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Abstract

Multi-site brain MRI analysis is needed in big data neuroimaging studies, but challenging. The 

challenges lie in almost every analysis step and especially in skull stripping. The diversities in 

multi-site brain MR images make it difficult to tune parameters specific to subjects or imaging 

protocols. Alternatively, using constant parameter settings often leads to inaccurate, inconsistent 

and even failed skull stripping results. One reason is that images scanned at different sites, under 

different scanners or protocols, and/or by different technicians often have very different fields of 

view (FOVs). Normalizing FOV is currently done manually or using ad hoc pre-processing steps, 

which do not always generalize well to multi-site diverse images. In this paper, we show that (a) a 

generic FOV normalization approach is possible in multi-site diverse images; we show 

experiments on images acquired from Philips, GE, Siemens scanners, from 1.0T, 1.5T, 3.0T field 

of strengths, and from subjects 0–90 years of ages; and (b) generic FOV normalization improves 

skull stripping accuracy and consistency for multiple skull stripping algorithms; we show this 

effect for 5 skull stripping algorithms including FSL’s BET, AFNI’s 3dSkullStrip, FreeSurfer’s 

HWA, BrainSuite’s BSE, and MASS. We have released our FOV normalization software at http://

www.nitrc.org/projects/normalizefov.
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1 Introduction

The success and consistency of skull stripping is critical for multi-modal studies 

investigating structure-function correlation [1,2], for longitudinal studies quantifying neuro-

development or brain disease progression [3,4,5,6], and for population studies capturing 

common phenotypic features of neurological disorders [7,8]. However, multi-site and 

diverse sets of brain MR images make it difficult to tune skull stripping parameters specific 

to subjects or imaging protocols. Using fixed skull stripping parameters, however, leads to 

inaccuracy, inconsistency, and not rarely, failure. One reason is that different MR images 

may have very different FOVs. Difference in FOVs comes from scanning at different 

imaging sites, under different imaging protocols or scanners, or by different technicians 

(e.g., [9,10,11,12,13,14]), or even from subjects across a wide range of ages (e.g., in 

neurodevelopment studies [11]).

Figure 1 shows how FOV variations can contribute to inaccuracy, inconsistency and even 

failure in skull stripping. The figure includes MR images of an elderly subject over 60 years 

of age (Subject A) and of a child 2 years of age (Subject B), scanned in different sites. 

Images in the original FOV suffer from much larger skull stripping errors (highlighted by 

red contours in the figure) than images after FOV normalization. This observation is not 

specific to just one image or just one skull stripping algorithm. Indeed, the effect is common 

to some widely-used skull stripping methods, including: BET [15,16] and 3dSkullStrip [17], 

representing deformable surface evolution based methods; BSE [18], representing methods 

based on edge detection followed by morphological operations; and HWA [19], representing 

watershed and atlas-based hybrid approaches. Also note that these tools are part of several 

major neuroimaging analysis pipelines: FSL [20], AFNI [17], BrainSuite [18] or LONI 

pipeline [21], and FreeSurfer [22], respectively. Therefore, FOV variation is at least one 

factor contributing to inconsistency, inaccuracy and failure of skull stripping in diverse 

datasets. This problem has also been recognized in other studies [23,24,25,26].

We hypothesize that it is feasible to automatically normalize FOV without any need for 

parameter tuning in diverse datasets. We further hypothesize that generic FOV normalization 

can promote consistency and accuracy of many skull stripping tools in diverse brain MRI 

datasets. To test these two hypotheses, this paper contains two parts.

In the first part of this paper, we propose an atlas-based FOV normalization and validate it 

in diverse datasets. In the literature, FOV normalization is a under-explored topic. Many 

studies relied on expert manual cropping/truncating of input images [26,27]. The FSL 

software package provides a ”robustfov” program for image FOV truncation [20]. This 

program first rotates the 3D image to the orientation of the MNI152 atlas, and then truncates 

the image, assuming that the brain size in the z dimension (the superior-inferior axes) is 

170mm (the default setting). For subjects having different brain sizes, users need to adjust 

this parameter. The robustfov program was recently used in [28,24]. However, the need for 

parameter tuning [28] may limit its general use in more diverse datasets. Another recent 

approach [25] proposed to pre-process images by spatially registering the standard MNI152 

atlas into the target image, and then truncating the target image outside the FOV of the 

warped MNI152 atlas. However, the MNI152 atlas and an arbitrary input image may have 
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very different FOVs, challenging the registration [29,30]. Similar to [25,20], our approach 
also uses the MNI152 atlas [31] to define a standard FOV. In contrast to them, we use an 

attribute-based registration algorithm [32] with only its affine component, which has been 

shown relatively more robust to FOV mismatch [32,30]. Moreover, instead of a single direct 

MNI152-to-subject registration, we use multiple intermediate templates to build multiple 

bridged registrations (MNI152-to-template-to-target). We want to emphasize that this is not 

equivalent to classic multi-atlas segmentation framework, since we only rely on one atlas 

(MNI152 atlas). This framework is less common, and to our knowledge, the first time it is 

used for FOV normalization.

In the second part of this paper, we tested the effect of FOV normalization on 5 skull 

stripping algorithms: BET [15,16] from FSL, 3dSkullStrip [17] from AFNI, BSE [18] from 

BrainSuite and LONI pipeline [21], HWA [19] from FreeSurfer, and MASS [33]. In the 
literature, the effect of FOV normalization on skull stripping has been sometimes 

mentioned (e.g., [23,24, 25,27]), but mostly with respect to manual FOV truncation, only in 

one or two skull stripping algorithms/tools (e.g., BET only in [23], multi-atlas skull stripping 

only in [24]), and moreover, only on one or two relatively homogeneous datasets. Several 

comparative studies exist evaluating skull stripping algorithms (e.g., [34,35]), but the effect 

of FOV normalization remains an open question. We also compared the proposed FOV 

normalization algorithm with one existing FOV cropping tool (FSL’s robustfov) for the 

effects on skull stripping.

2 Methods: Part I. FOV Normalization

2.1 Overview

Our FOV normalization approach seeks a binary mask. In this binary mask, the foreground 

identifies the standardized FOV. Two fundamental questions are:

1. How to define the ”standard FOV” in an atlas; and

2. How to map the standard FOV from the atlas to an arbitrary image.

The first question is addressed in the first subsection below: Defining a Standard FOV in the 

MNI152 Atlas. The second issue is addressed in the second subsection: Multiple Bridged 

Registrations.

Fig. 2 displays the proposed normalizeFOV algorithm. We denoted the MNI152 atlas as A = 

(IA, FOVA), the N intermediate template images IKn, indexed by n = 1, 2, … , N, and the 

target image as T = (IT, FOVT). Here, I refers to the intensity image. All images IA, IKn and 

IT are known. FOV is a binary mask whose foreground defines the FOV of the image. FOVA 

is known (see Fig. 3). FOVT is unknown and to be computed. h is the transformation that 

registers two images. Our goal is to transform the standard FOVA into the target image 

space, and to compute FOVT:

FOV T = FUSION ℎA Kn°ℎKn T FOV A n = 1
N

(1)
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2.2 Defining a Standard FOV in MNI152 Atlas

We used the MNI152 atlas [31] because of its inclusion in many state-of-the-art 

neuroimaging toolkits (e.g., FSL [20], SPM [36] and AFNI [17]) and its use in many 

morphometry studies (e.g., [37]). As such, we defined the ”standard FOV” as a binary mask, 

which has value 1 in all the foreground voxels of the MNI152 atlas, with a 5mm dilation 

margin, and has value 0 everywhere else. This ”standard FOV” binary mask is shown as the 

blue mask in Fig 3 (overlaid on the MNI152 atlas intensity image). The surface rendering in 

Fig. 3 allows one to see that, the standard FOV covers the skull, the whole brain, the eyes, 

and part of the ears and the nose that are 8mm inferior to the most inferior part of the 

cerebellum, plus a 5mm dilation. The 5mm dilation outside the foreground of the MNI152 

atlas was to account for possible transformation errors. We will revisit this choice in the 

Discussion section.

2.3 Multiple Bridged Registrations

An arbitrary input image may have very different FOV from the MNI152 atlas. We recently 

developed a similarity metric based on texture attributes instead of image intensities. As a 

result, registration in the presence of FOV mismatch is subject to fewer errors and a largely 

reduced failure rate [30]. However, it still does not completely eliminate registration failure 

going from the MNI152 atlas directly to an arbitrary input image. Therefore, we present 

below a multiple bridged registration framework to replace a single direct MNI152 atlas-to-

input registration.

The Library of Intermediate Templates (Kn’s).—We collected N = 10 intermediate 

templates that had diverse FOVs, scanning sequences, and imaging contrasts. Of these 10 

images, 4 were from the Alzheimers Disease Neuroimaging Initiative (ADNI) set [12] 

(scanned in 3 centers, of which 2 centers used Siemens Trio 3T scanner and the other used 

GE 3T scanner, 3D magnetization prepared rapid gradient echo (MP-RAGE) sequences, 

with a typical image size of 200 × 256 × 200 and a typical voxel size of 1 × 1 × 1mm); 3 

were from the Open Access Series of Imaging Studies (OASIS) dataset that was designed 

for cross-sectional MRI data in young, middle aged, non-demented, and demented older 

adults (18–96 years old, scanned on a Siemens 1.5T scanner at the University of 

Washington, MP-RAGE sequence, with a typical image size of 256×256×128 and a typical 

voxel size of 1×1×1mm) [38]; and 3 were scanned at the University of California, Los 

Angeles, with a high-resolution 3D Spoiled Gradient Echo (SPGR) sequence on a GE 1.5T 

scanner, with a typical image size of 256×300×256 and a typical voxel size of 1 × 1 × 1mm) 

[39,40].

Note that, these templates have very different original FOVs (the yellow contours in Fig. 4). 

They were chosen intentionally, so that the intermediate templates of varying FOVs could 

potentially better cover a wide variety of FOVs in an arbitrary image. Note that, the fact that 

templates have different FOVs from that of the MNI152 atlas was not a big concern, since 

we could ensure that the pre-computed registrations between the MNI152 atlas to the 

intermediate templates are accurate. Such registrations need to be done once only, and then 

kept fixed. The registrations between intermediate templates (the bridges) to an arbitrary 

input image need to be re-computed when a new image is presented.
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Precomputed Registration between the MNI152 Atlas and Intermediate 
Templates ℎA Kn .—We calculated the affine transformation between the MNI152 atlas 

and each of the templates by registering their skull-stripped versions (skull stripping masks 

were provided by the public databases). Note that we used skull-stripped brains here to 

greatly reduce the difficulty of registration. Fig. 4 shows 

ℎA Kn°ℎKn T FOV A (n = 1, …, N) when Kn = T i . e .  , ℎKn T =  Identity   as outlined by 

the red contours. These registrations are pre-computed and kept the same for every input 

target image.

Registration between Intermediate Templates and the Target ℎKn T .—We 

computed ℎKn T  by an attribute-based registration tool that showed increased robustness 

dealing with FOV mismatch [30] (the ”-a 2” argument for robust affine registration in the 

DRAMMS software). Unlike the pre-computed registrations between the MNI152 atlas and 

the intermediate templates, where we used skull-stripped images to improve registration 

accuracy, the registration between intermediate templates to an input target was only 

computed using the with-skull images. This was because skull-stripping was our final goal 

and thus not assumed in an arbitrary input image.

Combining Multiple Bridged Registrations (Fusion(·).)—Due to FOV mismatch, we 

could not assume that all bridged registrations were successful. We did assume, though, that 

at least some succeeded. This was because the intermediate templates covered a wide range 

of FOVs. A situation in which all intermediate templates failed to align with the target image 

should be rare, and indeed did not occur in our experiments with very diverse data. The 

problem, then, was to effectively select the successful bridged registrations. We ranked the 

quality of the bridged registrations by the similarity with the target image after registration, 

within the intersection of their FOVs, and selected the intermediate templates by the 

following criterion:

SIMn = CCΩ∩ IT , ℎA Kn T IA
× NMIΩ∩ IT , ℎA Kn T IA
− det Id − ℎA Kn T

S
(2)

wℎere Ω∩ = ΩT ∩ ΩℎKn T Kn (3)

and ℎA Kn T = ℎA Kn°ℎKn T (4)

The selected templates formed a set QT,

QT = Kn ∣ SIMn ≥ αM where M = max
n

SIMn (5)
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Here α was a threshold parameter that we empirically set to 0.9. The final normalized FOV 

was the STAPLE-based [41] fusion of the standard FOV as propagated by those selected 

templates, i.e.,

FOV T = STAPLE ℎA Kn T FOV A n = 1
QT

forKn ∈ QT
(6)

2.4 Validations

Datasets.—We used T1-weighted MR images from 126 subjects in 5 datasets. As Table 1 

shows, the ages of those subjects ranged from birth to 90 years old. Their images presented 

different FOVs and different image contrasts. They were from at least 5 different imaging 

sites, with scanners of different vendors and strengths of magnetic fields.

Qualitative Evaluation of FOV Normalization.—We applied the whole framework to 

all 126 images in all 5 testing datasets. We qualitatively examined (a) bridged versus direct 

registration; and (b) multiple bridged registrations, with the proposed selection criterion 

(Eqns. 7 and 8) in place, versus single bridged registration. Finally, we visualized the FOV 

normalization results for some randomly-chosen subjects in each of the 5 datasets.

Quantitative Evaluation of FOV Normalization.—We did this in a leave-one-out cross 

validation framework in the 10 intermediate templates. Each time we picked an intermediate 

template as the target image, we used the MNI152 atlas and the remaining 9 intermediate 

templates to find the normalized FOV in the target image. The ground-truth normalized 

FOVs in the target images were not available. Alternatively, we compared the normalized 

FOV mask with the transformed MNI152 FOV mask based on directly registering the skull-

stripped MNI152 atlas and the skull-stripped target image. In this comparison, we used the 

Dice Coefficient between the masks for quantitative evaluation of the accuracy of FOV 

normalization.

3 Method: Part II. Effect of FOV Normalization on Skull Stripping

Skull Stripping Diverse Datasets with and without FOV Normalization.

We measured the accuracy of skull stripping before and after FOV normalization in the 5 

diverse datasets. The accuracy was measured by the Dice Overlap Coefficient against 

manually annotated brain masks. We used 5 skull stripping tools: BET, 3dSkullStrip, BSE, 

HWA and MASS. They represent a variety of algorithms as we described in the 

Introduction. As such, we performed a total of 1,260 skull stripping jobs (=126 images × 2 

variants (before and after FOV normalization) × 5 skull stripping algorithms).

The parameter settings for a skull stripping algorithm was kept fixed before and after FOV 

normalization. We set the parameters as follows.

For BET, we set ”fractional intensity threshold” (the ‘-f’ option) at 0.3 and the ”vertical 

gradient of fractional intensity threshold” (the ‘-g’ option) at 0. This setting was the same as 

in [44] and [27], which independently found the above parameters optimal for skull stripping 
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a set of adult brain images, and a set of pediatric brain images, respectively. Two other 

studies set the parameters for BET otherwise — [23] at f=0.1 and g=0, which was close to 

the parameter setting we adopted, and [45] at f=0.65 and g=−0.3.

For 3dSkullStrip, we followed [45], which examined various parameter combinations and 

set ”shrink factor” (the ‘-shrink_fac’ option) at 0.7 and set the ”speed of expansion” (the 

‘exp_fac’ option) at 0.1.

For BSE, there are two important parameters: the ”edge detection constant” (the ‘-s’ 

argument) and the ”diffusion constant” (the ‘-d’ argument). Some set the two parameters at 

0.7 and 10 [45], or 0.6 and 5 [27], or 0.7 and 20 [44], but the results were bad in our 

experiments (visual examinations). So we followed [46] to set these two parameters at 0.62 

and 35, and another parameter #iteration=3. The same parameters were adopted in other 

studies [47,48].

For HWA, we adopted the same setting suggested in both [45] and [44], using the ‘-less’ 

argument while keeping other options default.

For MASS, we used the same setting suggested in [33], which used the default parameter for 

multi-site images.

Comparison with another FOV Truncation Tool.

We compared two FOV normalization approaches (FSL’s robustfov and our proposed 

normalizeFOV), based on how they impacted the consistency, accuracy and success rate of 

skull stripping, by the aforementioned 4 skull stripping algorithms in 5 datasets.

Accuracy was measured by the Dice Coefficient between the manual and algorithm-

computed skull stripping results before and after each FOV normalization tool. Higher Dice 

Coefficients meant that a specific FOV normalization approach led to a higher skull 

stripping accuracy.

Consistency was measured by the standard deviation and distribution of the Dice 

Coefficients in the diverse images. More compact spread of Dice Coefficients, and hence 

smaller standard deviation, indicated that a specific FOV normalization approach led to 

more consistent skull stripping results.

Success rate was measured by the percentage of images that had a Dice Coefficient greater 

than a threshold. We used different threshold values, namely 0.7, 0.8, and 0.9, to define 

success rate — call a skull stripping result ”successful” if it has a Dice Coefficient with 

manual annotations over 0.7, 0.8, or 0.9.

4 Results

4.1 Overall FOV Normalization: Quantitative and Visual Results

Our first set of results was the quantitative leave-oneout cross validation in the 10 

intermediate templates. The Dice Coefficients between the computed and standardized 
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FOVs were 0.936± 0.047. This confirmed that our automatically computed FOV and 

manually normalized FOV were in close agreement.

In our second set of results, we ran the FOV normalization in all 5 diverse datasets 

combined. Fig. 5 visualizes the normalized FOV (yellow masks on top of the original 

images) in 15 randomly-chosen subjects, 3 from each of the 5 datasets. Three observations 

could be made from Fig. 5.

One was the effectiveness of the proposed FOV normalization. By visual inspection, the 

FOV normalization was successful in all subjects. Here we defined success when the 

computed FOV covered the whole brain, the skull from left to right and from anterior to 

posterior, and ended 10–20mm inferior to the most inferior voxel in the cerebellum. Such an 

FOV was similar to the standard FOV in the MNI152 space we defined in Fig. 3.

The second observation was generality. Our framework generally applied to diverse images 

despite the variability in scanner, vendors, fields of strength, subject age, image resolution 

and orientation. And this was achieved at a fixed set of parameters and by using a fixed set 

of intermediate templates (all from adults).

The third observation was robustness. In Fig. 5, neonatal images from the BCH and ICL 

datasets contained shoulders and chests. The proposed FOV normalization was still 

successful. Two images in the ICL dataset even contained the hands of neonates in their 

mouths (sagittal view of the first two columns in the ICL dataset in Fig. 5). Yet, our 

proposed framework was also successful.

4.2 FOV Normalization’s Effects on Skull Stripping

Visually, as Fig. 1 already showed, FOV normalization helped improve skull stripping 

accuracies for one subject in the ADNI dataset (elderly >70 years of age, the top row in Fig. 

1) and another subject in the ICL dataset (child 2 years of age, the bottom row in Fig. 1). For 

the randomly chosen ADNI subject, the performances of BET, BSE and HWA improve 

significantly after FOV normalization. For the randomly chosen ICL subject, BET, 

3dSkullStrip, BSE and HWA all performed much more accurately or even turned failure into 

success after FOV normalization.

Quantitatively, Fig. 6 shows the skull stripping accuracies before and after FOV 

normalization. For each dataset, FOV normalization significantly improved the performance 

of at least 3, and mostly 4, out of all 4 skull stripping algorithms/tools. In many cases, we 

saw the failed skull stripping results turned into reasonably good results after FOV 

normalization. In big data neuro-development studies (e.g., [11]), all those images need to be 

batch processed. The far right columns in all panels in Fig. 6 confirmed that FOV 

normalization significantly improved all skull stripping algorithms examined.

We note that the change in skull stripping accuracy after FOV normalization is more than 

marginal improvement and has meaningful impact. For many skull stripping algorithms, and 

for many datasets, the average Dice Coefficient increased from 0.6–0.75 to 0.85–0.9 or 

above. Some Dice Coefficients less than 0.8 or even less than 0.5, which meant failed skull 
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stripping, were significantly improved to 0.85 or above, which are reasonably good or 

successful skull stripping results. Such examples can be seen in BET for all the datasets, in 

3dSkullStrip for the LPBA40 dataset, BSE for the LPBA40 and BCH datasets, HWA for the 

LPBA40 and ICL datasets, and MASS for all datasets. We will further quantify the success 

rate in the next subsection when comparing no FOV normalization with different FOV 

normalization approaches.

4.3 Comparison with Another FOV Truncation Tool.

Fig. 7 compares two FOV truncation/normalization approaches, in terms of their effects on 

skull stripping for 4 skull stripping algorithms. The far right shadowed columns in all sub-

figures show that, the skull stripping accuracies were statistically higher and more consistent 

after our proposed FOV normalization than after FOV truncation by FSL’s robustfov. And 

this observation applies to all 5 skull stripping algorithms being tested here. When it comes 

to a specific skull stripping algorithm, BET was most sensitive, BSE and HWA were least 

sensitive to the different FOV operations. When it comes to a specific dataset, ADNI was 

least influenced, meaning that different FOV normalization approaches did not make 

statistically significant difference for skull stripping the ADNI dataset.

Table 2 compares the success rate of skull stripping before any FOV operation, after FSL’s 

robustfov and after our proposed FOV normalization. ”Successful” skull stripping can be 

defined as having a Dice Coefficient greater than 0.7, 0.8 or 0.9 compared to manually 

annotated brain masks. At any of these thresholds, the proposed FOV normalization 

significantly improved the success rate when applied to these diverse datasets. And this was 

independent of the skull stripping algorithm used.

4.4 Computational Time

The proposed FOV normalization framework was implemented in UNIX-based Portable 

Batch System (PBS), where multiple bridged registrations ran in parallel on different 

computer notes of the cluster. The high-performance cluster has 127 computer nodes, and 

each node has 8 CPUs and 56 GB of shared virtual memory. With this configuration, the 

whole FOV normalization process took about 4–5 minutes per image. In the next section, we 

will discuss the computational load in the context of big data neuroimaging batch 

processing, which is our ultimate goal.

5 Discussion

Batch analysis of large-scale and diverse images is increasingly important in the big data era 

[45]. The variation of image FOVs may present a significant bottleneck problem especially 

for batch analysis. We demonstrated in this paper that fully-automated and tuning-free FOV 

normalization in diverse images is feasible, and can significantly improve performances of 

skull stripping for several major brain image analysis pipelines (FSL, AFNI, BrainSuite or 

the LONI pipeline, and FreeSurfer). The improvement was not just marginal, but statistically 

significant (Figs. 6 and 7). Moreover, in many cases, FOV normalization prevented skull 

stripping failures (Table 2).
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A practical question is the general applicability of our framework. That is, whether we need 

to always choose intermediate templates every time we process a new dataset. We want to 

emphasize that our 10 intermediate templates are fixed for all testing images. There is no 

need to update intermediate templates. Table 1 shows that no intermediate templates were 

chosen from at least 3 testing datasets (1 dataset for adults and 2 datasets for 0–3 years old 

children), whereas the performance in those testing datasets was promising (Figures 5, 6 and 

7, and Table 2). This shows the promise of generality of our framework in multi-site unseen 

datasets.

We defined the standard FOV in the MNI152 atlas. We could have used other atlases, such 

as the Talairach atlas [49,50], FreeSurfer atlases [51,52], SRI24 atlas [53], the UNC-0-1-2 

years old atlas [54], and NIHPD atlases [55]. We chose the MNI152 atlas because of its wide 

adoption in the neuroimaging community — it is a default atlas included in many software 

packages, such as FSL [20], SPM [36] and AFNI [17], and many other atlases have already 

been spatially normalized into the MNI152 space, such as the Harvard-Oxford atlas [56], 

and the AAL atlas [57,58]. In defining the standard FOV in the MNI152 space, we dilated 

the foreground FOV mask by 5mm. This dilation is to account for possible registration 

errors between the MNI152 atlas and an arbitrary target image. Having this buffer zone 

ensures that the skull of the target image will not be unintentionally truncated. This buffer 

zone may result in the inclusion of some background regions outside the skull (e.g., see Fig. 

5). However, this is of no concern, since such moderate background regions do not usually 

affect skull stripping.

Normalized FOV provides a much tractable basis for using a consistent set of parameters to 

skull stripping very diverse datasets. Multi-atlas skull stripping (MASS) is one of a very 

recently developed and widely validated algorithm. Our results in Fig. 6 show that the 

accuracy and consistency of MASS skull stripping results increased in two datasets 

involving brain MRI of adults. More importantly, the accuracy and consistency improved 

more significantly for pediatric brain MRI. The default atlases used in MASS are from 

images of adults. Therefore, Fig. 6 shows a potential of using a fixed set of adult atlases to 

skull strip diverse set of pediatric brain MRI. Not needing pediatric atlases opens 

possibilities for a single framework to be applicable to multi-site brain MRI for both adults 

and children. We will explore further in this direction.

There are several limitations to this study.

First, we only tested our framework in images having larger FOV than the standard FOV. 

There are occasions where the images are scanned intentionally with a very small FOV. For 

example, in brain tumor studies, multi-modal images, especially time-course dependent 

perfusion images, usually only scan part of the brain which contains the tumor (partial brain 

FOV). Our framework cannot fill the missing information into these partial brain FOV 

images.

A second limitation of our framework is that we have not studied how the FOV 

normalization accuracy and efficacy changes as the number of intermediate templates 

changes, or as the parameter values in the template selection (Eqn. 2) change. Independent 
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studies for skull stripping [33] (in their Figure 9) and for brain region segmentation 

[59,60,61] (in their Figures 5, 11 and 5 respectively) have shown that 8–10 atlases would 

saturate the segmentation accuracy. According to these studies, we empirically set our 

parameter values (15 intermediate templates), we succeeded in normalizing the FOV in 

every target image. We do plan to use this framework in larger-scale batch processing of 

clinical neuro-developmental and neuro-oncology images, so a more rigorous study of 

sensitivity to parameter settings may emerge as needed in the future.

The third issue is computational time. The proposed framework takes 4–5 minutes whereas 

FSL’s robustfov takes about 10 seconds. Compared to robustfov, our framework in its 

current proof-of-concept version trades in computational time to gain increased generality, 

robustness, and significantly improved skull stripping performances (Figs. 5, 6 and 7). We 

also note that, the current batch processing of big data neuroimaging datasets is typically not 

done in real time. The full process includes many other steps (e.g., surface reconstruction, 

cortical thickness measurements, brain parcellation, etc), and skull stripping is just one early 

step in the processing pipeline. Adding 4–5 minutes of the proposed FOV normalization 

prior to skull stripping will not dramatically change the computation time of the whole 

pipeline, but will significantly improve the performance of the skull stripping step (Fig. 6), 

which is a basis for all subsequent steps. At a minimum this will reduce the failure rate for 

automatic processing, and further, it has the potential for improving the final outcome, a 

result that requires further validation. Our future work includes efforts to speed up the 

proposed FOV normalization, by faster pre-alignment (e.g., [62]), or by GPU speedup of the 

registration [63], since image registration takes more than 90% of the whole FOV 

normalization computational time.

The fourth issue is in datasets we have used in the evaluations. The IBSR dataset we have 

used was scanned back in 1996. We decided to still include this IBSR dataset among other 4 

more contemporary datasets, since some valuable, large scale neuroimaging studies (e.g., 

Baltimore Longitudinal Study of Aging [64,65]) also began acquiring MRI data more than 

20 plus years ago.

The fifth issue is that we only showed the effect of FOV normalization on skull stripping, 

but we did not yet study the effect of improved skull stripping on subsequent longitudinal, 

cross-sectional or population studies. The latter is future work. Existing studies already show 

that improved skull stripping can improve voxel-based morphometry (VBM) [7], can 

improve atrophy detection [23,66], and can improve neuro-development characterization 

[67,68]. Batch processing with robust skull stripping was also shown to be the basis for 

accurately associating genotype with image phenotype information [9,10]. Given that our 

proposed FOV normalization improved skull stripping performances not just marginally, but 

significantly (Figs. 6 and 7), and turned many failed skull stripping results into successful 

ones (Table 2), we believe that it will also be a useful pre-processing step to augment all 

aforementioned VBM, atropy, neuro-developmental and similar studies. The time, effort and 

cost savings due to the decrease in skull stripping failure rate can be readily appreciated. 

Moreover, there is also the potential for greater algorithmic accuracy in subsequent image 

processing steps. Further validation effort is required to make that determination.
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Last, but certainly not least, we should not overstate the effect of FOV normalization. On 

one hand, it is true that statistical analysis revealed that FOV normalization improved the 

performances of all 5 skull stripping algorithms when we looked at all 5 datasets combined 

in our experiments (Figs. 6 and 7). It is also our observation that the proposed FOV 

normalization succeeded in all of our multi-site testing data (i.e., no skull or brain were 

removed as a result of FOV normalization, all extra/unnecessary content of shoulder or 

upper chest had been excluded, and all resulting normalized FOV were visually sound.) On 

the other hand, however, it is also true that the improvement was only marginal in some 

specific images, or for a specific skull stripping algorithm in a specific dataset. This can be 

seen by the red-cross outliers and those p-values greater than 0.05 in Fig. 6. Indeed, our 

visual inspection found several images, for which the bad skull stripping results before FOV 

normalization were improved only slightly after FOV normalization truncating the neck and 

the shoulder. This underlines the fact that FOV variation is only one factor undermining the 

consistency, accuracy and success rate of skull stripping. We should not expect FOV 

normalization alone to solve all the inconsistency, inaccuracy and failure problems in skull 

stripping. There are other imaging factors or patient-related anatomical factors. Dealing with 

those factors may need future work combining existing skull stripping algorithms or 

inventing new tools in the context of big data batch processing.

To summarize, the first part of this paper presented an automated FOV normalization 

algorithm, and showed that, without the need for tuning any parameters, the proposed FOV 

normalization framework can be applied to images from different sites, from different 

scanners, from different fields of strength, and from subjects of various ages. In the second 

part, we conducted a comprehensive evaluation and verified the previously untested 

hypothesis that FOV normalization can significantly improve skull stripping performances in 

general, for the four widely used skull stripping algorithms we have tested. While FOV 

variation is only one factor, future studies need to address other imaging or anatomical 

factors to further improve consistency, accuracy and success rate of skull stripping facing 

large-scale, diverse brain MR images, and how more consistent and successful skull 

stripping impacts subsequent imaging phenotype studies.
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Fig. 1. 
FOV variation is one factor contributing to inconsistency, inaccuracy and failure in skull 

stripping. Subject A is a 62 year old patient from the public ADNI dataset. Subject B is a 2 

year old patient from the ICL public dataset. Red contours highlight errors that are present in 

images with the original FOVs but are largely gone in images after FOV normalization.

Ou et al. Page 17

Neuroinformatics. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Diagram of the proposed normalizeFOV framework.
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Fig. 3. 
The definition of the standard FOV used in this paper (the blue mask), overlaid on the 

MNI152 atlas.
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Fig. 4. 
The intermediate templates. Their original FOVs are outlined by the yellow contours. The 

red contours outline the standard FOV warped from the MNI152 space to the template 

space, i.e., ℎA Kn°ℎKn T FOV A (n = 1, …, N) when Kn = T i . e .  , ℎKn T =  Identity  .
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Fig. 5. 
Normalized FOVs (yellow masks) overlaid on 15 images from subjects of various ages. For 

each of the 5 datasets, there are images from 3 subjects displayed in 3 columns, each column 

containing axial, coronal and sagittal views.
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Fig. 6. 
Skull stripping accuracy in diverse datasets with (yes) or without (no) FOV normalization, 

for 4 different skull stripping algorithms/tools. The asterisks in the box and whisker plots are 

the mean values. p-values are provided for the test of statistical significance.
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Fig. 7. 
Comparison of FSL’s robustfov and our proposed FOV normalization framework, in terms 

of their effects on the performances of 4 skull stripping algorithms in 5 diverse datasets. One 

⋆ means p-value< 0.05 and two ⋆’s means p-value< 0.01.
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