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Abstract

Learning-based methods have become increasingly popular for solving vehicle
routing problems due to their near-optimal performance and fast inference speed.
Among them, the combination of deep reinforcement learning and graph repre-
sentation allows for the abstraction of node topology structures and features in
an encoder-decoder style. Such an approach makes it possible to solve routing
problems end-to-end without needing complicated heuristic operators designed by
domain experts. Existing research studies have been focusing on novel encoding
and decoding structures via various neural network models to enhance the node
embedding representation. Despite the sophisticated approaches applied, there
is a noticeable lack of consideration for the graph-theoretic properties inherent
to routing problems. Moreover, the potential ramifications of inter-nodal inter-
actions on the decision-making efficacy of the models have not been adequately
explored. To bridge this gap, we propose an adaptive Graph Attention Sampling
with the Edges Fusion framework (GASE), where nodes’ embedding is determined
through attention calculation from certain highly correlated neighbourhoods and
edges, utilizing a filtered adjacency matrix. In detail, the selections of particular
neighbours and adjacency edges are led by a multi-head attention mechanism,
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contributing directly to the message passing and node embedding in graph atten-
tion sampling networks. Furthermore, we incorporate an adaptive actor-critic
algorithm with policy improvements to expedite the training convergence. We
then conduct comprehensive experiments against baseline methods on learning-
based VRP tasks from different perspectives. Our proposed model outperforms
the existing methods by 2.08%-6.23% and shows stronger generalization abil-
ity, achieving state-of-the-art performance on randomly generated instances and
real-world datasets.

Keywords: Graph representation learning, Vehicle routing problems, Deep
reinforcement learning, Combinatorial optimization

1 Introduction

The Vehicle Routing Problem (VRP) is a fundamental combinatorial optimization
issue in the realm of logistics and transportation management (Toth and Vigo, 2014;
Bai et al, 2023).VRP belongs to a class of the most challenging combinatorial opti-
mization problems with no proven polynomial-time bounded algorithm yet. There are
two main categories of methods for solving VRP - exact solution methods and approxi-
mate optimal solution methods (Bai et al, 2023). Exact solution methods seek to build
suitable mathematical programming models that are solvable to optimality (at least
for problems of smaller sizes) with mainstream methods like branch and bound, branch
and pricing (Xue et al, 2021; Yang et al, 2021). On the other hand, the approximate
solution method uses heuristic or meta-heuristic algorithms with heuristic operators
to obtain nearly optimal solutions (Chen et al, 2020). In recent years, with the con-
tinuous development of machine learning, more research moved their attention to the
methods of approximately solving VRPs via learning-based end-to-end architecture.

Learning-based methods can be classified into two groups based on different con-
struction solution modes, namely construction heuristics and improvement heuristics
(Liu et al, 2023). The former employs end-to-end machine learning to construct an
approximate optimal solution through autoregression gradually. On the other hand,
the latter initially obtains a feasible solution arbitrarily and then leverages machine
learning to guide heuristic operators in enhancing the feasible solution to obtain an
approximately optimal solution. Different machine learning methods can classify the
two solutions mentioned above as either supervised or unsupervised. In supervised
methods, the machine imitates the solver’s approach during the training process with
considerable instances to obtain nearly optimal solutions. An unsupervised learning
method can be utilized by employing data-driven strategies, implementing deep rein-
forcement learning (DRL) (Mnih et al, 2015), and using a vast amount of learning
instances to gradually construct an approximate optimal solution. This can be done
through autoregressive encoding and decoding in a trial-and-error manner and increase
the probability of effective reward steps through Markov Decision Processes (MDP)
(Lauri et al, 2023). Alternatively, the feasible solution can be iteratively improved
through heuristic operators in reinforcement learning schema to find the approximate
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optimal solution by heuristic improvement style.Since the inception of pointer net-
works (Vinyals et al, 2015), various learning-based methods have emerged to solve
VRPs using different network structures, which has pushed machine learning-based
approaches to new heights. Some works based on Graph Neural Networks(GNNs)
(Hamilton et al, 2017) structure have achieved outstanding results, owing to the power-
ful node representation learning ability of GNNs. As VRP is a natural graph problem,
it can be processed by GNNs not only for nodes but also for abstracting the features
of edges between nodes. Even the embedding of the entire graph structure can aid in
solving sequences.

However, supervised learning can be challenging for routing problems like Capaci-
tated VRP(CVRP) in medium and large scale, as obtaining high-quality solutions for
labels is not easy. On the other hand, heuristic algorithms require an expert level of
domain knowledge to design heuristic operators, and the inference time for new prob-
lems can be long. On the other hand, data-driven algorithms don’t require the manual
design of complex heuristic operators but may result in slightly inferior solutions com-
pared to heuristic algorithms. Therefore, it’s essential to develop an unsupervised
data-driven intelligent method for solving routing problems with high quality, which
is also the motivation behind our work.

This paper describes the use of an unsupervised, end-to-end DRL framework
to solve routing problems in an autoregressive manner. The framework uses the
actor-critic algorithm to automatically optimize network parameters. To address the
exponential growth of search space of the vehicle routing problem, an adaptive sam-
pling graph neural network is constructed using the attention mechanism to combine
the representation of nodes and edges. The residual graph network then extracts
node features and full graph representation, which are decoded to construct solutions
sequentially. To illustrate the performance of the proposed work, we conduct classical
experiments on random instances of VRP with nodes of 20, 50 and 100. Furthermore,
our evaluation encompasses the time complexity of the algorithm, the speed of model
inference, and the model’s generalization performance. Our research and experiments
revealed that although many studies have achieved impressive outcomes in classic
problems, their models’ generalization capability requires further improvement. Specif-
ically, we are not aware of any research that examines whether larger-scale end-to-end
VRP machine learning models’ actual representation is still excellent in small-scale
problems, not to mention the reverse. Our experiments confirmed that our proposed
novel graph sampling neural network, based on the attention mechanism, performs
well in terms of inference speed and generalization performance.

The contributions of this paper can be summarized as the following:

1. We present a generic framework to address the vehicle routing problem with
capacity constraints using an end-to-end graph learning framework that leverages
data-driven patterns. Our framework learns graph representations using efficient
encoders and gradually constructs solutions using attention mechanism decoders
and masking techniques. We train the encoding and decoding processes with deep
reinforcement learning, and the resulting solutions are of high quality without the
need for manual heuristic operator design.
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2. We propose a novel Residual Graph Attention Sampling neural network that serves
as an encoder, which helps improve the node embeddings obtained from sampled
essential nodes and edges. This sampling approach is based on a matrix filter that
reduces the impact of irrelevant nodes and edges on decision-making time steps
according to pair-wised attention scores, leading to a better graph representation,
faster convergence of the reinforcement learning process and better generalization
performance to various problem sizes.

3. We employ an adaptive update self-critic policy gradient algorithm to govern the
update of model parameters. This involves assessing the significance test values
of actors and self-critics in the batch to determine whether the model parame-
ters should be updated. This approach aims to improve the generalizability and
credibility of the model results.

4. We conducted extensive verification experiments on classic VRP tasks of varying
scales and compared the results with state-of-the-art methods based on various
neural network models. Our proposed GASE model outperformed others in terms
of solution quality, inference speed, and generalization performance, establishing
itself as a leading solution.

The rest of the paper is organized as follows. We first summarize the related work
in section 2. Section 3 illustrates the preliminaries of the problem. Then we introduce
the detailed GASE model and the DRL framework in Section 4. Section 5 presents the
experimental results and analysis. Lastly, We wrap up the paper and provide further
discussions in Section 6.

2 Related Work

VRP is a combinatorial optimization problem that has gained significant attention
in recent years due to its wide range of applications. From simple constraints in the
Travelling Salesman Problems(TSP) to more complex ones in the CVRP and the
Vehicle Routing Problem with Time Windows (VRPTW), VRPs have become a series
of well-known NP-hard problems. In the last few decades, various solution algorithms
have been developed to find the optimal solution for the global route on small instances,
such as mixed integer programming, dynamic programming, branch pricing, and other
methods. (Braekers et al, 2016) However, due to the NP-hard nature of VRP, the
exact solution algorithm faces the issue of combinatorial explosion as the problem’s
scale grows. It becomes increasingly difficult to obtain the optimal solution within
polynomial time complexity. For this reason, approximate algorithms aim to find near-
optimal solutions and have become the subject of intense research by scholars in recent
years. One direction for approximate algorithms to solve VRP is to use heuristic or
meta-heuristic algorithms, such as evolutionary multitasking algorithm (Feng et al,
2021), artificial bee colony algorithm (Ng et al, 2017), variable neighbourhood search
algorithm (Kalatzantonakis et al, 2023), etc. Another branch is supervised or DRL
methods represented by machine learning. A challenge with supervised methods is that
they require accurate labels for training instance data, which are typically obtained
from high-quality solutions from optimal or heuristic solvers. Among the representative
works, Vinyal et al. (Vinyals et al, 2015) proposed using pointer networks(PtrNet),
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that is, the sequence model of Recurrent Neural Networks(RNNs) (Zaremba et al,
2014), to train TSP instances end-to-end, thereby obtaining an approximately optimal
solution for untrained data or test data. The emergence of pointer networks has pushed
the use of machine learning models to solve routing problems to a new climax.

The following paragraphs will review DRL-based routing methods that can be
categorized as construction heuristics or improvement heuristics.

2.1 DRL based construction heuristic

The construction heuristic model utilizes neural networks to perform end-to-end
encoding and decoding. The encoder extracts node features while the decoder com-
bines these extracted features to output the selection of node sequences by the neural
network at different time steps. Through reinforcement learning, the neural network
structure is trained to increase the probability of outputting high-profit nodes at the
current time step. This autoregressive approach constructs the entire process step by
step, eliminating the need for manually designing complex heuristic operators. (Bello
et al, 2016) employed the pointer network structure and DRL approach along with the
actor-critic algorithm to train the PtrNet model to solve TSP. Each training instance
was treated as a sample, with the negative value of the entire trajectory length serving
as the reward. The policy gradient was calculated using Monte Carlo estimation to
obtain the output of near-optimal solutions. (Nazari et al, 2018) proposed a network
based on Long Short Term Memory(LSTM) and attention mechanism, which performs
better on medium-size VRP compared with Google OR-Tools (Google Optimization
Tools, 2024). (Kool et al, 2019) raised a model based on Transformer architecture
(Vaswani et al, 2017), called the Attention Model(AM), which outperforms PtrNet. In
addition, the REINFORCE algorithm and the deterministic greedy algorithm are used
as baselines. It can be a near-optimal solution in the tsp with 100 nodes. Using the
same hyperparameters, VRP performance is better than baseline and close to optimal
algorithms, making it state-of-the-art. (Kwon et al, 2020) designed a Policy Optimiza-
tion with Multiple Optima (POMO) schema, which is an innovative training method
based on end-to-end architecture, using the modified REINFORCE algorithm to force
different deployments for all the best solutions. Its low variance accelerates the training
and stability of RL, with more capability of resisting local minima. In addition to the
sequence structure, another line chooses to use GNNs to process VRP. For example,
(Khalil et al, 2017) uses struct2vec network coding and deep Q-network for training.
(Lei et al, 2022) proposed an end-to-end model based on the graph attention network
structure, decoding through the transformer architecture, using the PPO algorithm for
training, and achieving state-of-the-art performance on small and medium-sized TSP
and VRP. (Joshi et al, 2020) presented an end-to-end neural combinatorial optimiza-
tion pipeline via GNNs to identify the graph embedding and autoregressive decoding
process and verify the generalization ability of graph embeddings for TSP. The stud-
ies mentioned above have achieved promising results in solving TSP and VRP. Also,
the time required for inference is minimal owing to the characteristics of end-to-end
machine learning. However, these models are heavily reliant on pure data driving,
which limits the further quality of the solutions obtained. Additionally, these models
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tend to be heavily influenced by the data distribution of training instances, leading to
suboptimal performance when dealing with data of varying scales and distributions.

2.2 DRL based improvements heuristic

In recent years, the use of the RL framework to handle the stepwise optimization
process of a feasible solution by heuristic operators has also been sought after by
many studies. (Ma et al, 2019) trained a graph pointer network (GPN) by hierarchi-
cal reinforcement learning to solve TSP with complex constraints. At the same time,
the solution obtained by the GPN framework can be further combined with local
search such as the 2opt operator to obtain a further optimized solution. (Zhao et al,
2021) utilized a routing simulator, and actor-adaptive critics algorithms to build a
DRL framework. The model receives graph information via the simulator and gener-
ates routing strategies via the attention mechanism. The solutions produced are then
combined with various local search methods for further improvements. The aforemen-
tioned research has proposed different innovations and highlights in the combination
of DRL and heuristic algorithms. Nonetheless, heuristic algorithms still hold signifi-
cant sway, thereby necessitating the acquisition of expertise in the relevant domain
and the development of some manually designed heuristic operators.

3 Problem Preliminaries

In this section, we will formulate the typical VRP and introduce the preliminaries of
our DRL framework. It should be noted that, given the Traveling Salesman Problem
(TSP) represents a more rudimentary variant of the VRP, the present discourse will
not delve into an extensive elaboration of the former. For comprehensive expositions
of TSP, readers are directed to consult the subsequent scholarly article (Vinyals et al,
2015; Kool et al, 2019; Lei et al, 2022), which provides a standardized elucidation of
the subject matter.

In VRP, a vehicle departs from a fixed depot and traverses a series of customer
nodes, collecting goods from each customer along the way and subsequently return-
ing them to the depot. Given a VRP graph G = (V,E), where V = {v0, v1, ..., vn}
represents the set of vertex, and E = {(vi, vj) | vi, vj ∈ V, i ̸= j} denotes the possi-
ble edges between pairs of nodes. To address the connectivity of node pairs, we use
an adjacency matrix A ∈ {0, 1}|V |×|V | where Ai,j = 1 if (vi, vj) ∈ E and Ai,j = 0
otherwise, | · | indicates the node sequence, that is, the number of nodes. For each cus-
tomer node i, ci = (xi, yi) indicates the Euclidean coordinate of node vi where qi is
the demand. Note that v0 represents the depot with demand 0. The vehicle will visit
every customer exactly once while the total demands of nodes must not exceed the
vehicle max load Q. The detailed information of variables is shown in Table 1, the
object and constraints of VRP are formulated as follows:

min
∑

i∈V

∑

j∈V

dijrij , ∀i, j ∈ V, rij ∈ {0, 1} (1)

subject to
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Table 1 Variable and Notation Definition

Variable or Notation Definition
V = {v0, v1, ..., vn} set of vertex, v0 for depot
n number of customer nodes
E = {(vi, vj)|vi, vj ∈ V, i ̸= j} set of edge

A ∈ {0, 1}|V |×|V | adjacency matrix
N (vi) neighborhoods of vi
ci = (x value, y value) euclidean coordinate of node i

Q max load of the vehicle
Qc current load of the vehicle
t current time step
Qt vehicle remaining capacity at step t
qi, 0 ≤ qi < Q initial demand of node i

qi,t, 0 ≤ qi,t < Q demand of node i at step t
dij distance between node i and j

rij binary decision variable to indicate edges in solution
K vehicle numbers
π solution sequence
πt solution node at step t
S current state of the DRL environment
θ neural network parameters
pθ (·) probability under neural network parameter θ

L total solution length
xi feature embedding of node i

eij feature embedding of edge ei,j
W ∗

∗ learnable weight matrices
b∗∗ bias
K hyperparameter for sampling in encoder
K% sampling rate in encoder
hl
i hidden state of node i at graph residual connection layer l

Hl hidden state of all graph nodes at graph residual connection layer l

HL output state of all graph nodes after a L-layer residual connection
V l
agg node sets to do feature aggregation at residual connection layer l

V l
i agg neighbor sets of node i after filter at residual connection layer l

αl
ij attention coefficient from node j to node i at residual connection layer

Z(g) whole graph readout
H number of attention head
cmt context vector of multi-head attention layer in decoder
um
∗ attention coefficient of multi-head attention layer in decoder

cst context vector of single-head attention layer in decoder
us
∗ attention coefficient of single-head attention layer in decoder

∑

i∈V

rij = 1, ∀j ∈ V \{0} (2)

∑

j∈V

rij = 1, ∀i ∈ V \{0} (3)

∑

i∈V

ri0 = K (4)
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∑

j∈V

r0j = K (5)

∑

i/∈P

∑

j∈P

rij ≥ r(P ), ∀P ⊆ V \{0}, v ̸= ∅ (6)

Note that rij is a binary decision variable that indicates whether the e(i,j) is part of
the solution and dij is the cost(distance) of using e(i,j). K is the number of vehicles
being used(could be one for multiple routes) and r (P ) is the minimum number of
vehicles required to serve customer set. Constraints (2 and 3) make each customer is
visited exactly once and constraints (4 and 5) ensure the satisfaction of the number of
vehicle routes. Finally, constraint (6) makes sure that the demands from all customers
are fully satisfied. Then given a solution π under the VRP environment G, the object
equation for DRL schema is to minimize the total solution length L(π | G):

L(π | G) =

|π|
∑

i=0

∥

∥cπ(i) − cπ(i+1)

∥

∥

2
(7)

where ∥·∥ computes the L2 distance of node pairs, c0 = cπ+1 and |π| represents for
the sequential length of solution π. Note that |π| > n as depot v0 may appear multiple
times during the solution trajectory for VRP but only at the beginning and end for
TSP. The following are the fundamental components of the overall DRL architecture:

1. State:
The system states are observed by two main characteristics: the location and

demand of the customer node, and the location and loading of the vehicle at the
current time step. The characteristics can be classified into two categories: dynamic
and static. The static features include the location features (Euclidean coordinates
ci). On the other hand, the dynamic features change over time. The vehicle’s loadQc

increases or clears (when it returns to the depot v0), while the customer’s demand
characteristics qi are cleared once the vehicle visits them.

2. Action:
The system environment analyzes the current status of the time step and sug-

gests the next node to be visited as an action to the vehicle. The unvisited nodes
are available as actions for the vehicle, and the system’s strategy determines the
probability distribution for implementing actions. The current action at time step
t is noted as πt while the conditional probability is p(πt | π1...πt−1, S), where S is
the current state.

3. Reward :
To calculate the reward in reinforcement learning, we take the negative value

of the path length of the node that is visited after acting. This is because we want
to optimize for the shortest access path and hope that the reward will increase.
After executing a strategy based on the probability distribution, the overall return
is calculated as the negative value of the path length after all node conditions are
met. In other words, it is equal to −L(π | G).

To summarize, the process of producing solution π is determined by the sys-
tem strategy, whose composition is the multiplication of the probabilities of selecting
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actions at different time steps t for stochastic policy. The training process is expected
to adjust the neural network parameter θ to find a solution under the given CVRP
graph G. The strategy can be expressed as follows:

pθ(π | G) =

m
∏

t=1

pθ (πt | G, πt′ , ∀t′ < t) (8)
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H(l)Z(g)

Previous two nodes

Fig. 1 An end-to-end GASE schema pipeline

4 GASE Model

In this section, we will demonstrate the GASE model pipeline, including encoder fea-
ture representation with attention sampling strategy, decoder solution generalization,
and training algorithms.

4.1 GASE framework

Figure 1 illustrates the process of using an end-to-end architecture to generate viable
solutions for VRP instances. In Figure 1(a), the initial graph of a VRP instance is
presented. To complete the input to Figure 1(b), features of nodes and edges are
linearly mapped through a fully connected layer and a batch normalization (Ioffe
and Szegedy, 2015) layer BN as shown in Eq.(9) and Eq.(10). Here, we use separate
parameters Wdp and bdp to represent the initial embedding of the depot node.
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xi =







BN(Wdpci + bdp) i = 0

BN [W0(ci||qi) + b0] i = 1...n
(9)

eij = BN(W ′
0dij + b′0) (10)

The features of customer node i(i = 1...n) include its deterministic coordinates and
dynamic demands (customer demands change once visited), while the Euclidean dis-
tance between node pairs i, j (i.e. di,j) represents the embedding of edges, ·||· is a
concatenation operation. When doing message passing in Graph Attention Networks
(GAT)(Veličković et al, 2017), we only consider aggregating the features of important
neighbours using graph attention sampling with a matrix filer, which is shown in Fig.
1(b). The encoder produces node representation and the entire graph readout after
multiple residual graph neural networks, which will be discussed in detail in the fol-
lowing subsection. The decoder uses an attention mechanism to gradually output the
node sequence through the embedded representation of the context and graph nodes.
The context representation draws on the recurrent neural network. It will be updated
with time steps to the node embedding of the entire graph readout and the node rep-
resentation output in the previous two action steps. The output node is sampled from
a probability distribution to avoid getting stuck in local optima during DRL training,
nodes that are unsatisfied will be masked to make probability vanish as shown in Fig.
1(c). The decoding process will repeat m times to produce a complete solution for a
VRP instance like Fig. 1(d).

4.2 Encoder with Attention Sampling

We proposed a novel encoder (Fig. 2) that avoids drawing the full expansion of graph
representation like Graph Convolution Network(GCN)(Kipf and Welling, 2016), whose
node aggregation weight is stable at each convolution layer, our strategy updates
the node embedding by iteratively sample K high-related nodes that may affect the
selection of decoder. Specifically, note an aggregating node set as V l

agg, V
l
agg ∈ V while

the unduplicated neighbours of any node i in set V l
agg are denoted as set V l

i agg. Our

encoder strategy first computes a correlation matrix Â shown in Eq.(11) by attention

mechanism. Âl has the same dimension as the adjacency matrix A without depot as
it is selected when the vehicle load is full.

Âl =







αl
11 · · · αl

1n
...

. . .
...

αl
n1 · · · αl

nn






(11)

Following the Transformer architecture (Vaswani et al, 2017), each element αl
ij ∈

[0, 1] in Âl represents the attention coefficient that node j to node i at layer l, as shown
in Eq.(12).Wq and Wk are learnable matrices, and different learnable matrices with
dimensions dq and dk are used at different attention layers to enhance the encoder’s
generative ability. σ is softmax function.
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Fig. 2 Encoder with Attention Sampling, using node 2 as an example. The process involves sam-
pling the top 2 nodes that are highly related to node 2 for aggregation. It’s important to note that the
attention matrix has rows representing the aggregating nodes, while the column elements represent
the attention coefficients of the neighbouring nodes. The red box illustrates the operation process
of a single node. All nodes execute their operations via matrix operations. The encoder is a resid-
ual network consisting of L layers. Each layer node combines the features of its top K neighbouring
nodes and edges. The encoder’s outputs are the hidden embedding H(L), which represents the node
embedding, and the average value Z(g), which shows the graph representation, that both are calcu-
lated after L layer residuals are computed.

αl
ij = σ







(

W l
qx

(l−1)
i

)T (

W l
k

(

x
(l−1)
j + e

(l−1)
ij

))

√
dk






(12)

The encoder then samples K highly correlated neighbours for each node using a
neighbour filter N l

f ∈ RN×N , where the K neighbours are noted as 1, and 0 for those
converse nodes, shown as Eq.(13), and δ is the ranking function to identify the position
of an element-wise flag to be 0 or 1.

N l
f = δ

(

Âl
)

(13)

To select the attention coefficient of high-related nodes, α of lower correlation nodes

in the matrix Âl is set to be 0, achieved by performing the Hadamard product operation

on the matrix Âl and N l
f at each layer l. When performing feature fusion, neighbour

nodes V l
i ne with α value 0 will not contribute their characteristics to aggregating nodes

i while high-related nodes aggregate their feature through another learnable weight
matrix W l

v and attention coefficient α. The formula (14) indicates the operations on
matrices while the formula (15) shows the calculation of hidden embedding in each
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layer from the element view. Here we still use σ for softmax function and α′
ij for exact

elements of αij after softmax, that is α′
ij = σ (αij).

H l = BN

(

(

W l
vH

(l−1)
)

· σ
(

Âl ⊙N l
f

)T

⊕H(l−1)

)

(14)

hl
i = BN





||V l
i agg||
∑

j=1

(

α
′(l−1)
ij wv

(

h
(l−1)
j + e

(l−1)
ij

))

⊕ h
(l−1)
i



 (15)

Z(g) = MEAN(MLP (H(L) ⊕H0)) (16)

= x̄ (17)

Note that ⊙ is Hadamard product operation. Each sublayer utilizes the skip-
connection (Szegedy et al, 2017) ⊕ and batch normalization(BN) (Ioffe and Szegedy,
2015) to prevent vanishment. The value of K is a hyperparameter, and the selection
of K affects the accuracy and generalization ability of the model to a certain extent.
The encoder’s outputs are the hidden embedding H(L), which represents the node
embedding, and the average value Z(g), which shows the graph representation. As
the graph embedding will be an important context input during decoding, instead of
solely relying on the mean of all node embeddings as the full graph representation,
like (Kool et al, 2019; Lei et al, 2022), we enhance the process by initially leveraging
the initial node vector H0 and the encoder’s output embedding vector HL to execute
a concatenation operation. Subsequently, we feed it into a shallow multi-layer percep-
tron (MLP) and ultimately derive the final full graph representation (Zhang et al,
2021) through a row-wise averaging operation. To streamline notation, x̄ is denoted
to represent the graph-level readout.

4.3 Decoder

The decoder will generate a feasible solution sequentially, following a similar approach
to (Kool et al, 2019) and (Lei et al, 2022). During the decoding process, shown in
Fig. 1(c), the Multi-Head Attention (MHA) (Vaswani et al, 2017) mechanism takes
a context embedding as its query input at each time step. The context vector at
the initial time step comprises the full graph representation x̄ and two node feature
vectors. These node feature vectors represent the output of the first time step hL

0 and
the output of the previous time step hπt−1

, respectively. The context vector is shown
in Eq.(18) and we use Wc to process the linear projection.

cmt =







Wc′
(

x̄||hL
0 ||Qt

)

t = 1

Wc′
(

x̄||hL
t−1||Qt

)

t > 1
(18)

Here the superscript m means MHA layer. We use the remaining vehicle capacity
Qt as well to be part of context embedding at MHA layer. To ensure the capacity
constraints, the remaining demand of nodes qi,t and the vehicle Qt is tracked at each
time step as below:
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qi,t+1 =







qi πt ̸= i

0 πt = i

(19)

Qt+1 =







Q πt = 0

max(0, (Qt − qπt,t)) πt ̸= 0
(20)

We first define three weight matrices that can be learned through training to
calculate the MHA value. These matrices are denoted asWq′ ∈ R

dh×dx ,Wk′ ∈ R
dh×dx ,

and Wv′ ∈ R
dh×dx . Here, dx represents the dimension of encoder node embedding hL

i ,
and dh is defined as dx

H . The value of H, which represents the number of heads used to
determine dh, is also used to compute the MHA value through a diffusion aggregation
method. The resulting context value is denoted as cst and recorded in the middle layer.
The superscript s means a single attention layer, that is, it will be the context query
of the next single-head attention layer. Similar to our encoder, we use Eq.(21) to
calculate the attention coefficient for query node cmt with key node hL

i , i ∈ {0, 1, ..., n}
at each time step t.

um
i,t =

(Wq′c
m
t )

T
(Wk′hL

i )√
dh

i ̸= πt′ , ∀t′ < t (21)

cst = Wm

(

||Hh′=1

n
∑

i=1

σ
(

um
i,t

)h′
(

Wv′h
L
i

)h′

)

(22)

The formula (22) illustrates the process of multi-head attention parallel aggregation to
generate single-head attention layer context input cst , where || is a serial concatenation
operation. H is the number of attention heads, equivalent to the node embedding
vector divided into H parts. A reminder here is that h′ is the head number while
h is the hidden embedding of our encoder. The context node cmt performs attention
calculations with each part of the divided node embedding vector and then merges the
results to enhance the generalization of the attention mechanism to the perception of
different feature areas.

The single-head attention layer coefficient us
i,t can be calculated using the formula

(23) with cst and each node embedding hL
i .

us
i,t = C · tanh

(

(Wq′′c
s
t )

T (Wk′′hL
i )√

dx

)

(23)

Motivated by work (Bello et al, 2016; Kool et al, 2019; Lei et al, 2022), here we first
control the attention coefficient within an interval [−C,C] through tanh and parameter
C, with the purpose of increasing the distinction of each node. When given the current
state of the GASE model G and the previous solution nodes πt′ , this result is then
used to calculate the probability distribution of all nodes to be output by the decoder
at the current time step through softmax function σ according to Eq.(24).

pθ (πt | S, πt′ , ∀t′ < t) = σ(us
i,t) (24)

13



Then decoder samples according to this probability distribution with a stochastic
property at each time step to form a feasible solution.

However, it’s important to note that the attention mechanism alone cannot guar-
antee that the output node satisfies the constraints. Therefore, this article utilizes
masking technology to ensure that the output node of each time step meets the problem
constraints. Attention, We employ distinct masking techniques before the softmax

(Fey and Lenssen, 2019) function at both multi and single attention layers to address
the constraints of customer nodes and the depot. For customer nodes, those that have
already been visited and nodes with demands that exceed the current vehicle capacity
are inaccessible, and their attention coefficients are set to negative infinity. That is,
um
t,i, u

s
t,i = −∞, if {(i ̸= 0, i ∈ π′

t, ∀t′ < t) or (qi > Qt)}. As a result, when calculating
the access probability of each node at the current time step, the access probability of
the inaccessible node will be 0. Furthermore, the depot node cannot be visited twice
consecutively within a sub-path. This means that when t = 1 or πt−1 = 0, the depot
will be masked at t as well, which can be represented as um

t,i, u
s
t,i = −∞, {(i = 0, t = 1)

or (i = 0, πt−1 = 0)}. Moreover, once the depot is accessed, the remaining capacity
of the vehicle will return to the maximum vehicle capacity by dynamic updating
Qt = Q, if πt = 0.

4.4 Training

This paper utilizes DRL schema to train the encoder-decoder GASE model. Reviewing
the GASE process, given an instance, a sequential feasible node solution π is used to
calculate the reward in a DRL schema through Eq. (7) with a probability pθ(π | G)
in Eq. (8). According to Monte Carlo estimation, the loss function L(θ | G) of model
training can be defined as the expected solution reward under the current learnable
parameters θ and an instance graph G, i.e. L(θ | G) = Eπ∼pθ(π|G)[L(π)]. To enhance
the model performance and convergence speed, we choose the Actor-Critic (Mnih
et al, 2016) method and baseline REINFORCE algorithm (Sutton et al, 1999). More
specifically, the GASE model, with parameter θ, incorporates both actor and critic
policy networks but differs in its solution node sampling approach. The actor policy
network, denoted as πθ, utilizes a stochastic sampling strategy and is reinforced by
the baseline critic network, πb

θ, which generates a greedy rollout. That means when
the decoder outputs the solution node, the baseline (critic network) always selects the
node with the highest probability after the softmax, while the actor model is sampled
according to the probability distribution. The policy gradient is shown as:

∇L (θ|G) = Eπ∼pθ(π|G)[(L(π|G)− b)∇θlogpθ(π|G)] (25)

where b represents the length of a solution generated by the critic policy network using
a greedy decoding strategy.

This improved actor-critic structure utilizes self-critic models, the critic network
outperforming randomly sampled actors in the initial stage of training due to the
characteristics of greedy reward. However, it’s important to note that relying on a
greedy model can result in easily reaching local optimal solutions. Consequently, it
will continuously update the critic network’s parameters to ensure the baseline rollout
remains the most optimal network model. If the difference between the GASE model
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and the baseline model, aka the REINFORCE, denoted as (L(π|G) − b), is negative,
it indicates that the current GASE model (i.e., the actor network) outperforms the
critic baseline rollout. In such cases, it is essential to consider updating the critic
network to align with the current actor network in the next training iteration. To
ensure effectiveness, the baseline is only updated when the difference in path length
calculated between the actor-network and the baseline on the validation set meets the
significance level of the paired t-test, specifically when its significance value is less than
5%. Updating the enhanced baseline will further improve the performance of the actor
network until the policy gradient value converges or all training epochs are completed.
The baseline REINFORCE algorithm is illustrated in Algorithm 1.

Algorithm 1 Baseline REINFORCE Algorithm

Input: Actor policy network πθ; Baseline policy network πb
θ; Training epochs E; Batch

size B; Steps per epoch T ; Significance level α.
1: Initialization: θ, θb ← Xavier init θ;
2: for e in 1...E do

3: for t in 1...T do

4: Gi ← RandomInstance(), ∀i ∈ {1, ...., B}
5: πi ← SampleSolution(Gi, pθ), ∀i ∈ {1, ...., B}
6: πb

i ← GreedyRollout(Gi, p
b
θ), ∀i ∈ {1, ...., B}

7: Compute L(πi|Gi), L(πb
i |Gi) through Eq. (7)

8: ∇L ←∑B
i=1(L(πi)− L(πb

i ))∇θlogpθ(πi|Gi)
9: θ ← Adam(θ,∇θL)

10: end for

11: if OneSidedPairedTTest(pθ, p
b
θ < α) then

12: θb ← θ

13: end if

14: end for

Output: Parameters set θ of actor network

5 Experiments

We conducted a series of experiments to assess the effectiveness of our proposed GASE
model. We evaluated the model’s ability to generate optimal length routes, the speed
at which it performs training and inference, its generalization capability, and the
sensitivity of its parameters. The experimental results were analyzed using both real
and simulated data sets to address the following four research questions: Q1 (Solution
Performance): Does the graph attention-based sampling model we propose have a
competitive advantage over other state-of-the-art models in terms of the length of
its generation path, the speed of its training and inference, and other factors? Are
there any advantages over other models? Q2 (Sensitivity Analysis): How does the
performance of the GASE model change when we modify the sampling parameter
K? Q3 (Generalization Ability): As pure data-driven models often depend on the
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distribution of data, does the GASE model have the ability to solve problems of
different scales and demonstrate generalization ability in solving medium- and large-
scale problems compared to other data-driven models?

5.1 Experiment Setup

5.1.1 Dataset

When addressing the VRP, previous studies have shown a tendency to process data
sets in a similar manner. These data sets are typically randomly generated or consist
of simulated or real data, such as those found in CVRPLIB Uchoa et al (2017), to
assess the model’s performance. This paper aims to simultaneously evaluate both
the simulated and real data sets, comprehensively analysing the model’s accuracy,
computational speed, and generalization ability. Similar to prior research, this paper
uses different random seeds to generate node coordinates and requirements of varying
scales for the simulation data set. Additionally, the performance of our proposed GASE
model is evaluated using CVRPLIB dataset.

5.1.2 Baseline

When selecting a baseline, we chose the optimal solution generator Gurobi (Gurobi
Optimization, LLC, 2024), the popular heuristic algorithm LKH (Lin and Kernighan,
1973), and the solver OR-tools (Google Optimization Tools, 2024) developed by Google
for comparison. For the data-driven model based on reinforcement learning, we selected
three state-of-the-art models that applied different popular deep learning models in
different periods: the long short-term memory (LSTM) network called pointer network
sequence model (PtrNet) (Vinyals et al, 2015), the attention mechanism sequence
model based on the transformer architecture (AM Model) (Kool et al, 2019), and the
graph model of graph attention residual network (E-GAT) (Lei et al, 2022). These were
chosen as the end-to-end learning-based baseline models to compare with GASE. The
first two models were prevalent, and the AM model was used as the basic model for
many works. The third graph model claims to have achieved the latest state-of-the-art
results.

5.1.3 Parameter settings

To ensure the reliability of experimental results, we have carefully maintained certain
basic parameters for the problem and neural network model. These include random
seed settings, maximum vehicle capacity under different problem scales, number of
layers for graph neural network aggregation, neural network optimizer, parameter
initialization settings, reinforcement learning training settings, and more. The specific
software and hardware parameter settings can be found in the table 2. Additional
hyperparameters of the model proposed in this article will be discussed in detail in
the sensitivity analysis section.
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Table 2 Parameter Settings

Parameters Setting
GPU Nvidia RTX A6000
CPU Intel Xeon Silver 4126 2.10GHz
Vehicle Max Capacity {node 20:30; node 50: 40; node 100: 50}
customer need random from 1 to 9
Optimizer Adam (Kingma and Ba, 2014)
Network parameter initialize Xavier (Glorot and Bengio, 2010)
Training instances 128000
Training epoch 200
batch size 128
Learning rate 3× 10−4

Learning rate decay β 0.96
encoder layers 4

5.2 Evaluation Results

The model’s performance is primarily assessed based on the average length of the
solution on 1000 instances of the test set. To evaluate the quality of the model, we
compare the path length and inference speed of each model on the test set, while
keeping the random seeds the same. During testing, we consistently apply the greedy
decoding method across the test set. Our experiments have shown that, when the
parameter model of the neural network is fixed, the output results of the greedy
strategy generally outperform the sampling strategy. This finding aligns with the AC
algorithm used during training, where Greedy (critic) guides Sampling (actor). GASE
performance results are presented in Table 3 and Table 4. The gap indicator refers to
the difference between the current model and the best baseline model on the test set.

5.2.1 Solution Performance for Q1

Based on table 3, our proposed model has improved the quality of solutions in VRP of
different scales under similar conditions, also accelerating the inference time in com-
parison to graph models. Compared to other models, the gaps between our model and
the current best baseline are only 1.80% on VRP20, 3.46% on VRP50, and 4.60% on
VRP100, which outperformed other deep learning-based models. This result demon-
strates that based on attention sampling, our proposed graph encoder is better at
extracting the features of nodes and edges in VRP. This allows for the output of bet-
ter node representation and graph representation as input to the decoder during the
decision-making process. Our model is less affected by poor nodes and edges, which
leads to an improvement in the quality of the solution. Additionally, our matrix-based
filter parallelizes the sampling calculation and encoding process, making full use of
the parallel computing characteristics of the GPU. This has reduced the training time
and inference time, making the model easier to converge. The AM model and E-GAT
model employ a sampling search mechanism that exhaustively seeks optimal solutions
within a constrained range. This approach, however, incurs high time complexity and
results in prolonged inference times, ranging from several minutes to several hours
depending on the problem size. Consequently, this diminishes the efficiency and time-
liness of problem-solving. In contrast, our model strikes a superior balance, ensuring
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high-quality results while significantly enhancing inference speed. This comprehensive
comparison underscores our model as the more effective choice for timely and efficient
problem resolution.

Table 3 compare with other approaches

Model
CVRP20 CVRP50 CVRP100

Length Gap(%) Time Length Gap(%) Time Length Gap(%) Time
Gurobi 6.10 0.00 - - - - - - -
LKH 6.14 0.58 2h 10.38 0.00 7h 15.65 0.00 13h

OR Tools 6.43 5.41 - 11.31 9.01 - 17.16 9.67 -
PtrNet 6.59 8.03 0.11s 11.39 9.78 0.16s 17.23 10.12 0.32s

PtrNet(bs) 6.40 4.92 0.16s 11.15 7.46 - 16.96 8.39 -
AM model 6.4 4.97 1s 10.98 5.86 3s 16.8 7.34 8s

AM model(sampling) 6.25 2.49 6m 10.62 2.40 28m 16.23 3.72 2h
E-GAT 6.26 2.60 2s 10.80 4.05 7s 16.69 6.68 17s

E-GAT(sampling) 6.19 1.47 14m 10.50 1.54 1h 16.16 3.25 4h
Our approach 6.21 1.80 1.7s 10.74 3.46 2.98s 16.37 4.60 6.65s

5.2.2 Sensitivity Analysis for Q2

We investigated the impact of key parameters in the GASE model, including sampling
size, number of attention heads, and skip-connection layers, as shown in Fig. 3, Fig. 4
and Fig. 5. In general, we fixed two of the hyperparameters and varied the remaining
one to explore the model sensitivity.

Impact of sampling size: The impact of varying sampling sizes on the per-
formance of the proposed model was systematically examined across CVRP20 and
CVRP50 problem instances. Throughout the evaluation, a fixed configuration was
maintained, with the skip-connection layer set to 4 and the number of multi-heads
set to 8 (will be analyzed in the following sections). The findings in Fig.3 revealed
that the model exhibited optimal convergence speed and performance metrics when a
sampling size equivalent to 50% of the problem scale was employed for both CVRP20
and CVRP50 instances. Consequently, a sampling strategy involving 50% of the nodes
has been adopted for problem instances of size 100. This decision is driven by the
significant computational demands associated with training on larger problem scales.

Impact of skip-connection layer numbers: Our experimental findings, shown
in Fig.4, underscore the critical influence of the number of layers utilized for integrating
residual connections within the graph encoder network on the model’s performance.
Notably, an inadequate or excessive number of layers can detrimentally affect the
model’s efficacy across validation and test datasets. This phenomenon likely arises from
the potential for extensive residual layers to induce over-smoothing during the graph
feature encoding process, whereas a paucity of layers may inadequately capture feature
embeddings. According to the findings of our empirical investigation, the effect of
selecting the residual connection of a 4-layer encoder architecture is generally superior
to that of the residual connections.

Impact of the number of multi-head: We note a discernible enhancement in
the performance of our model with an increase in the number of attention heads, shown
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Fig. 3 Validation performance of GASE for several skip-connection layers on problem size 20/50
and different sampling rate K.

0 25 50 75 100 125 150 175 200
Epoch

6.2

6.4

6.6

6.8

7.0

7.2

7.4

Re
wa

rd

vrp20_25%node_2layers_8heads
vrp20_50%node_2layers_8heads
vrp20_75%node_2layers_8heads
vrp20_100%node_2layers_8heads

(a) Convergence Curve of the GASE Model on
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(b) Convergence Curve of the GASE Model on
CVRP20 with 3-Layer Residual Connection
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(c) Convergence Curve of the GASE Model on
CVRP20 with 4-Layer Residual Connection
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(d) Convergence Curve of the GASE Model on
CVRP20 with 5-Layer Residual Connection

Fig. 4 Validation performance of GASE for different skip-connection layers on problem size 20 and
various sampling rate K.

in Fig. 5. This augmentation is attributed to the capacity of additional heads to yield
more balanced and precise outcomes. However, it is imperative to acknowledge that
such augmentation also extends the training and inference times. Building upon the
insights gleaned from our observational experimentation, particularly with regards to
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the determination of optimal residual layers and sampling coefficients, we have opted
to employ 8 attention heads. This decision is geared towards addressing larger vehicle
routing problems with enhanced efficiency and effectiveness.
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(a) Convergence Curve of the GASE Model on
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(c) Convergence Curve of the GASE Model on
CVRP20 with 8-Head Attention Mechanism

Fig. 5 Validation performance of GASE for different attention heads on problem size 20 and various
sampling rate K.

5.2.3 Generalization Ability for Q3

In this section, we investigate the impact of model generalization, specifically evaluat-
ing the model’s performance across varying problem sizes. To this end, we extend our
analysis to real-world data by employing the GASE model configuration on benchmark
datasets from CVRPLIB. Specifically, we use a model trained on 50-node instances for
problems with fewer than 50 nodes and the 100-node model for problems exceeding
50 nodes. The comparative results, shown in Table 4, indicate that the GASE model
demonstrates strong performance on real-world datasets with a lower average gap for
uniformly distributed data.

20



Table 4 Different Model Performance on CVRPLIB Datasets

Data instance Nodes number
Optimal Solution Ours Approach E-GAT AM Model

Length Length Gap(%) Length Gap(%) Length Gap(%)
A-n32-k5 31 784 827 5.48 789 0.63 839 7.01
A-n36-k5 35 799 805 0.75 839 5.00 878 9.89
A-n37-k5 36 669 693 3.58 710 6.12 711 6.28
A-n38-k5 37 730 735 0.68 751 2.87 762 4.38
A-n39-k5 38 822 831 1.09 838 1.94 840 2.19
A-n44-k6 43 937 950 1.39 984 5.01 997 6.40
A-n45-k6 44 944 963 2.01 984 4.23 1015 7.52
A-n46-k7 45 914 1066 16.63 999 9.29 997 9.08

A-n48-k7 47 1073 1127 5.03 1123 4.65 1156 7.74
A-n63-k10 62 1314 1396 6.24 1519 15.60 1416 7.76
A-n64-k9 63 1401 1517 8.28 1659 18.40 1493 7.76

A-n69-k9 68 1159 1216 4.92 1264 9.05 1237 6.73
B-n34-k5 33 788 867 10.03 812 3.04 837 6.22
B-n35-k5 34 955 962 0.73 986 3.24 1005 5.24
B-n45-k6 43 678 706 4.13 729 7.52 755 11.36
B-n51-k7 50 1032 1240 20.22 1045 1.25 1173 13.66
P-n50-k8 49 631 650 3.01 655 3.80 660 4.60
P-n51-k10 50 741 806 8.77 811 9.44 773 4.32

P-n70-k10 69 827 877 6.04 865 4.59 900 8.83
Average Gap - - - 5.74 - 6.09 - 7.21

6 Conclusion

In this paper, we introduce a framework for solving vehicle routing problems using
graph attention sampling-based learning. Our framework automatically selects the top
K% correlated nodes as an encoder input to generate high-quality embeddings for
nodes, edges, and the whole graph. We then use a multi-head attention based decoder
that utilizes the embedding representation to construct the solution via a policy-
driven deep reinforcement learning schema. We conducted extensive experiments on
both randomly generated VRP instances and benchmark datasets and compared our
results with six baseline methods to demonstrate the effectiveness of our proposed
framework. Our analysis revealed that the proposed model achieved new state-of-the-
art performance on CVRP tasks compared to other data-driven end-to-end methods. It
is worth noting that purely data-driven reinforcement learning methodologies exhibit
a high degree of sensitivity to the dependence on the underlying data distribution. An
exaggerated imbalance in the distribution of nodes and capacity is unlikely to yield
improved outcomes. Consequently, end-to-end learning strategies that can effectively
account for various data distributions may emerge as a promising research direction
in the future.
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