the Arruda-Boyce model contains an ad-
equate 3D structure of the chains layout, specially regarding the accountability of
different locking strains for different tests, as observed in experiments.

3. Continuum behavior from the average chain behavior

The purpose of this section is to explain that, referring to quadratic strech mea-
sures, the average chain in a solid happens to be the same as that of the chains
of the 8-chain model, so the Arruda-Boyce cell gives just a handy representation
of the average deformation in the chains. However, considering that the behavior
of all chains is given by that of the average chain, we also show that there is no
need to make assumptions on the chain probability distribution to obtain the chain
behavior. Instead of inferring chain parameters G and N from macroscopic data,
we obtain the whole chain behavior from the same data in spline form through a
simple inverse procedure. The resulting model is more accurate than the Arruda-
Boyce model and the computational effort similar, since in the Arruda-Boyce model
an accurate evaluation of the inverse Langevin function also needs a similar spline
interpolation [46].

Consider a central node from which chains of average length r0 radiate in any
direction –see Fig. 1e. The undeformed length vector of a generic chain of average
length is

r0 = r0r̂0=

 r0 sinφ cos θ
r0 sinφ sin θ
r0 cosφ

 (20)

where φ and θ are the spherical angles. Then consider a deformation gradient X
and C = XTX. The deformed length of each chain is given by

r2ch (λ1, λ2, λ3; θ, φ) = r0 ·Cr0 (21)

= 1
4
r20
[
λ21α (θ, φ) + λ22β (θ, φ) + λ23γ (θ, φ)

]
(22)

where
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α (θ, φ) = 1 + cos 2θ − cos 2φ− 1
2

cos (2θ − 2φ)− 1
2

cos (2θ + 2φ) (23)

β (θ, φ) = 1− cos 2θ − cos 2φ+ 1
2

cos (2θ − 2φ) + 1
2

cos (2θ + 2φ) (24)

γ (θ, φ) = 2 + 2 cos 2φ (25)

For given macroscopic stretches λi, the stretch is obtained from this expression
as λ2ch (θ, φ) = r2ch (θ, φ) /r20. Now considering a density of chains ρ in the sphere
surface of average-chain length r0, we have that, assuming an isotropic (constant)
distribution, ρ = const, the average stretch of the chains may be computed as

λ̄2ch =

∫
S

r2ch (θ, φ) ρdS∫
S

r20ρdS

≡ 1

S

∫
S

r2ch (θ, φ)

r20
dS

=
1

S

∫ 2π

0

∫ π

0

λ2ch (θ, φ) r0 sinφdφdθ (26)

Inserting the previous expressions in the integral, we end up with the result

λ̄2ch =
λ21 + λ22 + λ23

3
=
I1
3

(27)

If we compare this result with Eq. (14), we get to the conclusion that part of the
success of the Arruda and Boyce model is due to the fact that the chains in their
model of Fig. 1c have the same stretch as an average (representative) chain in the
material.

In general, to keep the exposition intuitive and connected to the previous models,
we may assume that the chain energy is entropy based, although this hypothesis is
not needed as it will be apparent below. Then, the average chain has an entropy
s
(
λ̄ch
)
, so the stored energy is

Wch

(
λ̄ch
)

= −Ts
(
λ̄ch
)

(28)

The nominal stress in the chain during an isothermal event is

Pch
(
λ̄ch
)

=
dWch

(
λ̄ch
)

dλ̄ch
= −T

ds
(
λ̄ch
)

dλ̄ch
(29)
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A chain stability condition in the average chain may be set as dPch
(
λ̄ch
)
/dλ̄ch =

d2Wch

(
λ̄ch
)
/dλ̄2ch > 0, or d2s

(
λ̄ch
)
/dλ̄2ch < 0; a condition which is met by the inverse

Langevin function, see Eqs. (9) and (10). For a density of n chains per volume, the
energy density is W (λ1, λ2, λ3) = nWch

(
λ̄ch (λ1, λ2, λ3)

)
, and the Cauchy stresses in

the continuum are computed from Eq. (1)

σi − σj = λi
∂W (λ1, λ2, λ3)

∂λi
− λj

∂W (λ1, λ2, λ3)

∂λj

=

(
λi
∂λ̄ch
∂λi
− λj

∂λ̄ch
∂λj

)
nPch

(
λ̄ch
)

(30)

where using Eq. (27)
∂λ̄ch
∂λi

=
λi
λ̄ch

(31)

so

σi − σj = f
(
λ̄ch
) (
λ2i − λ2j

)
with f

(
λ̄ch
)

=
Pnch

(
λ̄ch
)

λ̄ch
(32)

where Pnch
(
λ̄ch
)

:= nPch
(
λ̄ch
)
. Note that this equation may be used in a general

state of deformation, from which upon calculation of the principal stretches, we have
f(λ̄ch) = (σi−σj)/(λ2i−λ2j). The function f

(
λ̄ch
)
/n has the nature of a second Piola-

Kirchhoff stress in a representative average chain. It is instructive to compare this
expression with Eq. (16). Both equations are identical if we make the identification

f
(
λ̄ch
)

= fAB (λch) :=
G

3

√
N

λch
L−1

(
λch√
N

)
(33)

Then, the present proposal can be viewed as an improved, more general formulation
of the Arruda-Boyce model. However, we remark that we arrived at Eq. (32) without
assuming a fictitious unit cell (as the hexaedron of the Arruda-Boyce model), but just
considering the average chain in the material. Furthermore, we neither considered
so far any chain behavior, nor configuration probability distribution. It is apparent
from the previous derivations that none of them are needed, and furthermore, the
same results would be obtained if a more general strain energy, not derived only from
entropy, were considered. Then, the resulting Eq. (32) leaves a general form of the
chain behavior though the function to be determined f

(
λ̄ch
)
. Whereas an analytical

derivation from experimental tests is not simple, a spline-based representation, as
performed in WYPiWYG hyperelasticity, is more straightforward, as we show below.
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4. Numerical determination of the average-chain behavior

4.1. Inverse procedure to determine data for building f(λch)

Considering from now on λ̄ch ≡ λch as in the Arruda-Boyce model, the energy
function proposed in the previous section gives

σi = −p+ λ2i f (λch) i = 1, 2, 3 with f (λch) =
1

λi

dW
dλi

(34)

In the phenomenological models of WYPiWYG hyperelasticity, the first deriva-
tive of the energy function is obtained from the tensile and compression branches of
uniaxial tests [14]. However, in this case, since the chains are always subjected to a
tensile force, f (λch) can be determined by means of a single test. For example, if a
tensile test is performed, σ2 = σ3 = 0 and σ1 6= 0. From the incompressibility condi-
tion and considering an isotropic behavior, we easily obtain that λ2 = λ3 = 1/

√
λ1.

After replacing these values in Eq. (32), the following relation between σ1 and λ1 is
obtained

σ1 = f (λch)

(
λ21 −

1

λ1

)
(35)

which can also be expressed in nominal stress

P1 =
σ1
λ1

= f (λch)

(
λ1 −

1

λ21

)
=

(
λ1 −

1

λ21

)
√
λ21 +

2

λ1

Pnch (λch) (36)

where recall Pnch (λch) = λchf (λch).
Considering that the test consists on stretching the material in z steps, z pairs of

data {λ̂u1i, P̂ u
1i} are known, with i = 1, ..., z. The hat decoration emphasizes the fact

of that the values are experimentally obtained and the superscript refers to the kind
of test, namely u: uniaxial, b: equibiaxial, and s: pure shear. From every {λ̂u1i, P̂ u

1i}
the corresponding values of f

(
λ̂uch

)
can be obtained from Eq. (36)

f̂ui

(
λ̂uchi

)
= P̂ u

1i

λ̂u1i − 1(
λ̂u1i

)2

−1

(37)
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Alternatively, we can also compute

Pnch

(
λ̂uchi

)
= P̂ u

1i

(
λ̂u1i

)2
(
λ̂u1i

)3
− 1

√√√√√(λ̂u1i)3 + 2

3λ̂u1i
(38)

Each value of f̂ui is associated with a certain λ̂u1i and therefore with the corre-
sponding value of λ̂uchi by Eq. (27). Thus, for every pair of data {λ̂u1i, P̂ u

1i} given by

the test, a pair of values {λ̂uchi , f̂
u
i } are obtained through Eqs. (14) and (37) and

accounting for the isotropic and incompressible conditions. Once all the z points,
{λ̂uchi , f̂

u
i }, i = 1, ..., z have been computed, they are interpolated by cubic splines so

that f (λch) is determined as a piecewise function of cubic polynomials. With this
continuous f (λch) function, the calculation of the Cauchy stress tensor is straight-
forward through Eq. (34) for any state of deformation, including the multiaxial
one.

The calculation of the f (λch) function should be independent of the test used
in its determination, since it contains in essence the first derivative of the energy
function, and this energy function is characteristic of the material and not of the
kind of test performed for its determination. Thus the same f (λch) function should
be obtained if an equibiaxial or pure shear tests are employed.

In the case of an equibiaxial test, P1 = P2 6= 0 and P3 = 0, with λ1 = λ2 and
λ3 = 1/λ21, considering an incompressible and isotropic material. For this case the
discrete values of f (λch) can be determined with —a similar expression applies for
Pnch

f̂ bi

(
λ̂bchi

)
= P̂ b

1i

λ̂b1i − 1(
λ̂b1i

)5

−1

In the case of pure shear λ1 = λ, λ2 = 1, λ3 = 1/λ1, P3 = 0 and P1 6= 0 are
known. In this test, the values of f (λch) for data {λ̂sh1i , P̂ sh

1i }, i = 1, ..., z are

f̂ si

(
λ̂schi

)
= P̂ s

1i

(
λ̂s1i −

1

1/λ̂s1i

)−1
To verify our procedure and to show that the Arruda-Boyce model can be re-

produced just as a particular case, we have determined the function from “in-silico”
tests performed on an Arruda-Boyce model with parameters N = 26.5 and G = 0.27.
In Figure 2a the results for {λ̂chi , f̂i} calculated from the virtual unaxial, equibiaxial
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Figure 2: Numerical (inverse) determination of f (λch) from “in-silico” tests performed over the
Arruda-Boyce model (a) Discrete values obtained from uniaxial, equibiaxial and pure shear tests.
(b) Cubic spline interpolation.

and pure shear tests are shown. It is clear that if λ̂uchi = λ̂bchi = λ̂schi then we obtain

the same average-chain response values f̂ui = f̂ bi = f̂ si and then the spline interpo-
lations for f (λch) are also the same regardless of the test employed, Figure 2b. As
above mentioned, this just means that, as it should be expected, the strain energy
function and its derivatives are a unique characteristic of the material and not of the
type of test.

Remarkably, it is easy to show that the obtained function from inverse analysis
is also (numerically speaking) the same as that of the Arruda-Boyce model, i.e. Eq.
(33) holds numerically at any arbitrary λch value for the spline-based function f (λch).
And this holds to any desired precision: larger precision just means that we would
need more spline pieces, but this is also the case in the evaluation of the inverse
Langevin function; see [46]. Of course, this check on the function f (λch) cannot be
performed in a real material, because we cannot test the real average-chain behavior
of the network in such cases.

4.2. Verification of the WYPiWYG model

In order to validate the procedure used to determine the average chain behavior,
we assume that the Arruda-Boyce model is an actual material; i.e. we assume that
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this model represents exactly the behavior of a given material. Then, using both the
Arruda-Boyce model and our WYPiWYG model, we show in Fig. 3 that the predic-
tions for a uniaxial, an equibiaxial and a pure shear test match exactly (numerically
speaking), as it should be expected.

As a further interesting check, we show now that even if the material is under a
general state of deformation, all the stress components are also identical. The im-
portance of this example lies in the fact that during general, non-homogeneous finite
element simulations of a material, each stress integration point is under a different
deformation gradient. Then, if all the stresses match, not only the solution of both
models will be the same, also the equilibrium iterations will match! [19]. Further-
more, the computational cost of both models is similar because of the approximants
needed for an accurate evaluation of the Inverse Langevin function. Consider the
following deformation gradient as a function of a scalar parameter γ (to facilitate
plots)

X(γ) =

 1 + γ γ 0
0 1 + γ 0

0 0 (1 + γ)−2


The same material parameters for the Arruda-Boyce model and also the same

f (λch) for the WYPiWYG model, calculated previously, are used in the present sim-
ulations. In Figure 4, the results of different components of the Cauchy stress tensor,
calculated both using the Arruda-Boyce and the present WYPiWYG approach are
depicted as a function of the parameter γ. Clearly, it is observed that, as expected,
WYPiWYG hyperelasticity exactly mimics the eight chain model results.

5. Determination of f (λch) from real experimental data

The obvious purpose of our approach is not to reproduce an analytical model but
to obtain a model capable of reproducing the behavior of real materials. To show
the applicability to real materials, we choose again Treloar’s rubber, so the well-
known tests by Treloar on that material are adopted [37]. These tests were also used
by Arruda and Boyce to validate their eight chain model. Specifically, the authors
calculated their model parameters fitting the predictions given by the eight chain
model with the experimental uniaxial curve of the Treloar tests and then reproduced
the other two tests, biaxial and pure shear, with the parameters calculated from the
uniaxial one [32]. In our case, we determine functions f (λch) from the three tests
performed by Treloar.

The procedure is the same shown in Section 4.1. However, since Treloar’s tests
are real experiments over a real material, the data {λ̂u1i, P̂ u

1i} obtained by Treloar
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Figure 3: Results of the tests performed by means of the eight chain model and WYPiWYG model
predictions. (a) Uniaxial test. (b) Equibiaxial test. (c) Pure shear test.
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Figure 4: Cauchy stress tensor components for a general case of loading. Predictions given by the
eight chain model and the WYPiWYG model using N = 26.5, G = 0.27 and the function f (λch).
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are not a smooth curve from which a realistic smooth f (λch) may be determined.
In order to obtain a smooth curve, a least squares approximation of the set of data
{λ̂chi, f̂i} is performed. In order to easily impose smoothness or stability conditions,
we will use the periodic B-spline representation of cubic splines.

5.1. B-spline representation

B-splines are a mathematical tool widely used in the CAD industry. Based on
Bézier curves, B-splines characterize and reproduce numerically smooth curves, sur-
faces and volumes [57]. B-splines of order k are defined through a set of basis

function, N
(k)
i , and a set of vertices Bi which define a control polygon which plays

the role of the B-spline hull. The basis functions are k − 1 degree polynomials and
are determined in a parameterized space from a knot vector. In our case Bi are the y
coordinates of the vertices, but in general they can also be abscissae. The parametric
form of a B-spline curve is

P (t) =
n∑
i=1

N
(k)
i (t)Bi = N (t)B with tmin ≤ tmax and 2 ≤ k ≤ n (39)

where n is the number of vertices of the control polygon and the last term is the
B-spline expressed in matrix notation. The basis functions have the partition of the
unity property and are defined by the Cox-de Boor recursive formula. This formula
determines every N

(k)
i by linear interpolation of lower order basis functions. For

more details see [57, 58].
Periodic B-splines are defined in a parametric space in which a periodic and

uniform knot vector is defined by ti = i − 1 with i = 1, ..., k + n. This knot vector
gives periodic basis functions characterized by N

(k)
i−1 (ti−1) = N

(k)
i (ti) = N

(k)
i+1 (ti+1),

see Fig. 5. From this figure it is easy to deduce that the partition of unity condition
is not obtained at the ends of the knot vector, specifically in the first and last k − 1
segments so the usable parameter range is restricted to k−1 ≤ t ≤ n+1 and periodic
B-splines span m = n − k + 1 segments. Since the periodic N

(k)
i basis function is

repeated in each segment, the corresponding basis functions can be re-parameterized
to a coordinate 0 ≤ ξ ≤ 1 in every curve element, and this same parameter may be
used to normalize equispaced coordinates. Since every function spans k segments,
the curve can be formulated

Pj (ξ) =
k−1∑
i=0

Ni+1 (ξ)Bj+i (40)

where j subindex refers to the j-curve segment and the new parameter is ξ =
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(t− tj) / (tj+1 − tj) = (x− xj) / (xj+1 − xj). Note that every segment is labeled
with the index of the first coordinate of the corresponding interval [tj, tj+1].

For the periodic cubic B-splines (k = 4) that we use, we can write the matrix
notation

Pj (ξ) =
k−1=3∑
i=0

Ni+1 (ξ)Bj+i =
[
N1 (ξ) N2 (ξ) N3 (ξ) N4 (ξ)

] 
Bj

Bj+1

Bj+2

Bj+3

 (41)

=
[
ξ3 ξ2 ξ 1

] 1

6


−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0




Bj

Bj+1

Bj+2

Bj+3

 (42)

The functions Ni (ξ) are connected to the usual cubic splines using Eq. (42), so
they are just a more convenient representation of the same curve. Some additional
considerations are needed to obtain the partition of the unity in all the range of
interest, which along the corresponding index numbering are summarized in Fig. 5.

5.2. Determination of a smoothed f (λch) curve

In order to obtain a smoothed curve of f (λch) a penalized least squares method is
performed. For that, the vertices of the periodic B-splines that best fit the experimen-
tal results will be determined. In the problem at hand, the pairs of data {λ̂1i, P̂1i} are
taken from the corresponding Treloar’s experiment test, with i = 1, ..., z. Then the

corresponding λ̂chi and f̂i

(
λ̂chi

)
are calculated, see Eqs. (27) and (36). These results

can be arranged in a matrix form as x̂ =
[
λ̂ch1, ..., λ̂chz

]T
, and ŷ (x̂) =

[
f̂1, ..., f̂z

]T
.

The vertices of the control polygon that support the final continuous f (λch)
curve are determined as follows. Initially, the number of the vertices n and their

abscisae are chosen within the interval x′ =
[
min

(
λ̂ch1i

)
,max

(
λ̂ch1i

)]
. The goal is

to calculate the corresponding ordinates of the B-spline vertices, B = [B1, ..., Bn]T ,
that best fit the experimental data set {λ̂chi, f̂i}. It is worth noting that dim (B) =
n < z = dim (x̂). Once B has been obtained, the continuous f (λch) is expressed as
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Figure 5: Periodic B-splines basis functions and B-spline representation of a curve [24]. Note that
periodic representation is obtained using equally spaced knots, and to have partition of unity, two
knots are discarded at each end. Spatially periodic functions are obtained with equal intervals. For
a domain given by segments m = 1, ..., 8, two extra vertices must be calculated (so n = 11). This
need is equivalent to the need for boundary conditions in the traditional cubic spline representation.
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f (λch) ≡ y (x) = N (ξ (x ∈ [xj, xj+1]))B (43)

=
[
... 0 N1 (ξ) N2 (ξ) N3 (ξ) N4 (ξ) 0 ...

]


...
Bj

Bj+1

Bj+2

Bj+3
...


(44)

Since z values of x̂i and ŷi are available, Eq. (43) can be expressed in matrix
form as

y (x̂) = N (ξ (x̂))B (45)

where N (ξ (x̂)) is the matrix of basis function evaluations with dimensions z × n,
each row corresponding to a value of x̂i, and with just four contiguous non-zeros at
the locations corresponding to the vertices of the segment at which x̂i belongs. The
leasts square objetive function to minimize is

g (B) =
1

2
(y (x̂)− ŷ (x̂))T W (y (x̂)− ŷ (x̂)) (46)

whereW is a z×z diagonal matrix containing weights values to give more importance
to some data of the experimental test if considered. For example, we can enforce
that the f (λch) curve passes through certain points. The least square minimization
problem is

min
B
{g (B)} = min

B

{
1

2
BTNT (x̂)WN (x̂)B −BTNT (x̂)Wŷ (x̂)

}
Choosing a number of vertices n less than the number of experimental data,

gives already some smoothness. However, smoothness of the curve is better obtained
by a penalty on the curvature. To do so, we adopt the simple and computationally
efficient idea of Eilers and Marx [59]. They use the properties of the hull in controlling
the curvature of the curve, so the penalty is performed using the following finite
differences of the coefficients of adjacent B-splines
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D
(1)
j =

Bj+1 −Bj

x′j+1 − x′j
=

1

h
(Bj+1 −Bj) (47)

D
(2)
j =

D
(1)
j+1 −D

(1)
j

h
=

1

h2
(Bj+2 − 2Bj+1 +Bj)

being D
(1)
j and D

(2)
j the approximations of the first and the second derivative respec-

tively. Thus, the penalty function is defined as

BTD(2)TΩD(2)B (48)

where D(2) is a [(n− 2)× n] matrix

D(2) =
1

h


1 −2 1 0 0 0 0 ... 0
0 1 −2 1 0 0 0 ... 0
0 0 1 −2 1 0 0 ... 0
... ... ... ... ... ... ... ... ...
0 0 ... 0 0 1 −2 1 0
0 0 ... ... 0 0 1 −2 1

 (49)

and Ω is a diagonal matrix that we introduce to play a similar role as the weights
matrix W but with the second derivative. For example, to guarantee increasing
curves, the terms of Ω are increased at those vertices where D

(1)
j < 0. This increment

is important, for example to guarantee stability of the obtained material. If we
assume that the average chain gives an accurate description, then Eq. (9) requires
that an increase in stretch of a chain should increase the tensile force and the nominal
stress, Eq. (10). See discussion after Eq. (29). Then, stability in this sense can be
obtained fitting Pnch (λch) and requiring dPnch/dλch > 0. This requirement may

be enforced increasing the values of Ωj at the locations where D
(1)
j < 0 because

overall, the curve fulfills the requirement. This smoothing procedure is similar to
that given in Ref. [24], but since in this case only a test is involved and there is a
clear micromechanical connection, the procedure results to be much simpler.

Finally, the (quadratic) objective function to be minimized is

min
B

{
1

2
BTNT (x̂)WN (x̂)B −BTNT (x̂)Wŷ (x̂) +BTD(2)TΩD(2)B

}
(50)

which results in a problem whose solution is immediately obtained solving a linear
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system of equations; see [24]. With this method, a smoothed f (λch) curve is obtained
for the range encompassed by the test. This range does not usually include the full
stretching of a chain, because experimental data does not either. In order to account
for the full extensibility of the chain the following rational function is considered for

λch ≥ max
(
λ̂ch

)
fr (λch) =

a+ bλch
c− λ2ch

(51)

The constants a and b are determined enforcing C1 continuity at the end of
the continous f (λch) determined by Eq. (43). The last parameter, c =

√
λlock, is

obtained considering an asymptote in the experimental curve
(
λ̂1i, P̂1i

)
with the

meaning of the value of the stretch λlim 1 > max
(
λ̂1

)
, and therefore of λlock >

max
(
λ̂ch

)
, which produces the maximum extensibility of the chain. If max

(
λ̂1

)
is

far away of the limit value, a good estimation for c is obtained visually from the
discussion after Eq. (17). Otherwise, an automatic procedure is to enforce value and
first and second derivatives at the continuity point (so all constants are determined
directly from experimental data). In the code in the Appendix we leave this open.

5.3. Computational examples
5.3.1. Uniaxial test

In Figure 6a, the results corresponding to the determination of f (λch) from the
uniaxial test by Treloar are shown. Using this function, the results obtained for
predicting uniaxial, biaxial and pure shear tests, in terms of the nominal stress, P1,
versus λ1 stretch, are depicted in Figures 6b, 6c and 6d, respectively. It is shown that
both uniaxial and shear tests are predicted quite well, whereas for the equibiaxial
tests some larger discrepancies are observed.

5.3.2. Biaxial test

The f (λch) curve obtained from the experimental results given by the equibiaxial
test is depicted in 7a. The WYPiWYG predictions using this f (λch) curve as well as
the Treloar’s experimental results are depicted in Figures 7b, 7c and 7d. Relative to
the WYPiWYG predictions, the corresponding to the biaxial test improves greatly
whereas for the uniaxial and pure shear tests, the model overestimates the nominal
stress.

5.3.3. Pure shear test

The function f (λch) determined by the experimental results of the pure shear
test developed by Treolar is shown in 8a. The Treolar’s experimental results for the
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Figure 6: WYPiWYG model prediction, calculating f (λch) for the uniaxial case, and experimental
test results given by Treloar. (a)f (λch) versus λch. (b) Uniaxial test. (c) Equibiaxial test. (d)
Pure shear test.
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Figure 7: WYPiWYG model prediction, calculating f (λch) for the equibiaxial case, and experi-
mental test results given by Treloar. (a)f (λch) versus λch. (b) Uniaxial test. (c) Equibiaxial test.
(d) Pure shear test.
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three tests and the WYPiWYG predictions using the f (λch) curve form pure shear
are also shown in Figures 8b, 8c and 8d. The WYPiWIG model predictions are quite
similar to the ones obtained with the f (λch) calculated from the uniaxial test results,
although the pure shear predictions are improved.

5.4. Discussion about the determination of the f (λch) function

In Figure 9, the f (λch) curves obtained from uniaxial, equibiaxial and pure shear
experimental tests are depicted. Unlike Fig. 2, the three functions are not coinci-
dent. The difference is that in Fig. 2 the three f (λch) functions were calculated
from in-silico experiments over the 8-chain model, whereas in Figure 9 f (λch) has
been determined from real experimental test results. This explains why different
predictions are obtained depending on the chosen test to determine f (λch).

Since the strain energy function does not depend on the test but on the material,
f (λch) should be unique, so additional experimental data from additional tests should
just increase the number of experimental points with which the unique function is
determined. To do so we apply the same procedure of Section 5.2 but just considering
simultaneously all the points of the three experimental tests developed by Treloar.
In Figure 10a, the experimental data and the f (λch) function calculated from all
these data are depicted. The WYPiWYG predictions computed with this f (λch) for
the three tests are shown in Figs. 10b, 10c and 10d together with the corresponding
experimental test results. As the predictions show, accurate results are obtained
in the case of tensile and pure shear cases. In the equibiaxial test the model keeps
underestimating the stress although the prediction is improved compared to the ones
using f (λch) only from uniaxial or pure shear results. Obviously we could increase
the fitting on the equibiaxial tests by just increasing the weights Wi of those points.
However, it is apparent from the data in Fig. 10a that a simultaneous fit of the
three experiments is impossible using a model based just on average chain behavior.
This observation is also common to the predictions of the Arruda-Boyce model. To
understand the reasons for this discrepancy, we plot in Fig. 11 the ratios of the
second and first invariants I2/I1 for the three tests. Noteworthy, the curve I2/I1
is remarkably different during the equibiaxial test, in which a clearly nonconstant
evolution is observed. Both our model and the model from Arruda and Boyce use only
the first invariant I1. Then, the behavior of the material is characterized as a function
of the first invariant, i.e. W (I1), but a general expression for isotropic, incompressible
materials is of the typeW (I1, I2), where I2 must come from non-average chain stretch
terms, which are different in the tensile and equibiaxial tests. The experiments of
Rivlin and Sounders and Obata et al (see discussion in Chapter 10 of [2]) show that
the second invariant may have a relevant contribution. In our model, as well as in the
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Figure 8: WYPiWYG model prediction, calculating f (λch) for the pure shear case, and experi-
mental test results given by Treloar. (a)f (λch) versus λch. (b) Uniaxial test. (c) Equibiaxial test.
(d) Pure shear test.
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Figure 9: The three f (λch) functions calculated from uniaxial, equibiaxial and pure shear experi-
mental results.

Arruda-Boyce model, that contribution may be embed in that of the first invariant
if the relation between both invariants remains approximately constant, but not
when there are large variations of I2/I1 because then, two independent variables are
needed. As a summary, the deviations of the predictions shown for the equibiaxial
test (or conversely in the other two tests) may come from a relative change in the
contributions of the first and second invariants in the stored energy, which cannot be
accounted for by a model using a single independent variable (name it average-chain
stretch or first invariant).

6. Conclusions

In this paper we present an inverse procedure to determine the function character-
izing the behavior of an average chain in polymers. This function is then employed in
a microstructure-based WYPiWYG hyperelastic model. In characterizing the chain
behavior, we do not employ any assumed probability distribution function (or even
an entropic origin of such behavior). However, the average-chain stretch of the model
results to be the same as the stretch present in each of the chains of the 8-chain model
from Arruda and Boyce. The practical importance of the model is that it can de-
termine, from micromechanics, the stored energy of a solid when one single test is
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Figure 10: WYPiWYG model predictions using a f (λch) function averaged from all the experi-
mental test data given by Treloar. (a)f (λch) versus λch. (b) Uniaxial test. (c) Equibiaxial test.
(d) Pure shear test.

31



2 4 6 8
λ [−]

0

10

20

30

I 2
C

I 1
C

[−
]

Comparison of the relation I2CI1C
Uniaxial test
Biaxial test
Pure Shear test

Figure 11: Evolution of the ratio I2/I1 of the invariants of C against the stretch of the experiment
during uniaxial, equibiaxial and pure shear.

available. Its implementation in a finite element code is straightforward and its han-
dling at user level is easy and simple. If more tests are available, the experimental
data from those tests may be immediately used to increase the information for ob-
taining the chain behavior. The model is also capable of replicating the behavior of
the Arruda-Boyce model under any loading condition just employing its macroscopic
behavior during a tensile test. However, the proposed model is more flexible than
the Arruda-Boyce model in fitting experimental results at the same computational
cost than their model.

An aspect in common also with the Arruda-Boyce model is that if both models
are characterized using a tensile test, the predictions for the equibiaxial test are
not as accurate. The reason seems to be that both models result in stored energy
functions of the first invariant. The incorporation of the second invariant through
non-averaged micromechanical terms is ongoing work.

Finally, we include the code in Julia for the model and scripts to obtain most
figures of the paper. These functions may be used also in future nonlinear finite
element programs developed in the promising language Julia.
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[21] M. Latorre, F. J. Montáns, What-you-prescribe-is-what-you-get orthotropic hy-
perelasticity, Computational Mechanics 53 (6) (2014) 1279–1298.
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Appendix A. Description of the Julia code for the model and for simula-
tions

In this Appendix we give a brief description of the files included as additional
material. The code has been verified in Julia version 1.0.1 (2018-09-29).

The compressed file given with the paper contains two folders (Pictures and
TesData), two Julia scripts (arruda wypiwyg.jl and arruda wypiwyg treloar.jl)
and two modules (MathematicsToolsWYPIWYG.jl and WYPIWYGabTools.jl). The
modules contain all the functions required for the execution of the scripts.

When the script arruda wypiwyg.jl is executed all the figures collected in Sec-
tion 4.2 are generated and saved in a subfolder of the Pictures folder. When the
script arruda wypiwyg treloar.jl is executed all the figures of Section 5.3 are gen-
erated and saved in another subfolder of the Pictures folder. The experimental data
used for Treloar’s tests [37] are available in the folder TestData in .txt format.

Appendix A.1. Functions used in arruda wypiwyg.jl

arrboy(G,Nch, ILF, λu, f lagTest = 1)
Arruda-Boyce model.
Given the material parameters and the Inverse Langevin function returns the Cauchy stress (σu)
corresponding to given λu computed with the 8-chain model
Input: λu :: Array{Float64, 1}: Test stretches.

ILF :: Function: Inverse Langevin function
λu :: Array{Float64, 1}: stretches

Optional: flagTest :: Int64: Flag specifying uniaxial (= 1), biaxial (= 2) or pure shear (= 3) test
Output: σu :: Array{Float64, 1}: Cauchy stress for λu computed with the 8-chain model

ffromModel(λu, σPu, f lagTest, f lagStress = 1)

This function interpolates the points
{
λ̂ci, f̂ci

}
, which have been previously computed from{

λ̂ui, σ̂Pui

}
using the function ffromtests points

Input: G,Nch :: Float64 : Material parameters.
σPu :: Array{Float64, 1}: Cauchy or Nominal stress corresponding to λu.
flagTest :: Int64: Flag which specifies uniaxial (= 1), biaxial (= 2) or pure shear (= 3) test

Optional: flagStress :: Int64: Specifies whether the stress introduced is Cauchy (1) or nominal (2)

Output: f :: Function: Cubic spline function f(λch) from
(
λ̂ui, σ̂Pui

)
for test indicated by flagTest
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ffromtests points(λu, σPu, f lagTest, f lagStress = 1)

Computes the points
{
λ̂ci, f̂ci

}
from

{
λ̂ui, σ̂Pui

}
for a specified test.

Input: λu :: Array{Float64, 1}: Test stretches
σPu :: Array{Float64, 1}: Cauchy or nominal stress corresponding to λu
flagTest :: Int64: Flag specifying uniaxial (= 1), biaxial (= 2) or pure shear (= 3) test

Optional: flagStress :: Int64: Specifies whether the stress introduced is Cauchy (1) or nominal (2)

Output: λ̂ci :: Array{Float64, 1}: Points of λch corresponding to λ̂ui (test stretches)

f̂ ci :: Array{Float64, 1}: Values of f(λch) at λ̂ci from λ̂ui, and σ̂Pui (test points)

csplinef(x, y, EndC1 = 2, EC1 = 0, EndC2 = 2, EC2 = 0)
Returns a cubic spline which interpolates the points x and y for given boundary conditions

Input: x :: Array{Float64, 1}: Abcisae vector, increasing
y :: Array{Float64, 1}: Ordinates corresponding to x.

Optional: EndC1 :: Int64: Initial boundary condition is first (= 1) or second (= 2, def) derivative
EndC2 :: Int64: Final boundary condition is first (= 1) or second (= 2, def) derivative
EC1 :: Float64: Value of prescribed bound. conf. at the beginning (0 by default).
EC2 :: Float64: Value of prescribed bound. conf. at the end (0 by default).

Output:
ycs :: Function: Local cubic spline
(its input has to be a Float64. If vector evaluation is required, broadcasting can be used)

sigma wypiwyg(λu, fch, f lagTest = 1)
Returns the Cauchy stress corresponding to λu for the flagTest specified.

Input: λu :: Array{Float64, 1}: Stretches at which the Cauchy stress is to be determined
σPu :: Array{Float64, 1}: Cauchy or nominal stress corresponding to λu

Optional: flagTest :: Int64: Flag which specifies uniaxial (= 1), biaxial (= 2) or pure shear (= 3) test.
Output: σw :: Array{Float64, 1}: Cauchy stress computed using f(λch)

Appendix A.2. Functions used in arruda wypiwyg treloar.jl

readCurve(file)
Returns two vectors x and y containing the first and the second column contained in file file

Input: file :: String: A String with the name of the data file
The data file has two columns: (1) stretch data and (2) stress data

Output: x :: Array{Float64, 1}: Data from first column of file (stretches)
y :: Array{Float64, 1}: Data from second column of file (stress)
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ffromtests(λu, σPu, λublock, f lagTest, f lagStress = 1)
Returns the function f(λch) using the function rational joint

The function f(λch) is a composition of a B-spline and a rational function.

Bspline part: Computed with the function bsplinefdf from the points
{
λ̂ci, f̂ci

}
,

which have been previously obtained from
{
λ̂ui, σ̂Pui

}
using the function ffromtests points.

Rational part: Rational function with C1continuity with the B-spline at last exp. point
{
λ̂cend, f̂cend

}
.

The rational function has its assymptote at λlock
Input: λu :: Array{Float64, 1}: Test stretches

σPu :: Array{Float64, 1}: Cauchy or nominal stress corresponding to λu
flagTest :: Int64: Flag specifying uniaxial (= 1), biaxial (= 2) or pure shear (= 3) test

Optional: flagStress :: Int64: Specifies whether the stress introduced is Cauchy (1) or nominal (2)

Output: f :: Function: function f(λch) computed from
{
λ̂ui, σ̂Pui

}
ffromtests(λu, σPu, λublock, f lagTest, f lagStress = 1)

Computes the points {λ̂ci, f̂ci} from {λ̂ui, σ̂Pui} for a specified test
Input: λu :: Array{Float64, 1}: Test stretches.

σPu :: Array{Float64, 1}: Cauchy or nominal stress corresponding to λu
flagTest :: Int64: Flag specifying uniaxial (= 1), biaxial (= 2) or pure shear (= 3) test

Optional: flagStress :: Int64: Specifies whether the stress introduced is Cauchy (1) or nominal (2)

Output: λ̂ci :: Array{Float64, 1}: Points of λch corresponding to each of the λ̂ui (test stretches).

f̂ ci :: Array{Float64, 1}: Evaluation of f(λch) at λ̂ci

rational joint(x, y, xl, xli, cond1 = 3, cond2 = 1)
Returns a piecewise function formed of a B-spline and a rational function.
Bspline part: Computed with the function bsplinefdf from the points (x̂i, ŷi).

It uses the conditions cond1 and cond2 and a number of vertices specified by the user
Rational part: with C1continuity with B-spline at {x̂l, ŷl} and assymptote at xli.
Input: x :: Array{Float64, 1}: Abcisae vector, increasing

y :: Array{Float64, 1}: Ordinates corresponding to x.
xl :: Float64: Connecting location between B-spline and rational function
xli :: Float64: Location of the asymptote

Optional: cond1 :: Int64: Flag used to call bsplinefdf (value 3 by default)
cond2 :: Int64: Flag used to call bsplinefdf (value 1 by default)

Output: rational joint :: Function: Piecewise function
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bsplinefdf(x, y, cond1 = 1, cond2 = 1, nvertices = 11)
Returns B-spline and its derivative computed from {x, y} points with smoothing conditions

Input: x :: Array{Float64, 1}: Abcisae vector, increasing
y :: Array{Float64, 1}: Ordinates corresponding to x.
xl :: Float64: Connecting location between B-spline and rational function
xli :: Float64: Location of the asymptote

Optional: cond1 :: Int64:Flag used to determine the point weights matrix W
cond1 = 1 (Default). Penalizes all the vertices with a value

and increases penalization at the beginning and at the end.
cond1 = 2. No penalization
cond1 = 3 (Default). Same as cond1 = 1 but also penalizes

more those vertices in which 1st derivative is negative
cond2 :: Int64: Flag used to determine the penalization weights matrix Ω

cond2 = 1. Increased penalization only at the end
cond2 = 2. Increased penalization at the beginning and at the end
cond2 = 3. Increased penalization only at the beginning
cond2 = 4. Uniform penalization

nvertices = 11: Number of vertices of the control polygon
Output: fbs :: Function: B-spline function

dfbs :: Function: B-spline derivative function (for constitutive tangents)
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