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ON THE JOINT DISTRIBUTIONS OF SUCCESSION AND EULERIAN

STATISTICS

SHI-MEI MA, HAO QI, JEAN YEH, AND YEONG-NAN YEH

Abstract. The motivation of this paper is to investigate the joint distribution of succession and

Eulerian statistics. We first investigate the enumerators for the joint distribution of descents,

big ascents and successions over all permutations in the symmetric group. As an generalization a

result of Diaconis-Evans-Graham (Adv. in Appl. Math., 61 (2014), 102–124), we show that two

triple set-valued statistics of permutations are equidistributed on symmetric groups. We then

introduce the definition of proper left-to-right minimum, and discover that the joint distribution

of the succession and proper left-to-right minimum statistics over permutations is a symmetric

distribution. In the final part, we discuss the relationship between the fix and cyc (p, q)-Eulerian

polynomials and the joint distribution of succession and Eulerian-type statistics. In particular,

we give a concise derivation of the generating function for a six-variable Eulerian polynomials.
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1. Introduction

Let Sn denote the symmetric group of all permutations of [n], where [n] = {1, 2, . . . , n}. As

usual, we write π = π(1)π(2) · · · π(n) ∈ Sn. A fixed point of π ∈ Sn is an index k ∈ [n] such
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that π(k) = k. Let fix (π) be the number of fixed points of π. We say that π is a derangement

if it has no fixed points. Denote by Dn the set of all derangements in Sn, and let dn = #Dn be

the derangement number. It is well known that

dn = n!

n∑

i=0

(−1)i

i!
. (1)

Derangements have been studied from various perspectives, see [14, 44] for surveys on this

topic. For example, Désarménien-Wachs [14] constructed a bijection between descent classes of

derangements and descent classes of desarrangements (a desarrangement is a permutation whose

first ascent is even). Recently, Gustafsson-Solus [22] investigated the geometric interpretation

of derangement polynomials.

The enumeration of finite sequences according to the number of successions was initiated by

Kaplansky and Riordan in the 1940s [24, 34]. There are several variants of successions and they

have been extensively studied on various structures, including permutations, increasing trees, set

partitions, compositions and integer partitions, see [6, 15, 17, 32, 42] for instances. A succession

of π ∈ Sn is an index k ∈ [n− 1] such that π(k + 1) = π(k) + 1, and π(k) is called a succession

value. Let suc (π) be the number of successions of π. The joint distribution of ascents and

successions over permutations has been explored by Roselle [35] and Dymacek-Roselle [17]. Let

qn = #{π ∈ Sn : suc (π) = 0}. According to [35, Eq (3.8)], one has

qn = dn + dn−1. (2)

Following [7], a relative derangement on [n] is a permutation in Sn with no successions. Using

the principle of inclusion and exclusion, Brualdi [7, Theorem 6.5.1] independently found that

qn = (n− 1)!
n∑

i=0

(−1)i(n− i)

i!
.

Combining this explicit formula with (1), he rediscovered the identity (2). A combinatorial

interpretation of (2) has been obtained by Chen [9] by introducing skew derangements.

Recently, Diaconis-Evans-Graham [15] found that for all I ⊆ [n− 1], one has

#{π ∈ Sn : {k ∈ [n− 1] : π(k + 1) = π(k) + 1} = I}
= #{π ∈ Sn : {k ∈ [n− 1] : π(k) = k} = I}.

(3)

They presented three different proofs of it, including an enumerative proof, a Markov chain

proof and a bijective proof. In [6], Brenti-Marietti extended the notion of succession for ordinary

permutations to adjacent ascent of colored permutations.

The organization of this paper is as follows. In Section 2, we collect the definitions and

preliminary results that will be used in the sequel. In Section 3, we investigate the enumerators

for the joint distribution of descents, big ascents and successions over all permutations in the

symmetric group. As an generalization of (3), we show that two triple set-valued statistics

of permutations are equidistributed. Then we introduce the definition of proper left-to-right

minimum. Let plrmin (π) and cyc (π) denote the numbers of proper left-to-right minima and

cycles of π, respectively. In Section 4, we study the relationship between the fix and cyc (p, q)-

Eulerian polynomials and the joint distribution of succession and Eulerian statistics. As an



ON THE JOINT DISTRIBUTIONS OF SUCCESSION AND EULERIAN STATISTICS 3

illustration, a special case of Theorem 22 says that

∑

π∈Sn+1

ssuc (π)tplrmin (π) =
∑

π∈Sn

(
t+ s

2

)fix (π)

2cyc (π),

which implies that (suc , plrmin ) is a symmetric distribution over permutations.

2. Notation and preliminary results

There has been much work on the symmetric expansions of polynomials, see [1, 26, 29, 31]

and references therein. Let f(x) =
∑n

i=0 fix
i be a polynomial with real coefficients. If f(x) is

symmetric, i.e., fi = fn−i for all indices 0 6 i 6 n, then it can be expanded uniquely as

f(x) =

⌊n/2⌋∑

k=0

γkx
k(1 + x)n−2k,

and it is said to be γ-positive if γk > 0 for all 0 6 k 6 ⌊n/2⌋. We say that the polynomial f(x)

is spiral if

fn 6 f0 6 fn−1 6 f1 6 · · · 6 f⌊n/2⌋.

and it is said to be alternatingly increasing if

f0 6 fn 6 f1 6 fn−1 6 · · · 6 f⌊(n+1)/2⌋.

If f(x) is spiral and deg f(x) = n, then xnf(1/x) is alternatingly increasing, and vice versa.

From [2, Remark 2.5], we see that f(x) has a unique decomposition f(x) = a(x) + xb(x), where

a(x) =
f(x)− xn+1f(1/x)

1− x
, b(x) =

xnf(1/x)− f(x)

1− x
. (4)

When f(0) 6= 0, we have deg a(x) = n and deg b(x) 6 n − 1. Note that a(x) and b(x) are both

symmetric. We call the ordered pair of polynomials (a(x), b(x)) the symmetric decomposition of

f(x). Brändén-Solus [3] pointed out that f(x) is alternatingly increasing if and only if the pair

of polynomials in its symmetric decomposition are both unimodal and have only nonnegative

coefficients. Following [29, Definition 1.2], the polynomial f(x) is said to be bi-γ-positive if

a(x) and b(x) are both γ-positive. Thus bi-γ-positivity is stronger than alternatingly increasing

property, see [1, 4, 23, 29] for the recent progress on this subject. In this paper, we shall present

several new γ-positive or bi-γ-positive polynomials.

Let π ∈ Sn. A descent (resp. ascent, excedance) of π is an index i ∈ [n − 1] such that

π(i) > π(i + 1) (resp. π(i) < π(i + 1), π(i) > i). Let des (π) (resp. asc (π), exc (π)) denote

the number of descents (resp. ascents, excedances) of π. It is well known that descents, ascents

and excedances are equidistributed over the symmetric groups, and their common enumerative

polynomials are the Eulerian polynomials An(x), i.e.,

An(x) =
∑

π∈Sn

xdes (π) =
∑

π∈Sn

xasc (π) =
∑

π∈Sn

xexc (π).

The derangement polynomials are defined by

dn(x) =
∑

π∈Dn

xexc (π).



4 S.-M. MA, H. QI, J. YEH, AND Y.-N. YEH

In the theory of subdivisions of simplicial complexes, the Eulerian polynomial An(x) arises as

the h-polynomial of the barycentric subdivision of a simplex and derangement polynomial dn(x)

as its local h-polynomial, see [22, 40] for details.

Below are the first few Eulerian and derangement polynomials:

A0(x) = A1(x) = 1, A2(x) = 1 + x, A3(x) = 1 + 4x+ x2, A4(x) = 1 + 11x+ 11x2 + x3;

d0(x) = 1, d1(x) = 0, d2(x) = x, d3(x) = x+ x2, d4(x) = x+ 7x2 + x3.

The generating function of dn(x) is given as follows (see [5, Proposition 6]):

d(x; z) =
∞∑

n=0

dn(x)
zn

n!
=

1− x

exz − xez
. (5)

We say that an index i is a double descent of π ∈ Sn if π(i − 1) > π(i) > π(i + 1), where

π(0) = π(n + 1) = 0. Foata-Schützenberger [18] discovered the following remarkable result:

An(x) =

⌊(n−1)/2⌋∑

i=0

γn,ix
i(1 + x)n−1−2i, (6)

where γn,i is the number of permutations in Sn with i descents and have no double descents.

Let cda (π) = #{i : π−1(i) < i < π(i)} be the number of cycle double ascents of π. Using the

theory of continued fractions, Shin-Zeng [37, Theorem 11] obtained that

dn(x, q) =
∑

π∈Dn

xexc (π)qcyc (π) =

⌊n/2⌋∑

k=1

∑

π∈Dn,k

qcyc (π)xk(1 + x)n−2k. (7)

where Dn,k = {π ∈ Sn : fix (π) = 0, cda (π) = 0, exc (π) = k}. When q = 1, it follows from (7)

that dn(x) is γ-positive.

Let P (n, r, s) be the number of permutations inSn with r ascents and s successions. Roselle [35,

Eq. (2.1)] proved that

P (n, r, s) =

(
n− 1

s

)
P (n− s, r − s, 0).

Let Qn be the set of permutations in Sn with no successions. Let P ∗
n(x) =

∑n−1
r=1 P

∗(n, r)xr,

where P ∗(n, r) = #{π ∈ Qn : asc (π) = r − 1, π(1) > 1}. Following [35, Eq. (4.3)], one has

∞∑

n=0

P ∗
n(x)

zn

n!
=

1− x

exz − xez
. (8)

Comparing (8) with (5), one can immediately find that

P ∗
n(x) = dn(x). (9)

The ascent polynomials over Qn are defined by Pn(x) =
∑

π∈Qn
xasc (π)+1. Using [35, Eq. (3.8)],

we arrive at

Pn(x) = P ∗
n(x) + xP ∗

n−1(x) = dn(x) + xdn−1(x). (10)

When x = 1, it reduces to (2). As dn(x) is γ-positive, we immediately find the following result.

Proposition 1. The polynomials Pn(x) are bi-γ-positive.



ON THE JOINT DISTRIBUTIONS OF SUCCESSION AND EULERIAN STATISTICS 5

A drop of π ∈ Sn is an index i such that π(i) < i. Let drop (π) denote the number of drops of

π. For π ∈ Dn, it is clear that exc (π) + drop (π) = n. The bivariate derangement polynomials

are defined by

dn(x, y) =
∑

π∈Dn

xexc (π)ydrop (π).

It follows from (5) that

d(x, y; z) =

∞∑

n=0

dn(x, y)
zn

n!
=

y − x

yexz − xeyz
. (11)

Define

Cn(x, y, s) =
∑

π∈Sn

xexc (π)ydrop (π)sfix (π).

In particular, dn(x, y) = Cn(x, y, 0) and An(x) = Cn(x, 1, 1). Since

Cn(x, y, s) =

n∑

i=0

(
n

i

)
sidn−i(x, y),

it follows that

C(x, y, s; z) =
∞∑

n=0

Cn(x, y, s)
zn

n!
=

(y − x)esz

yexz − xeyz
. (12)

Define

An(x, y) = Cn(x, y, y) =
∑

π∈Sn

xexc (π)ydrop (π)+fix (π).

We have
∞∑

n=0

An(x, y)
zn

n!
=

(y − x)eyz

yexz − xeyz
. (13)

Definition 2. Let π ∈ Sn. A big ascent of π is an index i ∈ [n−1] such that π(i+1) > π(i)+2.

The number of big ascents of π is defined by basc (π) = #{i ∈ [n− 1] : π(i+ 1) > π(i) + 2}.

It is clear that asc (π) = suc (π) + basc (π). When π ∈ Qn, one has basc (π) = asc (π). We

now define the following trivariate Eulerian polynomials

An(x, y, s) =
∑

π∈Sn

xbasc (π)ydes (π)ssuc (π). (14)

In particular, An(x) = An(x, 1, x) = An(1, x, 1). Below are these polynomials for n 6 5:

A0(x, y, s) = A1(x, y, s) = 1, A2(x, y, s) = s+ y,

A3(x, y, s) = (s+ y)2 + 2xy, A4(x, y, s) = (s + y)3 + 6xy(s + y) + 2xy(x+ y),

A5(x, y, s) = (s+ y)4 + 12xy(s + y)2 + 8xy(s + y)(x+ y) + 2xy(x+ y)2 + 16x2y2.

Define

A := A(x, y, s; z) =

∞∑

n=0

An+1(x, y, s)
zn

n!
.

Note that des (π) = n − 1 − suc (π) − asc (π) for π ∈ Sn. Combining this with [35, Eq. (5.9)]

and [35, Eq. (6.9)], it is routine to deduce that

A = ez(y+s)

(
y − x

yexz − xeyz

)2

, (15)
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which can be verified by using (19). In Corollary 31, we give a generalization of (15). It should

be noted that (15) can be seen as a special case of [43, Theorem 1].

Comparing (15) with (11), (12) and (13), we get the following result.

Proposition 3. For n > 0, we have

An+1(x, y, s) =
n∑

i=0

(
n

i

)
Ai(x, y)Cn−i(x, y, s),

An+1(x, y,−y) =

n∑

i=0

(
n

i

)
di(x, y)dn−i(x, y).

In particular,

An+1(x, 1, 0) =

n∑

i=0

(
n

i

)
Ai(x)dn−i(x), (16)

An+1(x, 1, 1) =
n∑

i=0

(
n

i

)
Ai(x)An−i(x), . (17)

Note that An(x, 1, 0) =
∑

π∈Qn
xbasc (π). By (16), we get

An+1(x, 1, 0) = dn(x) +

n∑

i=1

(
n

i

)
Ai(x)dn−i(x).

From (9), we see that

dn(x) =
∑

π∈Qn+1

π(1)=1

xbasc (π).

Thus we have
n∑

i=1

(
n

i

)
Ai(x)dn−i(x) =

∑

π∈Qn+1

π(1)>1

xbasc (π).

Combining this with (10), we find the following result.

Corollary 4. We have An(x, 1, 0) is bi-γ-positive and

x
n∑

i=1

(
n

i

)
Ai(x)dn−i(x) = dn+1(x).

Recall that An(x, 1, 1) =
∑

π∈Sn
xbasc (π). By (17), we have

An+1(x, 1, 1) = 2An(x) +

n−1∑

i=1

(
n

i

)
Ai(x)An−i(x).

Clearly, deg (An+1(x, 1, 1)) = n − 1. It is well known (see [20]) that the product of two γ-

positive polynomials is still γ-positive. Using (6), we see that Ai(x)An−i(x) is γ-positive and

deg (Ai(x)An−i(x)) = n − 2 for any 1 6 i 6 n − 1. Note that Ai(x)An−i(x) is not divisible by

x. We end this section by giving the following result.

Proposition 5. For any n > 2, the polynomial xn−2An(1/x, 1, 1) is bi-γ-positive, and so the

big ascent polynomial An(x, 1, 1) is spiral.
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Figure 1. The labeling of a 0-1-2 increasing planted tree on {0, 1, 2, . . . , 8}.
0 (I)

1 (1)

7 (u)

2 (1)

3 (1)

5 (u) 6 (v)

8 (u)

4 (t)

3. Triple and quadruple statistics

3.1. Main results.

An increasing tree on {0, 1, 2, . . . , n} is a rooted tree with vertex set {0, 1, 2, . . . , n} in which

the labels of the vertices are increasing along any path from the root 0 to a leaf. The degree of

a vertex is referred to the number of its children. A 0-1-2 increasing tree is an increasing tree

in which the degree of any vertex is at most two.

Definition 6. A 0-1-2 increasing planted tree on {0, 1, . . . , n} is a rooted tree with the root 0

satisfying the following two conditions:

(i) the degree of each child of the root 0 is at most one;

(ii) the components of the root 0 are vertex-disjoint 0-1-2 increasing trees and the union of

the labels of these components forms a set partition of [n].

An illustration of a 0-1-2 increasing planted tree on {0, 1, . . . , 8} is given by Fig. 1, where we

assign a weight to each vertex and there are three components of the root 0.

We can now present the first main result of this paper.

Theorem 7. Let An(x, y, s) be the trivariate Eulerian polynomials defined by (14). Then

An+1(x, y, s) = (s+ y)An(x, y, s) + xy

(
∂

∂x
+

∂

∂y
+

∂

∂s

)
An(x, y, s), (18)

which can be rewritten as

∂

∂z
A = (s+ y)A+ xy

(
∂

∂x
+

∂

∂y
+

∂

∂s

)
A. (19)

Moreover, one has

An+1(x, y, s) =
n∑

i=0

(s+ y)i
⌊(n−i)/2⌋∑

j=0

γn,i,j(2xy)
j(x+ y)n−i−2j , (20)

where the coefficient γn,i,j satisfies the recursion

γn+1,i,j = γn,i−1,j + (1 + i)γn,i+1,j−1 + jγn,i,j + (n− i− 2j + 2)γn,i,j−1, (21)
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with the initial conditions γ0,0,0 = 1 and γ0,i,j = 0 for (i, j) 6= (0, 0). The number γn,i,j equals

the number of 0-1-2 increasing planted trees on {0, 1, . . . , n} with i + j leaves, among which i

leaves are children of the root.

Combining (5) and (15), we see that

An+1(x, 1,−1) =

n∑

i=0

(
n

i

)
di(x)dn−i(x).

Corollary 8. We have

An+1(x, y,−y) =
∑

π∈Sn+1

xbasc (π)ydes (π)(−y)suc (π) =

⌊n/2⌋∑

j=0

γn,0,j(2xy)
j(x+ y)n−2j,

and so the binomial convolution of the derangement polynomials are γ-positive, i.e.,

n∑

i=0

(
n

i

)
di(x)dn−i(x) = An+1(x, 1,−1) =

⌊n/2⌋∑

j=0

γn,0,j(2x)
j(1 + x)n−2j .

Given any π ∈ Sn, we define

bAsc(π) = {π(i + 1) : π(i + 1) > π(i) + 2, i ∈ [n− 1]},
Des(π) = {π(i + 1) : π(i) > π(i + 1), i ∈ [n− 1]},
Suc(π) = {π(i + 1) : π(i + 1) = π(i) + 1, i ∈ [n− 1]},
Drop (π) = {π(i) : π(i) < i, i ∈ {2, 3, . . . , n}},

Êxc (π) = {π(i) : π(i) > i, i ∈ {2, 3, . . . , n}},

F̂ix (π) = {π(i) : π(i) = i, i ∈ {2, 3, . . . , n}}.

Set drop (π) = #Drop (π), êxc (π) = #Êxc (π) and fîx (π) = #F̂ix (π).

Theorem 9. The following two triple set-valued statistics are equidistributed over Sn:

(bASC, Des, Suc) ,
(
Êxc , Drop , F̂ix

)
.

So we have ∑

π∈Sn

xbasc (π)ydes (π)ssuc (π) =
∑

π∈Sn

xêxc (π)ydrop (π)sfîx (π).

Since êxc + fîx is equidistributed with asc over Sn, it is an Eulerian statistic.

3.2. Proof of Theorem 7.

For an alphabet A, let Q[[A]] be the rational commutative ring of formal power series in

monomials formed from letters in A. Following Chen [8], a context-free grammar over A is a

function G : A → Q[[A]] that replaces each letter in A by a formal function over A. The formal

derivative DG with respect to G satisfies the derivation rule:

DG(u+ v) = DG(u) +DG(v), DG(uv) = DG(u)v + uDG(v).

In the theory of context-free grammars, there are two widely used method. Following [10, 16],

the grammatical labeling method is an assignment of the underlying elements of a combinatorial
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structure with variables, which is consistent with the substitution rules of a grammar. Another

well known method is the change of grammars, which essentially is a change of variables, see [11,

12, 26, 28, 29, 30] for applications.

The following result is fundamental.

Lemma 10. If

G = {L → Ly,M → Ms, s → xy, x → xy, y → xy}, (22)

then we have

Dn
G(LM) = LMAn+1(x, y, s) = LM

∑

π∈Sn+1

xbasc (π)ydes (π)ssuc (π). (23)

Proof. We first introduce a grammatical labeling of π = π(1)π(2) · · · π(n) ∈ Sn:

(i) Put a superscript label L at the front of π;

(ii) Put a superscript label M right after the maximum entry n;

(iii) If i is a big ascent, then put a superscript label x right after π(i);

(iv) If i is a descent and π(i) 6= n, then put a superscript label y right after π(i);

(v) If π(n) 6= n, then put a superscript label y at the end of π;

(vi) If i is a succession, then put a superscript label s right after π(i).

The weight of π is defined to be the product of its labels. Thus the weight of π is given by

w(π) = LMxbasc (π)ydes (π)ssuc (π).

Note that S1 = {L1M} and S2 = {L1s2M ,L 2M1y}. Note that DG(LM) = LM(s + y). The

weight of the element in S1 is LM and the sum of weights of the elements in S2 is given

by DG(LM). Suppose we get all labeled permutations in Sn−1, where n > 2. Let π̂ be a

permutation obtained from π ∈ Sn−1 by inserting n. There are six cases to label n and relabel

some elements of π. Setting πi = π(i), then the changes of labeling can be illustrated as follows:

Lπ1 · · · (n − 1)M · · · 7→L nMπ1 · · · (n− 1)y · · · ;

Lπ1 · · · (n− 1)M · · · 7→L π1 · · · (n− 1)snM · · · ;

· · · πx
i · · · (n − 1)M · · · 7→ · · · πx

i n
M · · · (n− 1)y · · · ;

· · · πy
i πi+1 · · · (n− 1)M · · · 7→ · · · πx

i n
Mπi+1 · · · (n− 1)y · · · ;

· · · (n− 1)M · · · πy
n−1 7→ · · · (n− 1)y · · · πx

n−1n
M ;

· · · πs
iπi+1 · · · (n− 1)M · · · 7→ · · · πx

i n
Mπi+1 · · · (n− 1)y · · · .

In each case, the insertion of n corresponds to one substitution rule in G. By induction, it is

routine to check that the action of the formal derivative DG on the set of weighted permutations

in Sn−1 gives the set of weighted permutations in Sn. This completes the proof of (23). �

A proof Theorem 7:
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Proof. (A) Let G be the grammar defined by (22). By induction, we see that there exist

nonnegative integers an,i,j such that

Dn
G(LM) = LM

n∑

i,j=0

an,i,jx
iyjsn−i−j.

Then we get

DG (Dn
G(LM))

= LM

n∑

i,j=0

an,i,j
(
xiyj+1sn−i−j + xiyjsn+1−i−j

)
+

LM

n∑

i,j=0

an,i,j
(
ixiyj+1sn−i−j + jxi+1yjsn−i−j + (n− i− j)xi+1yj+1sn−1−i−j

)
.

Comparing the coefficients of LMxiyjsn+1−i−j in both sides of the above expression, we get

an+1,i,j = an,i,j + (1 + i)an,i,j−1 + jan,i−1,j + (n− i− j + 2)an,i−1,j−1. (24)

Multiplying both sides of (24) by xiyjsn+1−i−j and summing over all i, j, we arrive at (18).

(B) We now make a change of variables. Setting u = 2xy, v = x+ y, t = s+ y and I = LM ,

we get DG(u) = uv,DG(v) = u,DG(t) = u and DG(I) = It. Thus we get a new grammar

G′ = {I → It, t → u, u → uv, v → u}. (25)

Note that DG′(I) = It, D2
G′(I) = I(t2 + u) and D3

G′(I) = I(t3 + 3tu+ uv). Then by induction,

it is routine to check that there exist nonnegative integers γn,i,j such that

Dn
G′(I) = I

n∑

i=0

ti
⌊(n−i)/2⌋∑

j=0

γn,i,ju
jvn−i−2j . (26)

Then upon taking u = 2xy, v = x + y, t = s + y and I = LM , we get (20). In particular,

γ0,0,0 = 1 and γ0,i,j = 0 if (i, j) 6= (0, 0). Since Dn+1
G′ (I) = DG′

(
Dn

G′(I)
)
, we obtain

DG′ (Dn
G′(I)) = I

∑

i,j

γn,i,j
(
ti+1ujvn−i−2j + iti−1uj+1vn−i−2j

)
+

I
∑

i,j

γn,i,j
(
jtiujvn+1−i−2j + (n − i− 2j)tiuj+1vn−1−i−2j

)
.

Comparing the coefficients of tiujvn+1−i−2j in both sides of the above expansion, we get (21).

(C) The combinatorial interpretation of γn,i,j can be found by using the following gram-

matical labeling. Given a 0-1-2 increasing planted tree T , the root 0 is labeled by I. For the

children of the root, each child with degree 0 (a leaf of the root) is labeled by t and each child

with degree one is labeled by 1. For the other vertices (not the children of the root), each leaf

is labeled by u, each vertex with degree one is labeled by v and each vertex of degree two is

labeled by 1. See Fig. 1 for an example, where the grammatical labels are given in parentheses.

Let T be the 0-1-2 increasing planted tree given in Fig. 1. We distinguish four cases:

(i) If we add 9 as a child of the root 0, then the vertex 9 becomes a leaf of the root, and

the label of 9 is t. This corresponds to the substitution rule I → It;
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(ii) If we add 9 as a child of the vertex 4, the label of 4 becomes 1, and the vertex 9 gets the

label u. This corresponds to the substitution rule t → u;

(iii) If we add 9 as a child of the vertex 5 (resp. 7, 8), the label u of 5 (resp. 7, 8) becomes

v, and the vertex 9 gets the label u. This corresponds to the substitution rule u → uv;

(iv) If we add 9 as a child of the vertex 6, the label v of 6 becomes 1, and the vertex 9 gets

the label u. This corresponds to the substitution rule v → u.

The aforementioned four cases exhaust all the cases to construct a 0-1-2 increasing planted

tree T ′ on {0, 1, 2, . . . , n, n + 1} from a 0-1-2 increasing planted tree T on {0, 1, 2, . . . , n} by

adding n + 1 as a leaf. Since Dn
G′(I) equals the sum of the weights of 0-1-2 increasing planted

trees on {0, 1, 2, . . . , n}, then γn,i,j counts 0-1-2 increasing planted tree T on {0, 1, 2, . . . , n} with

i+ j leaves, among which i leaves are the children of the root. This completes the proof. �

3.3. Proof of Theorem 9.

We now write any permutation in Sn by using its standard cycle form, where each cycle

is written with its smallest entry first and the cycles are written in increasing order of their

smallest entry. Another grammatical labeling of π ∈ Sn is given as follows:

(i) Put a superscript label L right after the entry 1;

(ii) Put a superscript label M at the end of π;

(iii) If π(i) ∈ Drop (π), then put a superscript label y right after i;

(iv) If π(i) ∈ Êxc (π), then put a superscript label x right after i;

(v) If π(i) ∈ F̂ix (π), then put a superscript label s right after i.

Thus the weight of π is given by

w(π) = LMxêxc (π)ydrop (π)sfîx (π).

In particular, S1 = {(1L)M}, S2 = {(1L)(2s)M , (1L, 2y)M}, and the elements in S3 are listed

as follows:

(1L)(2s)(3s)M , (1L)(2x, 3y)M , (1L, 3y)(2s)M , (1L, 2y)(3s)M , (1L, 3y, 2y)M , (1L, 2x, 3y)M .

Along the same lines as in the proof of Lemma 10, one can easily deduce that

Dn
G(LM) = LM

∑

π∈Sn+1

xêxc (π)ydrop (π)sfîx (π). (27)

As illustrated by Example 11, by analyzing the changes of labeling, it is routine to check that

(bASC, Des, Suc) ,
(
Êxc , Drop , F̂ix

)

are equidistributed over Sn and we omit the details for simplicity.

Example 11. When n = 3, the correspondences of (bASC, Des, Suc) and
(
Êxc , Drop , F̂ix

)

can be listed as follows:

L1s2s3M ↔ (1L)(2s)(3s)M ; L1x3M2y ↔ (1L)(2x3y)M ; L3M1s2y ↔ (1L3y)(2s)M ;

L2y1x3M ↔ (1L2x3y)M ; L2s3M1y ↔ (1L2y)(3s)M ; L3M2y1y ↔ (1L3y2y)M .
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3.4. Another interpretation of the coefficients γn,i,j.

Simsun permutations were introduced by Simion and Sundaram when they studied the action

of the symmetric group on the maximal chains of the partition lattice [41, p. 267]. We say that

π ∈ Sn has no proper double descents if there is no index i ∈ [n− 2] such that π(i) > π(i+1) >

π(i+2). Then π is called simsun if for all k, the subword of π restricted to [k] (in the order they

appear in π) contains no proper double descents. Let RSn be the set of simsun permutations

of length n. Define

Sn(x) =
∑

π∈RSn

xdes (π).

Here we list another three combinatorial interpretations of Sn(x):

• the polynomial Sn(x) is also the descent polynomial of Andŕe permutations of the second

kind of order n+ 1, see [13, 19];

• the polynomial xSn(x) equals the André polynomial that counts increasing 0-1-2 trees

on [n+ 1] by their leaves, see [10, 19];

• the polynomial Sn(x) counts simsun permutations of the second kind of order n by their

numbers of excedances, see [27].

A value x = π(i) is called a cycle double ascent of π if i = π−1(x) < x < π(x). We say that

π ∈ Sn is a simsun permutation of the second kind if for all k ∈ [n], after removing the k largest

letters of π, the resulting permutation has no cycle double ascents. For example, (1, 6, 5, 3, 4)(2)

is not a simsun permutation of the second kind since when we remove the letters 5 and 6, the

resulting permutation (1, 3, 4)(2) contains the cycle double ascent 3. Let SSn be the set of the

simsun permutations of the second kind of length n. We can now present another interpretation

of the coefficients γn,i,j defined by (20).

Proposition 12. For any 0 6 i 6 n and 0 6 j 6 ⌊(n − i)/2⌋, the number γn,i,j counts simsun

permutations of the second kind of order n which have exactly i fixed points and j excedances.

Proof. We write any permutation in SSn by using its standard cycle form. In order to get a

permutation π′ ∈ SSn+1 with i fixed points and j excedances from a permutation π ∈ SSn, we

distinguish four cases:

(c1) If π ∈ SSn and fix (π) = i − 1 and exc (π) = j, then we need append (n + 1) to π as a

new cycle. This accounts for γn,i−1,j possibilities;

(c2) If π ∈ SSn and fix (π) = i+1 and exc (π) = j − 1, then we should insert the entry n+1

right after a fixed point. This accounts for (1 + i)γn,i+1,j−1 possibilities;

(c3) If π ∈ SSn and fix (π) = i and exc (π) = j, then we should insert the entry n + 1 right

after an excedance. This accounts for jγn,i,j possibilities;

(c4) Since π ∈ SSn has no cycle double ascents, we say that π(i) is a cycle peak if i is an

excedance, i.e. i < π(i). If π ∈ SSn and fix (π) = i and exc (π) = j − 1, then there are

n− i− 2(j − 1) positions could be inserted the entry n+1, since we cannot insert n+1

immediately before or right after each cycle peak of π, and we cannot insert n+ 1 right

after a fixed point. This accounts for (n− i− 2j + 2)γn,i,j−1 possibilities.

Thus the recursion (21) holds. This completes the proof. �
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3.5. Proper left-to-right minimum statistic.

Let π = π(1)π(2) · · · π(n) ∈ Sn. In this subsection, we always identify π with the word

π(1)π(2) · · · π(n)π(n+1), where π(n+1) = 0. For 1 6 i 6 n, a value π(i) is called a left-to-right

minimum if π(i) < π(j) for all 1 6 j < i or i = 1. Let lrmin (π) be the number of left-to-right

minima of π.

Definition 13. Given π ∈ Sn. We say that π(i) is a proper left-to-right minimum if it satisfies

the following two conditions:

• π(i) is a left-to-right minimum and π(i) 6= 1,

• there exists an index k > i such that π(k) = π(i) − 1 and π(k) > π(k + 1).

Let plrmin (π) be the number of proper left-to-right minima of π.

Example 14. For π ∈ S3, we have

plrmin (123) = plrmin (132) = plrmin (213) = 0,

plrmin (231) = plrmin (312) = 1, plrmin (321) = 2.

Consider the suc and plrmin (s, t)-Eulerian polynomials

An(x, y, s, t) =
∑

π∈Sn

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π).

In particular, A1(x, y, s, t) = 1, A2(x, y, s, t) = s+ t, A3(x, y, s, t) = (s+ t)2 + 2xy.

Lemma 15. If

G = {L → Lt,M → Ms, s → xy, t → xy, x → xy, y → xy},

then we have

Dn
G(LM) = LMAn+1(x, y, s, t) = LM

∑

π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π). (28)

Proof. A grammatical labeling of π = π(1)π(2) · · · π(n) ∈ Sn can be given as follows:

(i) Put a superscript label L at the front of π;

(ii) Put a superscript label M right after the maximum entry n;

(iii) If i is a big ascent, then put a superscript label x right after π(i);

(iv) If i is a succession, then put a superscript label s right after π(i);

(v) If i is a descent, π(i) 6= n and π(i)+ 1 is a left-to-right minimum, then put a superscript

label t right after π(i);

(vi) If i is a descent, π(i) 6= n and π(i) + 1 is not a left-to-right minimum, then put a

superscript label y right after π(i).

Then the weight of π is given by

w(π) = LMxbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π).

Note that S1 = {L1M} and S2 = {L1s2M ,L 2M1t}. Note that DG(LM) = LM(s + t). Hence

the weight of the element in S1 is LM and the sum of weights of the elements in S2 is given by
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DG(LM). Along the same lines as in the proof of Lemma 10, one can discuss the general cases

and we omit the details for simplicity. �

Define

Suc∗(π) = {π(i) : π(i + 1) = π(i) + 1, i ∈ [n− 1]} ,
Plrmin(π) = {π(i) : i is a descent, π(i) 6= n and π(i) + 1 is a left-to-right minimum}.

Using the grammatical labeling given in the proof of Lemma 15, it is routine to verify the

following result. An illustration of it is given by Example 17.

Proposition 16. The pair of set-valued statistics (Suc∗, Plrmin) is symmetric over Sn.

Example 17. Recall that S2 = {L1s2M ,L 2M1t}. Consider the insertion of the entry 3. Using

the correspondences L ↔ M , s ↔ t and x ↔ y, the symmetry of the pair of set-valued statistics

(Suc∗, Plrmin) is demonstrated as follows:

(
Suc∗(L1s2s3M), Plrmin(L1s2s3M)

)
= ({1, 2}, ∅) ↔

(
Suc∗(L3M2t1t), Plrmin(L3M2t1t)

)
= (∅, {1, 2});

(
Suc∗(L1x3M2y), Plrmin(L1x3M2y)

)
= (∅, ∅) ↔

(
Suc∗(L2y1x3M), Plrmin(L2y1x3M)

)
= (∅, ∅);

(
Suc∗(L3M1s2t), Plrmin(L3M1s2t)

)
= ({1}, {2}) ↔

(
Suc∗(L2s3M1t), Plrmin(L2s3M1t)

)
= ({2}, {1}).

The following theorem is easily derived from Lemma 15 in the same way as Theorem 7.

Theorem 18. For the suc and plrmin (s, t)-Eulerian polynomials, we have

An+1(x, y, s, t) = (s+ t)An(x, y, s, t) + xy

(
∂

∂x
+

∂

∂y
+

∂

∂s
+

∂

∂t

)
An(x, y, s, t); (29)

An+1(x, y, s, t) =

n∑

i=0

(s+ t)i
⌊(n−i)/2⌋∑

j=0

γn,i,j(2xy)
j(x+ y)n−i−2j , (30)

which implies that An+1(x, y, s, t) is symmetric in the variables s and t as well as x and y.

Corollary 19. We have

∑

π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)(−s)plrmin (π) =

⌊n/2⌋∑

j=0

γn,0,j(2xy)
j(x+ y)n−2j .

A special case of (30) says that An+1(x, 1, s, t) is partial γ-positive, i.e.,

An+1(x, 1, s, t) =

n∑

i=0

(s+ t)i
⌊(n−i)/2⌋∑

j=0

γn,i,j(2x)
j(x+ 1)n−i−2j .

Comparing (30) with Corollary 4, we see that An(x, 1, s, t) is bi-γ-positive if s+t = 1. Combining

this with [29, Theorem 2.4], we obtain the following result.

Corollary 20. Let s and t be given real numbers such that 0 6 s+ t 6 1, then An(x, 1, s, t) is

alternatingly increasing.
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4. Relationship to fix and cyc (p,q)-Eulerian polynomials

4.1. A fundamental lemma on (p,q)-Eulerian polynomials.

The fix and cyc (p, q)-Eulerian polynomials An(x, y, p, q) are defined by

An(x, y, p, q) =
∑

π∈Sn

xexc (π)ydrop (π)pfix (π)qcyc (π).

This (p, q)-Eulerian polynomial contains a great deal of information about permutations and

colored permutations, see [25, 29, 33] for details. In particular, according to Theorem [29,

Theorem 3.6], when 0 6 p 6 1 and 0 6 q 6 1, the polynomials An(x, 1, p, q) are alternatingly

increasing. The following result will be used repeatedly in our discussion.

Lemma 21 ([29, Lemma 3.12, Theorem 3.4]). If

G1 = {I → Ipq, p → xy, x → xy, y → xy}, (31)

then we have

Dn
G1

(I) = I
∑

π∈Sn

xexc (π)ydrop (π)pfix (π)qcyc (π).

Consider the change of variable u = xy and v = x + y. Then DG1
(I) = Ipq, DG1

(p) = u,

DG1
(u) = uv, DG1

(v) = 2u. Setting

G2 = {I → Ipq, p → u, u → uv, v → 2u}, (32)

then we get

Dn
G2

(I) = I

n∑

i=0

pi
⌊(n−i)/2⌋∑

j=0

γn,i,j(q)u
jvn−i−2j , (33)

where

γn,i,j(q) =
∑

π∈Sn,i,j

qcyc (π) (34)

and Sn,i,j = {π ∈ Sn : cda (π) = 0, fix (π) = i, exc (π) = j}.

4.2. Four-variable polynomials.

We can now present the first result of this section.

Theorem 22. We have

∑

π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π) =
∑

π∈Sn

xexc (π)ydrop (π)

(
t+ s

2

)fix (π)

2cyc (π).

When t = y, it reduces to

∑

π∈Sn+1

xbasc (π)ydes (π)ssuc (π) =
∑

π∈Sn

xexc (π)ydrop (π)

(
y + s

2

)fix (π)

2cyc (π).

Proof. Consider a change of the grammar G given by Lemma 15. Set LM = I, t + s = pq,

where p = t+s
2 , q = 2, then we get the substitution rules defined by (31). By Lemma (21), we

immediately get the desired expression. This completes the proof. �

Combining Theorem 22 and Propositions 1 and 5, we get the following.
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Corollary 23. For any n > 1, the following two polynomials are alternatingly increasing and

spiral, respectively:
∑

π∈Sn

xexc (π)2cyc (π)−fix (π),
∑

π∈Sn

xexc (π)2cyc (π).

4.3. Five-variable polynomials.

In this subsection, we shall consider the joint distribution of the numbers of successions,

exterior peaks, double ascents and double descents. We need some more definitions. For π ∈ Sn,

let π(0) = π(n + 1) = 0. Then for i ∈ [n], any entry π(i) can be classified according to one of

the four cases:

• a peak if π(i− 1) < π(i) > π(i+ 1);

• a valley if π(i− 1) > π(i) > π(i+ 1);

• a double ascent if π(i− 1) < π(i) < π(i+ 1);

• a double descent if π(i− 1) > π(i) > π(i+ 1).

Let pk (π) (resp. val(π), dasc (π), ddes (π)) denote the number of peaks (resp. valleys, double

ascents, double descents) in π. It is clear that pk (π) = val(π)+1. In recent years, these statistics

have been extensively studied by using various techniques, including continued fractions [38, 39]

and noncommutative symmetric functions [21, 45].

Definition 24. We say that a value π(i) is a simsun succession of π if π(i)+ 1 lies to the right

of π(i) and all the values (if any) between π(i) and π(i) + 1 are greater than π(i) + 1.

Let simsuc (π) denote the number of simsun successions of π. Clearly, suc (π) 6 simsuc (π).

Example 25. For π ∈ S3, we have

simsuc (123) = 2, simsuc (132) = 1, simsuc (213) = 0,

simsuc (231) = simsuc (312) = 1, simsuc (321) = 0.

Consider the generalized Eulerian polynomials

An(α1, α2, α3, α4, s) =
∑

π∈Sn

α
pk (π)
1 α

val(π)
2 α

dasc (π)
3 α

ddes (π)
4 ssimsuc (π).

In particular, A1(α1, α2, α3, α4, s) = α1 and A2(α1, α2, α3, α4, s) = α1(sα3 + α4).

Theorem 26. Let be γn,i,j(q) defined by (34). Then we have

An+1(α1, α2, α3, α4, s) =
n∑

i=0

(
sα3 + α4

s+ 1

)i ⌊(n−i)/2⌋∑

j=0

γn,i,j(s+ 1)αj+1
1 αj

2(α3 + α4)
n−i−2j .

In particular,

An+1(1, 1, 1, 1, s) = (1 + s)(2 + s) · · · (n+ s) =

n∑

k=0

[
n

k

]
(s + 1)k,

where
[n
k

]
is the unsigned Stirling numbers of the first kind, i.e.,

[n
k

]
= #{π ∈ Sn : cyc (π) = k}.
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Proof. We claim that if G = {α1 → α1α4, α2 → α2α3, α3 → α1α2, α4 → α1α2, M → sMα3},
then we have

Dn
G(Mα1) = MAn+1(α1, α2, α3, α4, s). (35)

Assume that permutations are prepended and appended by 0. We now give a grammatical

labeling on permutations to generate the generalized Eulerian polynomials:

(i) If π(i) = n, we label it as α1nM ;

(ii) If π(i) is a peak and π(i) 6= n, we label it as α1π(i)α2 ;

(iii) If π(i) is a double ascent, we put a superscript α3 just before π(i);

(iv) If π(i) is a double descent, we put a superscript α4 right after π(i);

(v) If π(i) is a simsun succession, we put a subscript s right after π(i).

With this labeling, the weight of π is given as follows:

Mα
pk (π)
1 α

val(π)
2 α

dasc (π)
3 α

ddes (π)
4 ssimsuc (π).

Note that S1 = {α11M} and S2 = {α31α1
s 2M , α12M1α4}. Then the sum of weights of the

elements in S2 is given by DG(Mα1). We now present an example to illustrate the general case.

Let π = 134265 ∈ S6, The grammatical labeling of π is given as follows:

α31α3

s 3α1

s 4α22α16M5α4 .

When we insert 7 into π, the generated weighted permutations and their corresponding substi-

tution rules are listed as follows:

α17M1α3

s 3α1

s 4α22α16α25α4 ↔ α3 → α1α2;

α31α1

s 7M3α1

s 4α22α16α25α4 ↔ α3 → α1α2;

α31α3

s 3α1

s 7M4α42α16α25α4 ↔ α1 → α1α4;

α31α3

s 3α3

s 4α17M2α16α25α4 ↔ α2 → α2α3;

α31α3

s 3α1

s 4α22α17M6α45α4 ↔ α1 → α1α4;

α31α3

s 3α1

s 4α22α36α1

s 7M5α4 ↔ M → sMα3;

α31α3

s 3α1

s 4α22α16α25α17M ↔ α4 → α1α2.

Each insertion of 7 corresponds to one substitution rule in G. Continuing in this way, we can

eventually generated all the weighted elements in Sn. This completes the proof of (35).

Note that

DG(Mα1) = Mα1(sα3 + α4), DG(sα3 + α4) = (1 + s)α1α2,

DG(α1α2) = α1α2(α3 + α4), DG(α3 + α4) = 2α1α2.

We make a change of variables. Setting a = Mα1, b = sα3 +α4, u = α1α2 and v = α3 +α4, we

get the following grammar:

G′ = {a → ab, b → (1 + s)u, u → uv, v → 2u}.

Consider a change of the grammar G′. Set a = I, b = pq, where p = b
1+s , q = 1+ s, then we get

the grammar G2 defined by (32). Substituting I = α1, p = sα3+α4

1+s , q = 1 + s, u = α1α2 and

v = α3+α4 into (33), we immediately get the desired expression. This completes the proof. �
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Corollary 27. We have

An+1(α1, α2, α3, α4, 0) =

n∑

i=0

αi
4

⌊(n−i)/2⌋∑

j=0

γn,i,j(1)α
j+1
1 αj

2(α3 + α4)
n−i−2j ,

where γn,i,j(1) = #{π ∈ Sn : cda (π) = 0, fix (π) = i, exc (π) = j}.

Let

γ = γ(x, p, q; z) = 1 +

∞∑

n=1

n∑

i=0

pi
⌊(n−i)/2⌋∑

j=0

γn,i,j(q)x
j z

n

n!
.

According to [29, Eq (13)], we have

γ(x, p, q; z) = ez(p−
1

2)q

( √
1− 4x√

1− 4x cosh
(
z
2

√
1− 4x

)
− sinh

(
z
2

√
1− 4x

)
)q

.

Define

A(α1, α2, α3, α4, s; z) =

∞∑

n=0

1

α1
An+1(α1, α2, α3, α4, s)

zn

n!
.

By Theorem 26, we get the following.

Corollary 28. We have

A(α1, α2, α3, α4, s; z) = γ

(
α1α2

(α3 + α4)2
,

sα3 + α4

(s+ 1)(α3 + α4)
, 1 + s; (α3 + α4)z

)

= 1 + (sα3 + α4)z + (α1α2(1 + s) + (sα3 + α4)
2)
z2

2!
+ · · · .

4.4. Six-variable polynomials.

Recall that

An(x, y, p, q) =
∑

π∈Sn

xexc (π)ydrop (π)pfix (π)qcyc (π).

Using the exponential formula, Ksavrelof-Zeng [25] found that

∞∑

n=0

An(x, 1, p, q)
zn

n!
=

(
(1− x)epz

exz − xez

)q

.

Since exc (π) + drop (π) + fix (π) = n for π ∈ Sn, it follows that

∞∑

n=0

An(x, y, p, q)
zn

n!
=

(
(y − x)epz

yexz − xeyz

)q

. (36)

We now provide a generalization of Lemma 15, which can be proved in the same way.

Lemma 29. If G = {L → pLt,M → qMs, s → xy, t → xy, x → xy, y → xy}, then we have

Dn
G(LM) = LM

∑

π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π)plrmin (π)−1qsimsuc (π).
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Theorem 30. We have

∑

π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π)plrmin (π)−1qsimsuc (π) = An

(
x, y,

pt+ qs

p+ q
, p+ q

)
,

which implies that (suc ,plrmin ) and (lrmin (π)−1, simsuc ) are both symmetric distribution. In

particular,

∑

π∈Sn+1

ssuc (π)tplrmin (π)plrmin (π)−1qsimsuc (π) =
∑

π∈Sn

(
pt+ qs

p+ q

)fix (π)

(p + q)cyc (π),

∑

π∈Sn+1

simsuc (π)=0

xbasc (π)tplrmin (π) =
∑

π∈Sn

xexc (π)tfix (π),

∑

π∈Sn+1

xbasc (π)plrmin (π)−1qsimsuc (π) =
∑

π∈Sn

xexc (π)(p + q)cyc (π).

Proof. Let G be the grammar given by Lemma 29. Note that DG(LM) = LM(pt + qs) and

DG(pt+ qs) = (p+ q)xy. Letting LM → I, pt+qs
p+q → p and p+ q → q, we obtain the substitution

rules defined by (31). By Lemma (21) and (36), we immediately get the desired expression.

This completes the proof. �

By [29, Theorem 3.6], we see that if t ∈ [0, 1] and q ∈ [−1, 0], then the following two polyno-

mials are alternatingly increasing:
∑

π∈Sn

simsuc (π)=0

xbasc (π)tplrmin (π),
∑

π∈Sn+1

xbasc (π)qsimsuc (π).

Combining (36) and Theorem 30, we can give the following generalization of (15).

Corollary 31. We have

∞∑

n=0

∑

π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π)plrmin (π)−1qsimsuc (π) z
n

n!

= e(pt+qs)z

(
y − x

yexz − xeyz

)p+q

= 1 + (qs+ pt)z +
(
(qs+ pt)2 + (p + q)xy

) z2
2
+

(
(qs+ pt)3 + 3(p + q)(qs+ pt)xy + (p+ q)xy(x+ y)

) z3
3!

+ · · · .
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