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Abstract The Self-Healing Umbrella Sampling (SHUS)
algorithm is an adaptive biasing algorithm which has

been proposed in [16] in order to efficiently sample a

multimodal probability measure. We show that this

method can be seen as a variant of the well-known

Wang-Landau algorithm [21,22]. Adapting results on
the convergence of the Wang-Landau algorithm obtained

in [8], we prove the convergence of the SHUS algorithm.

We also compare the two methods in terms of efficiency.

We finally propose a modification of the SHUS algo-
rithm in order to increase its efficiency, and exhibit

some similarities of SHUS with the well-tempered meta-

dynamics method [2].
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1 Introduction

The efficient sampling of a probability measure defined

over a high dimensional space is required in many appli-

cation fields, such as computational statistics or molec-

ular dynamics [15]. Standard algorithms consist in build-
ing a dynamics which is ergodic with respect to the

target distribution such as Langevin dynamics [15,20]

or Metropolis-Hastings dynamics [17,12]. Averages over

trajectories of this ergodic dynamics are then used as
approximations of averages with respect to the tar-

get probability measure. In many cases of interest, this

probability measure is multimodal: regions of high prob-

ability are separated by regions of low probability, and

this implies that the ergodic dynamics is metastable.
This means that it takes a lot of time to leave a high

probability region (called a metastable state). The con-

sequence of this metastable behavior is that trajectorial

averages converge very slowly to their ergodic limits.

Many techniques have been proposed to overcome

these difficulties. Among them, importance sampling

consists in modifying the target probability using a
well-chosen bias in order to enhance the convergence

to equilibrium. Averages with respect to the original

target are then recovered using a reweighting of the bi-

ased samples. In general, it is not easy to devise an
appropriate bias. Adaptive importance sampling meth-

ods have thus been proposed in order to automatically

build a “good” bias (see [15, Chapter 5] for a review of

these approaches).

Let us explain the principle of adaptive biasing tech-

niques in a specific setting (we refer to [15, Chapter 5]

for a more general introduction to such methods). To
fix the ideas, let us consider a target probability mea-

sure π dλ on the state space X ⊆ R
D, where λ denotes

the Lebesgue measure on R
D, and let us be given a

http://arxiv.org/abs/1410.2109v1
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partition X1, · · · ,Xd of X into d subsets. The subsets

Xi are henceforth called ’strata’. The choice of such a

partition will be discussed later (see Footnote 1 below).

We assume that the target measure is multimodal in

the sense that the weights of the strata span several
orders of magnitude. In other words, the weights of the

strata

θ⋆(i) =

∫

Xi

π(x) dλ(x), i = 1, . . . , d (1)

vary a lot and
max16i6d θ⋆(i)

min16i6d θ⋆(i)
is large. We suppose from

now on and without loss of generality (up to remov-
ing some strata) that min16i6d θ⋆(i) > 0. In such a

situation, it is natural to consider the following biased

probability density:

πθ⋆(x) =
1

d

d∑

i=1

π(x)

θ⋆(i)
1Xi(x) , (2)

which is such that
∫

Xi

πθ⋆(x) dλ(x) =
1

d
(3)

for all i ∈ {1, . . . , d}: under the biased probability mea-

sure πθ⋆ dλ, each stratum has the same weight. In par-

ticular, the ergodic dynamics which are built with πθ⋆

as the target measure are typically less metastable than
the dynamics with target π. The practical difficulty to

implement this technique is of course that the vector

θ⋆ =
{
θ⋆(1), . . . , θ⋆(d)

}

is unknown. The principle of adaptive biasing meth-

ods is to learn on the fly the vector θ⋆ in order to
eventually sample the biased probability measure πθ⋆ .

Adaptive algorithms thus build a sequence of vectors

(θn)n>0 which is expected to converge to θ⋆. Various

updating procedures have been proposed [15, Chap-
ter 5]. Such adaptive techniques are used on a daily

basis by many practitioners in particular for free en-

ergy computations in computational statistical physics.

In this context, the partition of X is related to the choice

of a so-called reaction coordinate1, and the weights θ⋆
give the free energy profile associated with this reaction

coordinate. We focus here on a specific adaptive bias-

ing method called the Self-Healing Umbrella Sampling

(SHUS) technique [16,6]. We will show that it is a vari-
ant of the well-known Wang-Landau method [21,22].

1 For a given measure π dλ, the choice of a good partition
or, equivalently, of a good reaction coordinate does of course
influence the efficiency of the algorithm. This choice is a dif-
ficult problem that we do not consider here (see for exam-
ple [4] for such discussions in the context of computational
statistics). Here, both π dλ and X1, · · · ,Xd are assumed to
be given.

From a practical viewpoint, the main interest of SHUS

compared to Wang-Landau is that the practitioner has

less numerical parameters to tune (as will be explained

in Section 2.3).

The aim of this paper is to analyze the SHUS al-

gorithm in terms of convergence and efficiency. First,

we adapt the results of [8] which prove the conver-

gence of Wang-Landau to obtain the convergence of
SHUS (see Theorem 2). Second, we perform numerical

experiments to analyze the efficiency of SHUS, in the

spirit of [9] where similar numerical tests are performed

for the Wang-Landau algorithm. The efficiency analy-

sis consists in estimating the average exit time from a

metastable state in the limit when
max16i6d θ⋆(i)

min16i6d θ⋆(i)
goes to

infinity. Adaptive techniques (such as SHUS or Wang-

Landau) yield exit times which are much smaller than

for the original non-adaptive dynamics.

The main output of this work is that, both in terms

of convergence (longtime behavior) and efficiency (exit

times frommetastable states), SHUS is essentially equiv-

alent to the Wang-Landau algorithm for a specific choice
of the numerical parameters. These numerical parame-

ters are not the optimal ones in terms of efficiency and

we propose in Section 5.2 a modified SHUS algorithm

which is (in the longtime limit) equivalent to the Wang-

Landau algorithm with better sets of parameters.

This article is organized as follows. In Section 2,
we introduce the SHUS algorithm, check its asymptotic

correctness and explain how it can be seen as a Wang-

Landau algorithm with stochastic stepsize sequence.

In Section 3, we state a convergence result for Wang-

Landau algorithms with general (either deterministic
or stochastic) stepsize sequences and deduce the con-

vergence of SHUS. The proofs are based on stochas-

tic approximation arguments and postponed to Sec-

tion 6. Numerical results illustrating the efficiency of
the algorithm and comparing its performance with the

standard Wang-Landau algorithm are provided in Sec-

tion 4. Finally, in Section 5, we draw some conclu-

sions on the interest of SHUS compared with the Wang-

Landau algorithm, and further compare SHUS with
other adaptive techniques, such as the well-tempered

metadynamics algorithm [2] and the above-mentionned

modified SHUS algorithm. We also prove the conver-

gence of this modified SHUS algorithm (see Proposition
4), and present numerical results showing that this new

method is closely related to a Wang-Landau dynamics

with larger stepsizes.
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2 The SHUS algorithm

Using the notation of the introduction, we consider a

target probability measure π dλ on the state space X ⊆
R

D and a partition of X into d strata X1, · · · ,Xd.

We introduce a family of biased densities πθ, for θ ∈
Θ, where Θ is the set of positive probability measures

on {1, · · · , d}:

Θ =

{
θ = (θ(1), · · · , θ(d)) ∈ (0, 1)d,

d∑

i=1

θ(i) = 1

}
.

The biased densities (πθ)θ∈Θ are obtained from π by a

reweighting of each stratum:

πθ(x) =




d∑

j=1

θ⋆(j)

θ(j)




−1
d∑

i=1

π(x)

θ(i)
1Xi(x) , (4)

where θ⋆ ∈ Θ is defined by (1). Observe that for any
θ ∈ Θ and i ∈ {1, . . . , d},

∫

Xi

πθ(x) dλ(x) =
θ⋆(i)/θ(i)∑d

j=1 θ⋆(j)/θ(j)
. (5)

Equations (2) and (3) are respectively Equations (4)

and (5) with the specific choice θ = θ⋆.

2.1 Description of the algorithm

As explained above, the principle of many adaptive bi-

asing techniques, and SHUS in particular, is to build a
sequence (θn)n>1 which converges to θ⋆. This allows to

sample πθ⋆ , which is less multimodal than π. In order

to understand how the updating rule for θn is built for

SHUS, one may proceed as follows.

Let us first assume that we are given a Markov chain

(Xn)n>0 which is ergodic with respect to the target
measure π dλ (think of a Metropolis-Hastings dynam-

ics). Let us introduce the sequence (for a given γ > 0)

θ̃n+1(i) = θ̃n(i) + γ 1Xi(Xn+1) (6)

=

{
θ̃n(i) + γ if Xn+1 ∈ Xi ,

θ̃n(i) otherwise ,

which, in some sense, counts the number of visits to

each stratum. By the ergodic property, it is straight-

forward to check that θn = θ̃n
∑d

j=1 θ̃n(j)
converges almost

surely (a.s.) to θ⋆ as n → ∞. As explained in the in-

troduction, the difficulty with this algorithm is that the
convergence of θn to θ⋆ is very slow due to the metasta-

bility of the density π and thus of the Markov chain

(Xn)n>0.

The idea is then that if an estimate θ of θ⋆ is avail-

able, one should instead consider a Markov chain (Xn)n>0

which is ergodic with respect to πθ and thus hopefully

less metastable. To estimate θ⋆ with this new Markov

chain, one should modify the updating rule (6) as

θ̃n+1(i) = θ̃n(i) + γ θ(i)1Xi(Xn+1) (7)

in order to unbias the samples (Xn)n>0 (since π(x)
πθ(x)

=(∑d
j=1

θ⋆(j)

θ(j)

)∑d
i=1 θ(i)1Xi(x)). Again, by the ergodic

property, one easily gets that θn = θ̃n
∑d

j=1 θ̃n(j)
converges

a.s. to θ⋆ as n → ∞. Indeed, n−1
∑n

k=1 1Xi(Xk) con-

verges a.s. to
∫
Xi

πθ(x) dλ(x) (given by (5)) as n → ∞.
Since

θ̃n(i)

n
=

θ̃0(i)

n
+ γ

θ(i)

n

n∑

k=1

1Xi(Xk) , (8)

(θ̃n(i)/n)n>0 converges a.s. to
γθ⋆(i)

∑

d
j=1 θ⋆(j)/θ(j)

, which im-

plies in turn

lim
n→+∞

1

n

d∑

i=1

θ̃n(i) =
γ

∑d
j=1 θ⋆(j)/θ(j)

a.s.

Hence θn = θ̃n
∑d

j=1 θ̃n(j)
converges a.s. to θ⋆ as n → ∞.

The SHUS algorithm consists in using the current

value θn as the estimate θ of θ⋆ in the previous algo-

rithm. Let us now precisely define the SHUS algorithm.

Let (Pθ)θ∈Θ be a family of transition kernels on X which
are ergodic with respect to πθ. In particular,

∀θ ∈ Θ, πθPθ = πθ.

Let γ > 0, X0 ∈ X and θ̃0 = (θ̃0(1), . . . , θ̃0(d)) ∈ (R∗
+)

d

be deterministic. The SHUS algorithm consists in iter-

ating the following steps:

Algorithm 1 Given (θ̃n, Xn) ∈ (R∗
+)

d × X,

– compute the probability measure on {1, . . . , d},

θn =
θ̃n∑d

j=1 θ̃n(j)
∈ Θ , (9)

– draw Xn+1 according to the kernel Pθn(Xn, ·),
– compute, for all i ∈ {1, . . . d},

θ̃n+1(i) = θ̃n(i) + γ θn(i)1Xi(Xn+1) . (10)

Notice that only simulation under Pθ is needed to im-

plement SHUS. By choosing Pθ as a Metropolis-Hastings

kernel with target measure πθdλ, the density πθ needs
to be known only up to a normalizing constant. There-

fore, SHUS covers the case when the target measure

π dλ is only known up to a multiplicative constant which
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is generally the case in view of applications to Bayesian

statistics and statistical physics.

As proved in Section 3, (θn)n>0 converges almost

surely to θ⋆ when n → ∞. According to the update

mechanism (10), θ̃n+1(i)− θ̃n(i) is non negative, and it
is positive if and only if the current draw Xn+1 lies in

stratum i. In addition, this variation is proportional to

the current approximation θn(i) of θ⋆(i) with a factor

γ chosen by the user (prior to the run of the algorithm;
the choice of γ is numerically investigated in Section 4).

The principle of this algorithm is thus to penalize

the already visited strata, in order to favor transitions

towards unexplored strata. The penalization strength

is proportional to the current bias of the strata. The
prefactor θn(i) in (10) can be understood as a way to

unbias the samples (Xn)n>0 in order to recover samples

distributed according to the target measure π dλ, see

also formula (17) below.

2.2 Asymptotic correctness

Let us consider the SHUS algorithm 1 and let us assume

that (θn)n>0 converges to some value, say θ ∈ Θ. It

is then expected that n−1
∑n

k=1 1Xi(Xk) converges to∫
Xi

πθ(x) dλ(x) and that the updating rule (10) leads

to the same asymptotic behavior as (7) (where θn(i)

in (10) has been replaced by its limit θ(i)). Thus, it is

expected that limn n
−1θ̃n = γθ⋆

∑d
j=1 θ⋆(j)/θ(j)

a.s. by (8)

and thus limn θn = θ⋆ a.s.. Therefore, the only possible

limit of the sequence (θn)n>0 is θ⋆.

This heuristic argument is of course not a proof of

convergence, but it explains why one can expect the
SHUS algorithm to behave like a Metropolis-Hastings

algorithm with target measure πθ⋆ . The rigorous result

for the convergence is given in Section 3, and the effi-

ciency of SHUS is discussed in Section 4.

2.3 Reformulation as a Wang-Landau algorithm with

a stochastic stepsize sequence

One key observation of this work is that SHUS can be

seen as a Wang-Landau algorithm with nonlinear up-
date of the weights and with a specific stepsize sequence

(γn)n>1, see [21,22,8,9]. The Wang-Landau algorithm

with nonlinear update of the weights consists in replac-

ing the updating formula (10) by:

θ̃WL
n+1(i) = θ̃WL

n (i)
(
1 + γWL

n+11Xi(Xn+1)
)
, (11)

where the deterministic stepsize sequence (γWL
n )n>1 has

to be chosen by the practitioner beforehand. The choice

of this sequence is not easy: it should converge to zero

when n goes to infinity (vanishing adaption) in order

to ensure the convergence of the sequence (θ̃WL
n )n>0,

but not too fast otherwise the convergence of θWL
n =

θ̃WL
n

∑d
i=1 θ̃WL

n (i)
to θ⋆ is not ensured.

Remark 1 In fact, the updating rule of the originalWang-
Landau algorithm is more complicated than (11) since

the stepsizes are changed at random stopping times re-

lated to a quasi-uniform population of the strata and

not at every iteration, see [13] for a mathematical anal-
ysis of the well-posedness of the algorithm.

Going back to SHUS, by setting

γn+1 =
γ

∑d
j=1 θ̃n(j)

, for n ∈ N , (12)

it is easy to check that (10) is equivalent to

θ̃n+1(i) = θ̃n(i)
(
1 + γn+11Xi(Xn+1)

)
, (13)

which explains why SHUS can be seen as a Wang-
Landau algorithm with nonlinear update of the weights

(see (11)) but with a stepsize sequence (γn)n>1 which

is not chosen by the practitioner: it is adaptively built

by the algorithm.

3 Convergence results

The goal of this section is to establish convergence re-

sults on the sequence (θn)n>0 given by (9) to the weight

vector θ⋆ and on the distribution of the samples (Xn)n>0.
To do so, we will extend the results of [8] and more

generally prove convergence of the Wang-Landau algo-

rithm with general (either deterministic or stochastic)

stepsize sequence (γn)n>1 and the nonlinear update of

the weights. We need the following assumptions on the
target density π and the kernels Pθ:

A1 The density π of the target distribution is such
that 0 < infX π 6 sup

X
π < ∞ and the strata

(Xi)i∈{1,...,d} satisfy min16i6d λ(Xi) > 0.

Notice that this assumption implies that θ⋆ given by (1)

is such that min16i6d θ⋆(i) > 0 (hence θ⋆ ∈ Θ).

A2 For any θ ∈ Θ, Pθ is a Metropolis-Hastings transi-

tion kernel with proposal kernel q(x, y) dλ(y) where

q(x, y) is symmetric and satisfies infX2 q > 0, and
with invariant distribution πθ dλ, where πθ is given

by (4).
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3.1 Convergence of Wang-Landau algorithms with a

general stepsize sequence

In [8], we consider the Wang-Landau algorithm with

a linear update of the weights. The linear update ver-

sion of Wang-Landau consists in changing the updating

rule (11) to a linearized version (in the limit γWL
n+1 → 0)

on the normalized weights:

θWL
n+1(i) = θWL

n (i) (14)

+ γWL
n+1θ

WL
n (i)

(
1Xi(Xn+1)− θWL

n (I(Xn+1))
)
.

We prove in [8] that, when the target density π and

the kernels Pθ satisfy A1 and A2, the Wang-Landau

algorithm with this linear update of the weights con-

verges under the following condition on (γWL
n )n>1: the

sequence (γWL
n )n>1 is deterministic, ultimately non-increasing,

∑

n>1

γWL
n = +∞ and

∑

n>1

(γWL
n )2 < +∞.

To the best of knowledge, neither the convergence

of the Wang-Landau algorithm with the nonlinear up-

date of the weights (11) nor the case of a random se-

quence of stepsizes are addressed in the literature. It is
a particular case of the following Wang-Landau algo-

rithm with general stepsize sequence which also gen-

eralizes SHUS: starting from random variables θ̃0 =

(θ̃0(1), . . . , θ̃0(d)) ∈ (R∗
+)

d and X0 ∈ X, iterate the fol-

lowing steps:

Algorithm 2 Given (θ̃n, Xn) ∈ (R∗
+)

d × X,

– compute the probability measure on {1, . . . , d},

θn =
θ̃n∑d

j=1 θ̃n(j)
∈ Θ , (15)

– draw Xn+1 according to the kernel Pθn(Xn, ·),
– compute, for all i ∈ {1, . . . d},

θ̃n+1(i) = θ̃n(i)(1 + γn+11Xi(Xn+1)) , (16)

where the positive stepsize sequence (γn)n>1 is supposed
to be predictable with respect to the filtration Fn =

σ(θ̃0, X0, X1, . . . , Xn) (i.e. γn is Fn−1-measurable).

Algorithm 2 is a meta-algorithm: to obtain a practi-

cal algorithm, one has to specify the way the stepsize
sequence (γn)n>1 is generated.

Definition 1 An algorithm of the type described in

Algorithm 2 is said to converge if it satisfies the follow-

ing properties:

(i) P

(
lim

n→+∞
θn = θ⋆

)
= 1.

(ii) For any bounded measurable function f on X,

lim
n→∞

E [f(Xn)] =

∫

X

f(x)πθ⋆(x) dλ(x) ,

lim
n→∞

1

n

n∑

k=1

f(Xk) =

∫

X

f(x)πθ⋆(x) dλ(x) a.s.

(iii) For any bounded measurable function f on X,

lim
n→∞

E


d

d∑

j=1

θn−1(j) f(Xn)1Xj (Xn)




=

∫

X

f(x)π(x) dλ(x) ,

lim
n→∞

d

n

n∑

k=1

d∑

j=1

θk−1(j)1Xj (Xk)f(Xk)

=

∫

X

f(x)π(x) dλ(x) a.s. (17)

In addition to the almost sure convergence of (θn)n>0 to

θ⋆, this definition encompasses the ergodic convergence
of the random sequence (Xn)n>0 to πθ⋆ dλ and the con-

vergence of an importance sampling-type Monte Carlo

average to the probability measure π dλ. Our main re-

sult is the following Theorem.

Theorem 1 Assume A1, A2 and that there exists a

deterministic sequence (γn)n converging to 0 such that

P

(
∀n > 1, γn 6 γn,

∑

n

γn = +∞ ,
∑

n

γ2
n < ∞

)
= 1,

(18)

and the stepsize sequence (γn)n>1 is a.s. non-increasing.

Then Algorithm 2 converges in the sense of Defini-

tion 1.

One immediately deduces convergence of the Wang-

Landau algorithm with determistic stepsize sequence

and nonlinear update (11) under the same assumptions
as for the linear update (14), which generalizes the re-

sult of [8].

Corollary 1 Assume A1, A2 and that the determinis-
tic sequence (γWL

n )n>1 is non-increasing and such that∑
n>1 γ

WL
n = +∞ and

∑
n>1(γ

WL
n )2 < ∞. Then the

Wang-Landau algorithm with nonlinear update (11) con-

verges in the sense of Definition 1.

Before outlining the proof of Theorem 1, let us dis-

cuss its application to the SHUS algorithm.
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3.2 Convergence of SHUS

The stepsize sequence (γn)n>1 =
(

1
∑d

i=1 θ̃n−1(i)

)
n>1

ob-

tained in the reformulation of the SHUS algorithm 1 as

a Wang-Landau algorithm is clearly decreasing since,

the sequence (
∑d

i=1 θ̃n(i))n>0 is increasing. To apply
Theorem 1, we also need to check (18). This is the

purpose of the following proposition which is proved

in Section 6.

Proposition 1 With probability one, the stepsize se-

quence (γn)n>1 in the SHUS algorithm 1 is decreasing
and for any n ∈ N,

∀n ∈ N,
γ1

1 + nγ1
6 γn+1 6

γ1√
1 + 2nγ1min16i6d θ0(i)

.

Moreover, under A1 and A2, there exists a random

variable C such that

P

(
C > 0 and sup

n∈N

n
1+C

2 γn+1 < ∞

)
= 1.

Since γ1 = γ
∑d

i=1 θ̃0(i)
where θ̃0 is deterministic, com-

bining Theorem 1 and Proposition 1, we obtain the fol-

lowing convergence result for the SHUS algorithm 1.

Theorem 2 Under A1 and A2, the SHUS algorithm 1
converges in the sense of Definition 1.

Remark 2 Since the sequence ((Xn, θ̃n))n>0 generated

by the SHUS algorithm is a Markov chain, one easily de-

duces that the SHUS algorithm started from a random

initial condition (X0, θ̃0) ∈ X× (R∗
+)

d also converges in
the sense of Definition 1.

The convergence result from Theorem 2 allows us to

characterize the asymptotic behavior of the stepsizes.

Indeed, since for i ∈ {1, · · · , d} and n > 1,

θ̃n(i)

n
=

θ̃0(i)

n
+

γ

n

n∑

k=1

θk−1(i)1Xi(Xk) ,

the property (17) with f(x) = 1Xi(x) implies that the
SHUS algorithm generates sequences (θ̃n)n>0 and (γn)n>1

which satisfy

Corollary 2 Under A1 and A2,

lim
n→∞

θ̃n
n

=
γθ⋆
d

a.s. and lim
n→∞

nγn = d a.s.

Notice that this Corollary implies that the stepsize

sequence (γn)n>1 scales like d/n in the large n limit. In
Section 4.3, we will therefore compare SHUS with the

Wang-Landau algorithm implemented with a stepsize

sequence γWL
n = γ⋆

n , for some positive parameter γ⋆.

3.3 Strategy of the proof of Theorem 1

The proof of Theorem 1 is given in Section 6. It relies on

a rewriting of the updating mechanism of the sequence

(θn)n>0 as a Stochastic Approximation (SA) algorithm

for which convergence results have been proven (see for
example [1]). Notice that the updating formula (15)–

(16) is equivalent to: for all i ∈ {1, · · · , d} and n ∈ N

θn+1(i) = θn(i)
1 + γn+11Xi(Xn+1)

1 + γn+1θn(I(Xn+1))
, (19)

where for all x ∈ X,

I(x) =

d∑

j=1

j1Xj (x)

denotes the index of the stratum where x lies. Upon
noting that (1+a)/(1+ b) = 1+a− b+ b(b−a)/(1+ b),

(19) is equivalent to

θn+1(i) = θn(i) + γn+1 Hi(Xn+1, θn) + γn+1 Λn+1(i) ,

(20)

where H : X×Θ → R
d is defined by

Hi(x, θ) = θ(i)
(
1Xi(x)− θ(I(x))

)
, (21)

and

Λn+1(i) = γn+1 θn(i) θn(I(Xn+1))

×
θn(I(Xn+1))− 1Xi(Xn+1)

1 + γn+1 θn(I(Xn+1))
.

(22)

Notice that the last term γn+1 Λn+1 in (20) is of the

order of γ2
n+1. The recurrence relation (20) is thus in

a standard form to apply convergence results for SA
algorithms (see e.g. [1]).

There are however three specific points in Algo-

rithm 2 which make the study of this SA recursion quite

technical. A first difficulty raises from the fact that
(Xn)n>0 alone is not a Markov chain: given the past

up to time n, Xn+1 is generated according to a Markov

transition kernel computed at the current position Xn

but controlled by the current value θn, which depends

on the whole trajectory (θ̃0, X0, . . . , Xn). A second one
comes from the randomness of the stepsizes (γn)n>1.

Finally, it is not clear whether the sequence (θn)n>0 re-

mains a.s. in a compact subset of the open set Θ so that

a preliminary step when proving the convergence of the
SA recursion is to establish its recurrence, namely the

fact that the sequence (θn)n>0 returns to a compact set

of Θ infinitely often.
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3.4 A few crucial intermediate results

Let us highlight a few results which are crucial to tackle

these difficulties and establish Theorem 1. The funda-

mental result to address the dynamics of (Xn)n>0 con-

trolled by (θn)n>0 is the following proposition estab-

lished in [8, Proposition 3.1.]

Proposition 2 Assume A1 and A2. There exists ρ ∈
(0, 1) such that

sup
x∈X

sup
θ∈Θ

‖Pn
θ (x, ·)− πθ dλ‖TV 6 2(1− ρ)n ,

where for a signed measure µ, the total variation norm

is defined as

‖µ‖TV = sup
{f :sup

X
|f |61}

|µ(f)| .

In the present case, the recurrence property of the
SA algorithm means the existence of a positive thresh-

old such that infinitely often in n, the minimal weight

θn = min
16i6d

θn(i) (23)

is larger than the threshold. Let

In = min
{
i : θn(i) = θn

}
, (24)

be the smallest index of stratum with smallest weight

according to θn and (Tk)k∈N be the times of return to

the stratum of smallest weight: T0 = 0 and, for k > 1,

Tk = inf
{
n > Tk−1 : Xn ∈ XIn

}
, (25)

with the convention inf ∅ = +∞. We prove in Section 6

the following recurrence property.

Proposition 3 Assume A1, A2 and the existence of a

deterministic sequence (γn)n converging to 0 such that

P(∀n > 1, γn 6 γn) = 1. Then Algorithm 2 is such

that

P

(
∀k ∈ N, Tk < +∞ and lim sup

k→∞
θTk−1 > 0

)
= 1,

(26)

and

P

(
∃CT < +∞, ∀k ∈ N, Tk 6 CTk

)
= 1. (27)

Using the recurrence property of Proposition 3, we

are then able to prove that Algorithm 2 converges in the

sense of Definition 1-(i) by using general convergence

results for SA algorithms given in [1]. The properties
in Definition 1-(ii)-(iii) then follow from convergence

results for adaptive Markov Chain Monte Carlo algo-

rithms given in [10]. See Section 6 for the details.

4 Numerical investigation of the efficiency

We present in this section some numerical results illus-

trating the efficiency of SHUS in terms of exit times

from a metastable state. We also compare the perfor-

mances of SHUS and of the Wang-Landau algorithm on

this specific example.

4.1 Presentation of the model and of the dynamics

We consider the system based on the two-dimensional

potential suggested in [18], see also [9] for similar exper-

iments on the Wang-Landau algorithm. The state space

is X = [−R,R]× R (with R = 1.2), and we denote by
x = (x1, x2) a generic element of X. The reference mea-

sure λ is the Lebesgue measure dx1 dx2. The density of

the target measure reads

π(x) = Z−11[−R,R](x1) e
−βU(x1,x2),

for some positive inverse temperature β, with

U(x1, x2) = 3 exp

(

−x
2
1 −

(

x2 −
1

3

)2)

− 3 exp

(

−x
2
1 −

(

x2 −
5

3

)2)

− 5 exp
(

−(x1 − 1)2 − x2
2

)

− 5 exp
(

−(x1 + 1)2 − x2
2

)

+ 0.2x4
1 + 0.2

(

x2 −
1

3

)4

,

(28)

and the normalization constant

Z =

∫

X

e−βU(x1,x2) dx1 dx2.

We introduce d strata Xℓ = (aℓ, aℓ+1) × R, with aℓ =
−R+ 2(ℓ− 1)R/d and ℓ = 1, . . . , d. Thus, the element

x = (x1, x2) ∈ X lies in the stratum I(x1) =
⌊
x1+R
2R d

⌋
+

1.

A plot of the level sets of the potential U is pre-

sented in Figure 1. The global minima of the poten-
tial U are located at the points x− ≃ (−1.05,−0.04)

and x+ ≃ (1.05,−0.04) (notice that the potential is

symmetric with respect to the y-axis).

The Metropolis-Hastings kernels are constructed us-
ing isotropic proposal moves distributed in each direc-

tion according to independent Gaussian random vari-

ables with variance σ2. The reference Metropolis-Hastings

dynamics P( 1
d ,··· ,

1
d )

is ergodic and reversible with re-

spect to the measure with density π. This dynamics is
metastable: for local moves (σ of the order of a fraction

of ‖x+−x−‖), it takes a lot of time to go from the left to

the right, or equivalently from the right to the left. More

precisely, there are two main metastable states: one lo-
cated around x−, and another one around x+. These

two states are separated by a region of low probabil-

ity. The metastability of the dynamics increases with β
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Fig. 1 Level sets of the potential U defined in (28). The
minima are located at the positions x± ≃ (±1.05,−0.04),

and there are three saddle-points, at the positions xsd,1
± ≃

(±0.6, 1.15) and xsd,2 ≃ (0,−0.3). The energy differences of
these saddle points with respect to the minimal potential en-
ergy are respectively ∆U1 ≃ 2.2 and ∆U2 ≃ 2.7.

(i.e. as the temperature decreases). The larger β is, the

larger is the ratio between the weight under π of the
strata located near the main metastable states and the

weight under π of the transition region around x1 = 0,

and the more difficult it is to leave the left metastable

state to enter the one on the right (and conversely).

We refer for example to [9, Fig. 3-1] for a numerical
quantification of this statement.

As already pointed out in [9], adaptive algorithms

such as the Wang-Landau dynamics are less metastable

than the original Metropolis-Hastings dynamics, in the

sense that the typical time to leave a metastable state
is much smaller thanks to the adaption mechanism. In

this section, we compare the adaptive Markov chain

(Xn)n>0 corresponding to the SHUS algorithm with the

one generated by the Wang-Landau dynamics (XWL
n )n>0

with a nonlinear update of the weights (see (11)) with
stepsizes γWL

n = γ⋆/n for some constant γ⋆ > 0. This

choice for γWL
n is motivated by the asymptotic behav-

ior of (γn)n>1 in the limit n → ∞, see Corollary 2.

The proposal kernel used in the Metropolis algorithm is
the same for SHUS and Wang-Landau. Therefore, the

two algorithms only differ by the update rules of the

weight sequence (θn)n>0. The initial weight vector θ̃0 is

(1/d, . . . , 1/d) and the initial condition is X0 = (−1, 0)

for both dynamics.

4.2 Study of a typical realization

Let us first consider a typical realization of the SHUS
algorithm, in the case when σ is equal to the width of

a stratum 2R/d, with d = 48 (so that σ = 0.05), γ = 1

and an inverse temperature β = 10. The values of the

-1

-0.5

 0

 0.5

 1

 0  2e+08  4e+08  6e+08  8e+08  1e+09  1.2e+09  1.4e+09

X
n,

1

Iterations
Fig. 2 Top: Typical trajectory Xn,1 for the parameters d =
48, σ = 2R/d = 0.05, γ = 1 and β = 10.

first component of the chain as a function of the iter-

ations index n 7→ Xn,1 are reported in Figure 2. The
trajectory is qualitatively very similar to the trajecto-

ries obtained with the Wang-Landau algorithm (see for

example [9, Figure 5]). In particular, the exit time out

of the second visited well is much larger than the exit

time out of the first one. Such a behavior is proved for
the Wang-Landau algorithm with a deterministic step-

size γn = γ⋆/n in [9, Section 6]. After the exit out of the

second well, the convergence of the sequence (θn)n>0 is

already almost achieved, and the dynamics freely moves
between the two wells.

When the initial exit out of the first well occurs, the

biases within this well are already very well converged,

see Figure 3.

In the longtime limit, according to Figure 4 (top),

one has nγn → d = 48, as predicted by Corollary 2. In
the initial phase (before the exit out of the left well),

nγn stabilizes around a value corresponding to the num-

ber of strata explored within the well, see Figure 4 (bot-

tom) (here, the exploration is well performed for values

of x1 between -1.2 and -0.45, which corresponds to 15
strata). In this phase, only the restriction of the tar-

get density π to these strata is seen by the algorithm

and this convergence can be seen as a local version of

Corollary 2.

4.3 Scalings of the first exit time

In this section, we study the influence of the three pa-

rameters σ, γ and d on the first exit times (in the limit of

small temperature). Concerning θ̃0, we stick to the as-
sumption that without any prior knowledge on the sys-

tem, the choice θ̃0(1) = . . . = θ̃0(d) is natural. In addi-

tion, notice that multiplying θ̃0 and the parameter γ by
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Fig. 3 Plot of the bias ln(θn(I(x1))) at the iteration index n
when the system leaves the left well for the first time (d = 48,
σ = 2R/d = 0.05, γ = 1 and β = 10). The reference values
ln(θ⋆(I(x1))) are computed with a numerical quadrature of
the integrals (1).
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Iterations
Fig. 4 Behavior of the stepsize sequence (γn)n>1 (d = 48,
σ = 2R/d = 0.05, γ = 1 and β = 10). Top: Longtime con-
vergence. Bottom: Stabilization during the exploration of the
left well before the first exit.

the same constant c > 0 does not modify the sequence

(θn, Xn)n>0 generated by the SHUS algorithm. This is

why we always choose θ̃0(1) = . . . = θ̃0(d) = 1/d.

Average exit times are obtained by performing in-
dependent realizations of the following procedure: ini-

tialize the system in the state X0 = (−1, 0), and run

the dynamics until the first time index N such that

XN ,1 > 1 (i.e. the first component of XN is larger
than 1) for SHUS or XWL

N ,1 > 1 for Wang-Landau. The

average of this first exit time is denoted by tβ for SHUS

and by tWL
β for Wang-Landau. For a given value of

the inverse temperature β, the computed average exit

times tβ and tWL
β are obtained by averaging over K in-

dependent realizations of the process started at X0. We

use the Mersenne-Twister random number generator as

implemented in the GSL library. Since we work with a

fixed maximal computational time (of about a week or
two on our computing machines with our implementa-

tion of the code), K turns out to be of the order of a

few thousands for the largest exit times, while K = 105

in the easiest cases corresponding to the shortest exit

times. In our numerical results, we checked that K is
always sufficiently large so that the relative error on tβ
and tWL

β is less than a few percents in the worst cases.

According to the numerical experiments performed

in [9] that confirm the theoretical analysis of a simple
three-states model also given in [9], the scaling behav-

ior for tWL
β in the limit β → ∞ for the Wang-Landau

algorithm with a stepsize sequence (γ⋆/n)n>1 is

tWL
β ∼ CWL exp(βµWL) , (29)

where CWL and µWL are positive constants which de-

pend on σ, γ⋆ and d.

Due to the initial convergence of (nγn)n>1 to the
number dsv of strata visited before the first exit time,

one expects the first exit time of the SHUS algorithm

to behave like the first exit time for the Wang-Landau

algorithm with stepsizes (dsv/n)n>1. Note that since we
use strata of equal sizes, the number dsv is proportional

to the total number d of strata (see Table 4 for a more

quantitative assessment).

We consider three situations:

(i) We first study how the exit times vary as a func-

tion of d with σ = 2R/d and the fixed value γ = 1;
see Figure 5 and Table 1.

(ii) We then fix σ = 0.1 and study how the exit times

depend on d, still with the fixed value γ = 1; see

Figure 6 and Table 2.
(iii) We finally study the scaling of the exit times de-

pending on the value γ when d = 12 and σ =

2R/d = 0.2 are fixed; see Figure 7 and Table 3.
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Fig. 5 Exit times as a function of the inverse temperature β
when the number of strata d is varied while the magnitude
σ of the proposed displacement is modified accordingly as
σ = 2R/d (with γ = 1 fixed).
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Fig. 6 Exit times as a function of the inverse temperature β
when the number of strata d is varied, with the fixed values
γ = 1 and σ = 0.1.

We observe in all cases that the average first exit

time is of the form

tβ ∼ C(γ, d, σ) exp(βµ)

in the limit of large β, the values µ and C(γ, d, σ) being

obtained by a least-square fit in log-log scale. In view

of (29), this confirms the validity of the above compari-

son with the Wang-Landau algorithm. The exponential

rate µ does not seem to depend on the values of the
parameters σ, d and γ. Only the prefactors C(γ, d, σ)

depend on these parameters. The larger the number

of strata, and the lower the value of γ, the larger the

prefactor is. A more quantitative assessment of the in-
crease of the prefactor with respect to larger numbers

of strata d and smaller values of γ is provided in the

captions of Table 2 and 3.
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Fig. 7 Exit times as a function of the inverse temperature β
when γ is varied, with the fixed values d = 12 and σ = 2R/d =
0.2.

Table 1 Scaling law tβ ∼ C(γ, d, σ)eβµ for Figure 5.

slope µ prefactor C(γ, d, σ)

d = 3 1.24 2.56
d = 6 1.26 5.27
d = 12 1.27 11.1
d = 24 1.24 34.9

Table 2 Scaling law tβ ∼ C(γ, d, σ)eβµ for Figure 6. It ap-
pears that C(γ, d, σ) ≃ C(γ, d0, σ)(d/d0)1.4 for some refer-
ence value d0.

slope µ prefactor C(γ, d, σ)

d = 3 1.24 2.48
d = 6 1.26 5.00
d = 12 1.27 10.8
d = 24 1.24 34.9
d = 48 1.23 102
d = 96 1.23 295

Table 3 Scaling law tβ ∼ C(γ, d, σ)eβµ for Figure 7. It ap-
pears that C(γ, d, σ) ≃ C(1, d, σ)γ−1/2.

slope µ prefactor C(γ, d, σ)

γ = 1 1.27 10.8
γ = 2 1.27 7.97
γ = 4 1.27 5.69
γ = 8 1.27 4.01
γ = 16 1.27 2.98

To conclude these numerical investigations on the

comparison between SHUS and Wang-Landau, we look

for which values of γ⋆ the two average first exit times

tWL
β and tβ behave similarly (in the limit of large β).
Some average exit times for SHUS and theWang-Landau

algorithm are presented in Figure 8. Table 4 gives in-

tervals of values for γ⋆ for which the exponential rate
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Fig. 8 Exit times as a function of the inverse temperature β,
for SHUS and Wang-Landau dynamics, with the choice σ =
2R/d. In the case d = 24, the exits times for SHUS are smaller
than for Wang-Landau with parameter γ⋆ = 5, but larger
than Wang-Landau with parameter γ∗ = 6.
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Fig. 9 Histogram of the values of x1 visited along a typical
trajectory before the first exit of the left metastable state,
for β = 14, d = 24 and σ = 2R/d = 0.1. The frontiers of
the strata are indicated by vertical lines. In this example,
dsv = 7 − 8 since 7 strata are very well visited, while the
stratum corresponding to −0.5 6 x1 6 −0.4 is somewhat less
visited.

of increase of the exit times for the Wang-Landau dy-

namics matches the ones for the SHUS dynamics.

As the number of strata is increased, the value of γ⋆
has to be increased in order to retrieve the same asymp-

totic scaling of exit times. More precisely, we observe

that γ⋆ should be proportional to d and this confirms

the above comparison between SHUS and the Wang-
Landau algorithm with stepsizes (dsv/n)n>1 (since dsv
is indeed proportional to d). It is possible to estimate

more precisely the number dsv of strata visited before

the first exit time by a graphical inspection, as illus-
trated in Figure 9. With this estimate of dsv, we ob-

serve that γ⋆ is indeed very close to dsv, although a bit

smaller.

Table 4 Values of γ⋆ for which the asymptotic exponential
rate of increase of the exit times for Wang-Landau match the
exponential rate of the SHUS dynamics, and values of dsv
obtained at β = 14 by a graphical inspection (see Figure 9).

dsv equivalent γ⋆

d = 3 1 1
d = 6 2 1.6 – 1.8
d = 12 4 2.5 – 3
d = 24 7 – 8 5 – 6

5 Discussion, perspectives and extensions

5.1 Comparison of SHUS and the Wang-Landau

algorithm

In this section, we would like to summarize our findings

about the comparison between SHUS and the Wang-

Landau algorithm. As explained in Section 2, SHUS can

be seen as a Wang-Landau algorithm with the stepsize

sequence (γn)n>1 defined by (12). From Corollary 2,
we thus expect that SHUS behaves in the longtime

regime like the Wang-Landau algorithm with stepsize

γWL
n = d

n . These predictions drawn from our theoretical

analysis have been confirmed in the previous section by
numerical experiments. Consistently, it has been shown

that in terms of first exit times from a metastable state,

SHUS and the Wang-Landau algorithm with γWL
n = γ⋆

n

have similar behaviors, γ⋆ being close to the number of

strata visited in the metastable state containing the ini-
tial condition X0.

We have observed numerically that the average exit

time out of a metastable state for the SHUS algorithm
is not drastically modified when changing the numerical

parameters d, σ and γ (see Tables 1, 2 and 3 where µ re-

mains approximately constant). Moreover, it is known

that, in the longtime regime, the choice γ⋆ = d is the op-
timal one for Wang-Landau for stepsize sequences of the

form γ⋆

n in terms of asymptotic variance of the weight

sequence, see the discussion after Theorem 3.6 in [8].

This can be seen as advantages of SHUS over Wang

Landau for which, in particular, a substantial increase
in the exponential rate of the exit time is observed when

d is increased while γ⋆ is fixed (see [9, Table 1]).

On the downside, we observe that the scaling γWL
n ∼

γ⋆

n (when n → ∞) is usually not the best one in terms

of efficiency. As explained in [8], convergence is also ob-

tained for larger stepsizes γWL
n = γ⋆

nα with α ∈ (1/2, 1),

which allow much smaller average exit times from
metastable states, see [9, Figure 3]. In this respect,

SHUS is not the most efficient Wang-Landau type al-

gorithm.
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5.2 Accelerating SHUS

In view of the efficiency results of the Wang-Landau

dynamics (see [9] for an analysis of the exit times from

metastable states) and according to general prescrip-

tions for stochastic approximation algorithms, it seems

better to aim for a stepsize sequence (γn)n>1 which
decreases at the slowest possible rate while still guar-

anteeing convergence. In the polynomial schedule, this

means that γn = γ⋆/n
α with α close to 1/2 rather than

α = 1. However, it is also known that the asymptotic
variance scales as γn (see for example [8, Theorem 3.6])

which calls for a very fast decaying stepsize sequence

(γn)n>1 while still guaranteeing convergence. A good

practical compromise is then to combine the stochas-

tic approximation algorithms with an averaging tech-
nique [7,19]. This allows to use a large stepsize sequence

(which yields good exploration properties) while keep-

ing a variance of the optimal order 1/n.

In view of the above discussion, a natural question
is whether SHUS can be modified in order to obtain an

effective stepsize sequence which scales like n−α with

α ∈ (1/2, 1). A possible way of doing so is to modify

the updating rule (10) as

θ̃n+1(i) = θ̃n(i)


1 +

γ(α)1Xi(Xn+1)

ln
(
1 +

∑d
j=1 θ̃n(j)

) α
1−α


 (30)

for some positive deterministic γ(α). We call SHUSα

the algorithm which consists in choosing deterministic

X0 ∈ X and θ̃0 = (θ̃0(1), . . . , θ̃0(d)) ∈ (R∗
+)

d then iter-

ating the following steps:

Algorithm 3 Given (θ̃n, Xn) ∈ (R∗
+)

d × X,

– compute the probability measure on {1, . . . , d},

θn =
θ̃n∑d

j=1 θ̃n(j)
∈ Θ ,

– draw Xn+1 according to the kernel Pθn(Xn, ·),
– compute, for all i ∈ {1, . . . d}, θ̃n+1(i) given by (30).

SHUSα can be seen as a Wang-Landau algorithm with

nonlinear update of the weights and with stochastic

stepsizes

for n ∈ N, γn+1 =
γ(α)

ln
(
1 +

∑d
j=1 θ̃n(j)

) α
1−α

. (31)

Proposition 4 Under A1 and A2, for each α ∈ (12 , 1),

the SHUSα Algorithm 3 converges in the sense of Defi-

nition 1. Moreover its stepsize sequence (γn)n>1 defined

by (31) satisfies

P

(
lim
n→∞

nαγn = γ(α)1−αdα(1− α)α
)
= 1. (32)

In particular, the stepsize sequence scales like n−α as

wanted.

Remark 3 (Relationship with the standard SHUS algo-

rithm) To relate the updating rule (30) with the one of

SHUS (10), notice that (10) also writes

θ̃n+1(i) = θ̃n(i)

(
1 +

γ1Xi(Xn+1)∑d
j=1 θ̃n(j)

)

= θ̃n(i)


1 +

γ1Xi(Xn+1)

lim
α→1−

f
(
α,
∑d

j=1 θ̃n(j)
)




where for α ∈ (1/2, 1) and s > 0,

f(α, s) = exp

(
α

1− α
ln
[
1 + (1− α) ln(1 + s)

])
− 1.

Note that, for a fixed α ∈ (1/2, 1) and in the limit

s → +∞,

f(α, s) ∼
(
(1 − α) ln(1 + s)

) α
1−α

.

SHUSα is therefore expected to have the same asymp-

totic behavior in the limit n → +∞ as the algorithm

based on the more complicated updating rule

θ̃n+1(i) = θ̃n(i)


1 +

γ(α)(1 − α)
α

1−α 1Xi(Xn+1)

f
(
α,
∑d

j=1 θ̃n(j)
)


 .

(33)

Notice that, with the choice,

γ(α) = (1− α)−
α

1−α γ, (34)

the updating rule (33) converges to the SHUS updat-

ing rule (10) when α → 1−. In addition, from Propo-

sition 4, limn→∞ nαγn = γ1−αdα almost surely. The
limiting value γ1−αdα converges to d when α → 1−

which is also consistent with what we obtained for the

original SHUS algorithm, see Corollary 2.

Numerical results

We present in this section numerical results showing

that the modified SHUS algorithm (Algorithm 3) with
parameter α ∈ (1/2, 1) behaves very similarly to the

Wang-Landau algorithm with stepsizes scaling as n−α

as n → +∞. We choose γ(α) according to (34) in all

cases.

In order to implement the modified SHUS algorithm,
some care has to be taken in order to avoid overflows re-

lated to large values of the normalization factor∑d
i=1 θ̃n(i). Prohibitively large numbers can be avoided
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by first representing the weighted occupation factors in

logarithmic scale as νn(i) = ln θ̃n(i). Second, in order

to avoid the uncontrolled increase of νn(i) (which may

be quite fast for large values of β and values of α close

to 1/2), we renormalize the factors at random stopping
times where

∑d
i=1 θ̃n(i) is greater than a given (large)

value M > 0. The weight sequence renormalized at

these random stopping times is denoted by νMn (i). The

random stopping times are defined as τ0 = 0, and

τk = inf

{
n > τk−1 :

d∑

i=1

eν
M
n (i)

> M

}
(k > 1).

The renormalized factors νMn (i) evolve according to the

following updating rule (obtained by taking the loga-
rithm of (30), and possibly subtracting a renormaliza-

tion factor):

νMn+1(i) = νMn (i) + ln
(
1 + γM

n+11Xi(Xn+1)
)
− σn lnM.

In this expression, σn = 0 if n 6= τ1, . . . , τk, . . . while

σn = 1 if there exists k > 1 such that τk = n. In
addition, the stepsize is

γM
n+1 =

γ(α)
[
ln
(
M−rn +

∑d
j=1 e

νM
n (j)

)
+ rn lnM

] α
1−α

,

where rn =
∑n

m=1 σm counts the number of times where

the weights have been renormalized up to the iteration

index n. The logarithmic normalized weights ln θn(i)

are then constructed from the renormalized occupation
measures in logarithmic scale νMn (i) as

ln θn(i) = νMn (i)− ln




d∑

j=1

eν
M
n (j)


 .

The sequence of visited states (Xn)n>1 and the se-

quence of weights (θn)n>1 do not depend on the value
of M , as long as M is in the range of number which

can be represented on a computer. In the simulations

reported below, we chose M = 1010. In addition, in or-

der to have a well-behaved acceptance procedure in the
Metropolis step, we compute the probability to accept

the proposed move in logarithmic scale. More precisely,

the proposed move X̃n+1 drawn from the proposal ker-

nel starting from Xn is accepted when

lnUn
6 lnπ

(
X̃n+1

)
− lnπ(Xn)

− νMn

(
I
(
X̃n+1

))
+ νMn (I (Xn)) ,

where Un is a sequence of i.i.d. uniform random vari-

ables on [0, 1].

Table 5 Scaling laws (35) obtained from the data presented
in Figure 11.

α predicted value (1− α)−1 numerical fit µα

0.6 2.50 2.47
0.7 3.33 3.33
0.8 5 5.27
0.9 10 10.8

We first check whether the effective stepsizes γn be-

have as predicted by Proposition 4. To this end, we sim-
ulate the modified SHUS algorithm, using increments

sampled according to isotropic independent Gaussian

random variables with variance σ2 to generate proposal

moves in the Metropolis-Hastings algorithm. The value
of the renormalized stepsizes

nαγn
dα(1− α)αγ(α)1−α

=
(n
d

)α γn
γ

are plotted in Figure 10. As expected, the longtime limit

is 1 whatever the value of α. However, the larger α is,

the longer it takes to attain the asymptotic regime. This
is due to the fact that exit times out from the left well of

the potential are typically increasing as α is increased.

We study more precisely the behavior of the exit
times tβ out from the left well in the limit of low tem-

peratures (large β), following the procedure described

in Section 4.3, for various values of α ∈ (1/2, 1). The

data presented in Figure 11 have been fitted to power
laws

tβ ∼ Cαt
µα . (35)

Such a power law scaling indeed accounts for the be-

havior of exit times for the standard Wang-Landau al-

gorithm with stepsizes γWL
n = γ⋆

nα , and it can be proved

that

µα =
1

1− α
(36)

for a simple model system (see [9]). This claim is also

backed up in [9] by numerical experiments on the same

model as the one considered in this work. The pow-

ers µα reported in Table 5, obtained by a least-square
minimization in log-log scale, agree very well with the

theoretical prediction (36). This indicates that SHUSα

is very close to Wang-Landau with stepsizes γn = γ/nα.

We next study the convergence of the logarithmic

weights ln θn(i). The empirical variance of the logarith-

mic weights at iteration n is estimated by running K
independent realizations of the modified SHUS dynam-

ics, as for the estimation of exit times. Denoting by

(ln θkn(i))n>1 the weight sequence of the ith stratum for
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Fig. 11 Computed exit times tβ for the modified SHUS
algorithm with various choices of the power α, and the pa-
rameters d = 24, σ = 2R/d = 0.1, γ = 1. A power law
tβ ∼ Cαβµα (plotted in solid lines) is observed in all cases.
Estimated powers are reported in Table 5.

the kth realization, the empirical variance of the weight

for the stratum i is estimated as

Vn,K(i) =
1

K − 1

K∑

k=1

(
ln θkn(i)− Mn,K(i)

)2
,

where the empirical mean Mn,K(i) at time n is

Mn,K(i) =
1

K

K∑

k=1

ln θkn(i).

We expect that Vn,K(i) scales as γn in the longtime

limit for K sufficiently large. Such a result is proved
for the Wang-Landau dynamics in [8], where a central

limit theorem is established for the weight sequence. In

the sequel, we take K = 7× 104.
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function of the time n, for d = 24, β = 1, σ = 2R/d = 0.1
and i = 3. The value α = 1 corresponds to the standard
SHUS algorithm introduced in Section 2.
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Fig. 13 Decay exponents ai in the fit of the empirical vari-
ances Vn,K(i) ∼ Cvar,in−ai , for various values of α (same
parameters as in Figure 12).

In all the computations reported below, the value
α = 1 corresponds to the standard SHUS algorithm

introduced in Section 2. The decrease of the empirical

variance as a function of time is plotted in Figure 12,

together with a numerical fit Cvar,in
−ai obtained by a

least-square minimization in log-log scale. The decay
exponents ai for each stratum i are reported in Fig-

ure 13. We indeed confirm that the empirical variance

decreases as n−α, except in the case α = 0.9 where the

decrease is slightly faster than expected since the expo-
nents ai are around 0.95. Note also that the asymptotic

regime is attained only at longer times for the value

α = 0.9. This is related to the fact that γ(α) becomes

very large for α close to 1 (here γ(0.9) = 109).

We finally consider the decrease of the bias in the

estimated empirical averages Mn,K(i), as a function of
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Fig. 14 Decay of the bias Bn,K as a function of the iter-
ation time n, for d = 24, β = 1 and σ = 2R/d = 0.1. The
corresponding decay exponents are reported in Table 6.

Table 6 Decay of the bias Bn,K ∼ Cbiasn−a fitted on the
data presented in Figure 14 for iterations times n in the range
2× 106 6 n 6 8 × 106.

α numerical fit a

0.6 0.60
0.7 0.69
0.8 0.78
0.9 0.93
1 1.01

time. We use a normalized version of the bias and av-
erage over the strata, and therefore introduce

Bn,K =

√√√√
d∑

i=1

(
Mn,K(i)

ln θ∗(i)
− 1

)2

.

The reference values θ∗(i) are computed with a two-

dimensional numerical quadrature. The decrease of the
bias as a function of time is plotted in Figure 14, to-

gether with a numerical fit Cbiasn
−a obtained by a least-

square minimization in log-log scale. The decay expo-

nents a are reported in Table 6. The bias approximately

decrease at the same rate as the variance, namely n−α,
a standard behavior for Monte-Carlo methods. Here

again, the asymptotic behavior for the value α = 0.9

is observed at longer times only because of the large

value of γ(α).

5.3 Partially biased dynamics

It is possible to consider more general biased measures

than πθ defined in (4) by applying only a fraction of the

bias. This amounts to considering the following biased

densities for a given parameter a ∈ (0, 1]:

πθ,a(x) =




d∑

j=1

θ⋆(j)

θ(j)a




−1
d∑

i=1

π(x)

θ(i)a
1Xi(x) . (37)

The motivation for applying only a fraction of the bias
is to avoid having a random walk among the strata

in the asymptotic regime, in order to favor the strata

which are more likely under the original, unbiased mea-

sure. This idea was first proposed within the so-called
well-tempered metadynamics method2, introduced in [2].

Following the reasoning of Section 2.1, Algorithm 1

should then be modified as follows:

Algorithm 4 Given (θ̃n, Xn) ∈ (R∗
+)

d × X,

– compute the probability measure on {1, . . . , d},

θn =
θ̃n∑d

j=1 θ̃n(j)
∈ Θ ,

– draw Xn+1 according to the kernel Pθn,a(Xn, ·) where,
for any θ ∈ Θ, Pθ,a is a transition kernel ergodic
with respect to πθ,a ,

– compute, for all i ∈ {1, . . . d},

θ̃n+1(i) = θ̃n(i) + γ θn(i)
a 1Xi(Xn+1) . (38)

It is possible to follow the same reasoning as in Sec-

tion 2.2 to check that the only possible limit for the se-

quence (θn)n>0 is θ⋆. In addition, γn (defined by (12))
should scale as 1/n in the longtime limit. However, the

stepsize sequence (γn)n>1 needed to rewrite the updat-

ing rule (38) as a particular case of (16) is not pre-

dictable since γn depends on Xn:

γn =
θan−1(I(Xn))

θn−1(I(Xn))
.

The convergence of this new algorithm therefore does

not enter the framework of Theorem 1.

Remark 4 The above algorithm with the modified up-

date (38) is very much related to the well-tempered
metadynamics algorithm [2]. The main difference is that

we here consider a discrete reaction coordinate (asso-

ciated with a partition of the state space) whereas the

standard well-tempered metadynamics method is for-

mulated for continuous reaction coordinates. As a mat-
ter of fact, in the paper [5], the authors made the obser-

vation that the well-tempered metadynamics method is

2 With the notation of the metadynamics works, what we
call here a is denoted ∆T/(T +∆T ) where T is the tempera-
ture and ∆T > 0 is a parameter. The limiting regime a = 1 is
recovered in the limit ∆T → +∞, which corresponds to the
standard metadynamics [14,3].
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a stochastic approximation algorithm with a stepsize se-

quence of order 1/n (see in particular [5, Equation (5)]).

The well-tempered metadynamics algorithm is a

“parameter-free” version of the original metadynamics

algorithm [14,3]. The original metadynamics algorithm
consists in penalizing already visited states in a fashion

very similar to the Wang-Landau algorithm. In partic-

ular, the original metadynamics also requires to choose

a vanishing stepsize sequence, in order to penalize less
and less the visited states as time goes. One of the

reason why the well-tempered metadynamics algorithm

has then been proposed is to avoid the choice of this

sequence. In the well-tempered dynamics method (as

in the SHUS dynamics), the penalization decreases as
the bias of the sampled point becomes larger. Roughly

speaking, SHUS is a parameter-free version of Wang-

Landau, in the same way as well-tempered metadynam-

ics algorithm is a parameter-free version of metadynam-
ics. As explained above, the parameter-free version cor-

responds to a specific choice of the stepsize sequence,

with a 1/n scaling for the strength of the penalization

which does not seem to be the optimal choice in terms

of exit times from metastable states, as discussed in
Section 5.2.

6 Proofs

6.1 Proof of Proposition 3

For the Wang-Landau algorithm with linear update of
the weights (14) and deterministic non-increasing step-

size sequence, (26) is proved in [8, Section 4.2]. It is

explained in [8, Section 4.2.4] how to adapt the proof

to the Wang-Landau algorithm with nonlinear update

of the weights and deterministic non-increasing step-
size sequence. In addition, a careful look at the argu-

ments in [8] shows that the randomness of the sequence

(γn)n>1 plays no role in the proof of (26) as long as

the conditional distribution of Xn+1 given Fn is given
by Pθn(Xn, .) and the sequence (γn)n>1 is bounded

from above by a deterministic sequence converging to

0. Hence (26) as well as the existence (proved at the

end of [8, Section 4.2.1] for the Wang-Landau algorithm

with linear update) of a deterministic p ∈ (0, 1) such
that

∀k,m ∈ N, P

(
Tk+1 − Tk > md

∣∣∣FTk

)
6 (1 − p)m ,

(39)

still hold in the present framework. Let us deduce from (39)
that it is possible to couple a sequence (T̃k)k>0 with the

same law as (Tk)k>0 with a sequence (τk)k>1 of inde-

pendent geometric random variables with parameter p

in such a way that a.s.

∀k ∈ N, T̃k+1 − T̃k 6 dτk+1. (40)

We can set τk = F−1(Uk) where F−1 denotes the càg

pseudo-inverse of the cumulative distribution function
F (x) = 1{x>0}

(
1− (1 − p)⌊x⌋

)
of the geometric law

with parameter p and (Uk)k>1 is a sequence of indepen-

dent uniform random variables on [0, 1]. Now, define

F(T0,...,Tk)(x) = P

(
Tk+1 − Tk

d
6 x

∣∣∣∣ (T0, . . . , Tk)

)

for k > 0. Since the random vector (T0, . . . , Tk) is FTk
-

measurable, for any x > 0,

F(T0,...,Tk)(x) > F(T0,...,Tk)(⌊x⌋)

= 1− E

[
P
(
Tk+1 − Tk > ⌊x⌋d

∣∣FTk

)∣∣∣(T0, . . . , Tk)
]

> 1− (1− p)⌊x⌋ = F (x).

where we used (39) for the second inequality. The se-

quence (T̃k)k>0 defined inductively by T̃0 = 0 and

∀k ∈ N, T̃k+1 = T̃k + dF−1

(T̃0,...,T̃k)
(Uk+1),

satisfies the required properties: it has the same law as
(Tk)k>0 and it satisfies (40).

As a consequence,

P

(
lim sup
k→∞

Tk

k
6

d

p

)
= P

(
lim sup
k→∞

T̃k

k
6

d

p

)

6 P


lim sup

k→∞

1

k

k∑

j=1

τj 6
1

p


 = 1 ,

by the strong law of large numbers for i.i.d. random

variables. One then easily concludes that (27) holds.

6.2 Proof of Theorem 1

The proof of Theorem 1 is performed by extending the
technique of proof used in [8] for the convergence of

Wang-Landau. We therefore mention only the needed

extensions, the main difference with [8] being the fact

that the stepsizes γn are not necessarily deterministic.

Note first that Lemma 4.6, Lemma 4.7 and Lemma 4.9

in [8] remain valid since they only depend on the ex-

pression of πθ, Pθ. Let us prove successively the three

items in Definition 1.

(i) The proof of the first item consists in verify-

ing the sufficient conditions given in [1, Theorems 2.2.
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and 2.3] for the convergence of SA algorithms. Define

the mean field function h : Θ → R
d by

h(θ) =

∫

X

H(x, θ)πθ(dx) =
θ⋆ − θ

∑d
i=1

θ⋆(i)
θ(i)

.

The function h is continuous on Θ. By [8, Proposi-

tion 4.5], the function V defined on Θ by

V (θ) = −
d∑

i=1

θ⋆(i) ln

(
θ(i)

θ⋆(i)

)

is non negative, continuously differentiable on Θ and

the level set {θ ∈ Θ : V (θ) 6 M} is a compact sub-
set of the open set Θ for any M > 0. We also have

〈∇V (θ), h(θ)〉 6 0 and 〈∇V (θ), h(θ)〉 = 0 if and only if

θ = θ⋆. Hence, the assumption A1 of [1] is verified with

L = {θ⋆}.

Under our assumptions, the conditions on the step-

size sequence (γn)n>1 in [1, Theorems 2.2 and 2.3] hold

almost-surely. To apply these theorems, it is enough to

prove that

lim
k

sup
ℓ>k

∣∣∣∣∣

ℓ∑

n=k

γn+1

(
H(Xn+1, θn)− h(θn) + Λn+1

)∣∣∣∣∣ = 0

(41)

with probability one, where Λn+1(i) is defined in (22).

Indeed (26), (41) and [1, Theorems 2.2] imply that Al-

gorithm 2 is stable in the sense that a.s., the sequence
(θn)n remains in a compact subset of Θ. Then [1, The-

orems 2.3] ensures its a.s convergence to θ⋆.

Let us now check (41). Since 0 6 θn(i) 6 1, it holds

|Λn+1| 6 γn+1. Hence,

P


∀k, sup

ℓ>k

∣∣∣∣∣

ℓ∑

n=k

γn+1Λn+1

∣∣∣∣∣ 6
∑

n>k

γ2
n+1


 = 1

so that (18) implies that supℓ>k

∣∣∣
∑ℓ

n=k γn+1Λn+1

∣∣∣ con-
verges to 0 a.s. as k → ∞.

To deal with H(Xn+1, θn) − h(θn), for each θ ∈ Θ,

we introduce the Poisson equation

∀x ∈ X, g(x)− Pθg(x) = H(x, θ) − h(θ)

whose unknown is the function g : X → R. Under

the stated assumptions, this equation admits a solu-

tion Ĥθ(x) which is unique up to an additive constant

and it holds (see e.g. [8, Lemma 4.9.])

sup
θ∈Θ

sup
x∈X

∣∣∣Ĥθ(x)
∣∣∣ < ∞ . (42)

We write

H(Xn+1, θn)− h(θn) = Ĥθn(Xn+1)− PθnĤθn(Xn+1)

= En+1 +R
(1)
n+1 +R

(2)
n+1,

with

En+1 = Ĥθn(Xn+1)− PθnĤθn(Xn) ,

R
(1)
n+1 = PθnĤθn(Xn)− Pθn+1Ĥθn+1(Xn+1) ,

R
(2)
n+1 = Pθn+1Ĥθn+1(Xn+1)− PθnĤθn(Xn+1) .

Let us first check, using the Fn-predictability of the

sequence (γn)n>1, that Mk = 1{k>1}

∑k
n=1 γnEn con-

verges a.s. as k → ∞, which will imply that a.s.

lim
k

sup
ℓ>k

∣∣∣∣∣

ℓ∑

n=k

γn+1En+1

∣∣∣∣∣ = 0 .

Since (En)n>0 is bounded by supθ∈Θ supx∈X |Ĥθ(x)| and
(γn)n>1 is bounded by γ1, for each k,

|Mk| 6 2kγ1 sup
θ∈Θ

sup
x∈X

∣∣∣Ĥθ(x)
∣∣∣

and Mk is square integrable by (42). Moreover, γn+1

is Fn-measurable and the conditional distribution of

Xn+1 given Fn is Pθn(Xn, ·), so that

E(γn+1En+1

∣∣∣Fn)

= γn+1

[
E

(
Ĥθn(Xn+1)

∣∣∣Fn

)
− PθnĤθn(Xn)

]
= 0

In conclusion, (Mk)k>1 is a square integrableFk-martingale.

Since

∑

n

E((Mn+1 −Mn)
2|Fn) =

∑

n

γ2
n+1E(E

2
n+1|Fn)

is smaller than C
∑

n>1 γ
2
n by (42) and therefore finite

with probability one by (18), (Mk)k>1 converges a.s. by
[11, Theorem 2.15].

We now consider the term R
(1)
n+1. By (42) and the

monotonic property of (γn)n>1, following the same lines

as in the proof of [8, Proposition 4.10] we prove that

there exists a constant C such that

P

(
∀k, sup

ℓ>k

∣∣∣∣∣

ℓ∑

n=k

γn+1R
(1)
n+1

∣∣∣∣∣ 6 C γk+1

)
= 1 .

Therefore, supℓ>k

∣∣∣
∑ℓ

n=k γn+1R
(1)
n+1

∣∣∣ tends to zero a.s.

as k → ∞.

We now consider the term R
(2)
n+1. We have Ĥθ(x) =∑

n P
n
θ (H(·, θ)−h(θ))(x); by [10, Lemma 4.2], there ex-

ists a constant C which does not depend on θ, θ′ (thanks
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to Proposition 2 and the upper bound

supθ supx |H(θ, x)| < ∞) such that for any θ, θ′ ∈ Θ,

sup
X

∣∣∣PθĤθ − Pθ′Ĥθ′

∣∣∣ 6 C

(
sup
X

|H(·, θ)−H(·, θ′)|

+sup
x∈X

‖Pθ(x, ·) − Pθ′(x, ·)‖TV + ‖πθ dλ− πθ′ dλ‖TV

)
.

Then, by [8, Lemmas 4.6. and 4.7], there exists a con-

stant C such that for any θ, θ′ ∈ Θ

sup
X

∣∣∣PθĤθ − Pθ′Ĥθ′

∣∣∣

6 C

(
|θ − θ′|+

d∑

i=1

∣∣∣∣1−
θ′(i)

θ(i)

∣∣∣∣+
d∑

i=1

∣∣∣∣1−
θ(i)

θ′(i)

∣∣∣∣

)
.

Since supθ∈Θ supx∈X |H(x, θ)| 6 1 and P(supn |Λn+1| 6
γ1) = 1, (20) implies that |θn+1 − θn| 6 (1 + γ1)γn+1

with probability one. By (19), for any i ∈ {1, · · · , d}

∣∣∣∣1−
θn(i)

θn+1(i)

∣∣∣∣ ∨
∣∣∣∣1−

θn+1(i)

θn(i)

∣∣∣∣

=
|θn+1(i)− θn(i)|

θn(i) ∧ θn+1(i)

=
γn+1|θn(I(Xn+1))− 1Xi(Xn+1)|

1 + γn+1(1Xi(Xn+1) ∧ θn(I(Xn+1))
6 γn+1 a.s.

(43)

This discussion evidences that there exists a constant

C such that

P


∀k, sup

ℓ>k

∣∣∣∣∣

ℓ∑

n=k

γn+1R
(2)
n+1

∣∣∣∣∣ 6 C (1 + γ1)
∑

n>k

γ2
n+1


 = 1 .

By (18), supℓ>k

∣∣∣
∑ℓ

n=k γn+1R
(2)
n+1

∣∣∣ tends to zero a.s. as

k → ∞.

(ii) The proof follows the same lines as the proof

of [8, Theorem 3.4] and details are omitted. The only
result which has to be adapted is [8, Corollary 4.8].

Combining [8, Lemmas 4.6. and 4.7] and (43), we easily

obtain the existence of a finite constant C such that

almost surely, for any n > 1

‖πθn+1 dλ− πθn dλ‖TV 6 Cγn+1 ,

sup
x∈X

‖Pθn(x, ·)− Pθn+1(x, ·)‖TV 6 Cγn+1 .

(iii) The proof is very similar to the proof of [8, Theo-

rem 3.5] and is therefore omitted.

6.3 Proof of Proposition 1

Throughout this proof, we denote by

Sn =

d∑

i=1

θ̃n(i)

the sum of the unnormalized weights. In view of (10)

Sn+1 = Sn + γθn(I(Xn+1)) .

As max16i6d θn(i) 6 1, a direct induction on n yields

Sn 6 S0 + nγ. Since by (12)

γn+1 =
γ

Sn
, (44)

the lower bound on γn+1 in Proposition 1 follows. To

prove the deterministic upper-bound, we remark that

S2
n+1 =

(
Sn + γ

θ̃n(I(Xn+1))

Sn

)2

> S2
n + 2γθ̃n(I(Xn+1)) (45)

> S2
n + 2γ min

16i6d
θ̃0(i),

where we used that for each i ∈ {1, . . . , d}, the sequence
(θ̃n(i))n>0 is non-decreasing. By induction on n, this

implies that S2
n > S2

0 (1 + 2nγ1 min16i6d θ0(i)) and the
deterministic upper-bound follows from (44).

To prove the stochastic upper-bound, we suppose

A1 and A2. The deterministic upper-bound and Propo-
sition 3 ensure that (27) holds. Let

θ̃n = min
16i6d

θ̃n(i).

We have θ̃n = Sn θn for each n ∈ N. Moreover the

sequence (θ̃n)n∈N is non-decreasing and such that

∀k ∈ N
∗, θ̃Tk

> θ̃Tk−1
(1 + γTk

) , (46)

with equality when the smallest index of stratum with

smallest weight In is constant for Tk−1 6 n 6 Tk.
The inequality is due to the possibility that for some

n ∈ {Tk−1 + 1, Tk−1 + 2, . . . , Tk − 1}, Xn ∈ XIn−1 and

∃i ∈ {1, . . . , In−1 − 1, In−1 + 1, . . . , d} such θ̃n−1(i) <

θ̃n−1(In−1)+γθn−1(In−1) so that In 6= In−1. With (27)

and the lower-bound in Proposition 1 (recall that γ1 =
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γ
S0
), one deduces that

θ̃Tk
> θ̃0

k∏

j=1

(1 + γTj ) > θ̃0

k∏

j=1

(
1 +

γ

S0 + γ(Tj − 1)

)

> θ̃0

k∏

j=1

(
1 +

γ

S0 + γCT j

)

= θ̃0

k∏

j=1

S0 + γ + CT γj

S0 + CTγj

= θ̃0

Γ
(

S0+γ
CT γ + k + 1

)

Γ
(

S0

CT γ + k + 1
)

Γ
(

S0

CT γ + 1
)

Γ
(

S0+γ
CT γ + 1

)

∼ θ̃0k
1/CT

Γ
(

S0

CT γ + 1
)

Γ
(

S0+γ
CT γ + 1

) as k → +∞ .

Hence there is a positive random variable C such that,

for all k ∈ N, θ̃Tk
> C(k + 1)1/CT . Since by (27),

T⌊n/CT ⌋ 6 n and the sequence (θ̃n)n>0 is non-decreasing,

it follows that

∀n ∈ N, θ̃n > θ̃T⌊n/CT ⌋
> C

(
n

CT

)1/CT

a.s.

Since by (45), S2
n > S2

0 + 2γ
∑n−1

j=0 θ̃j , this implies that

a.s., for any n > 1,

S2
n > S2

0 + 2γC
n−1∑

j=0

(
j

CT

)1/CT

> S2
0 + 2γCC

−1/CT

T

∫ n−1

0

x1/CT dx

= S2
0 + 2γCC

−1/CT

T

CT

1 + CT
(n− 1)

1+CT
CT .

With (44), one deduces that

P

(
sup
n∈N

n
1+1/CT

2 γn+1 < ∞

)
= 1.

6.4 Proof of Proposition 4

Let us consider the SHUSα algorithm for fixed α ∈
(1/2, 1). For notational simplicity, we omit the depen-

dence of γ(α) on α. The proof of Proposition 4 relies
on the next lemma.

Lemma 1 Under Assumptions A1 and A2, the sequence

(Sn)n>1 =
(∑d

i=1 θ̃n(i)
)
n>0

is increasing and bounded

from below by a deterministic sequence (sn)n>0 going

to +∞ as n → ∞, and satisfies

P

(
0 < inf

n>0
(n+ 1)α−1 ln(1 + Sn)

6 sup
n>0

(n+ 1)α−1 ln(1 + Sn) 6 c̄

)
= 1,

where

c̄ = ln(1 + S0)

×


1 ∨



(
1 +

γ

(ln(1 + S0))
1

1−α

) 1
1−α

− 1




1−α

 .

Proof (of Lemma 1) The sequence (Sn)n>0 increases

according to

Sn+1 = Sn +
γθ̃n(I(Xn+1))

(ln(1 + Sn))
α

1−α

= Sn

(
1 +

γθn(I(Xn+1))

(ln(1 + Sn))
α

1−α

)
.

(47)

Since for i ∈ {1, . . . , d}, the sequence (θ̃n(i))n>0 is non-
decreasing, one deduces that, for all n > 0, Sn+1 >

g(Sn), where

g(x) = x+
γmin16i6d θ̃0(i)

(ln(1 + x))
α

1−α

for x > 0. Let (sn)n>0 be defined inductively by s0 =
S0 and sn+1 = g(sn) for all n > 0. This sequence

is increasing and goes to ∞ when n → ∞ as x 7→

γ
[
min16i6d θ̃0(i)

]
(ln(1 + x))−

α
1−α is locally bounded

away from 0 on (0,+∞). Moreover g is a convex func-
tion which is decreasing on (0, xg) and increasing on

(xg,+∞) for some xg ∈ (0,+∞). The minimum of the

function g is therefore attained at xg. Since

S1 > s1 = g(S0) > g(xg) = xg+
γmin16i6d θ̃0(i)

(ln(1 + xg))
α

1−α
> xg,

it follows that min(Sn, sn) > xg for any n > 1, and
one easily checks by induction on n that Sn > sn for

all n > 1. Unfortunately, this lower-bound is not sharp

enough to bound ((n+1)α−1 ln(1+Sn))n>0 from below

by a positive constant (this will proved later on).

To prove that

∀n > 0, ln(1 + Sn) 6 c̄(n+ 1)1−α, (48)

we remark that for all n ∈ N, using Sn+1 > Sn for the

first inequality, and Sn+1 6 Sn

(
1 + γ

(ln(1+Sn))
α

1−α

)
for
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the second one,

ln(1 + Sn+1) 6 ln(1 + Sn) + ln

(
Sn+1

Sn

)

6 ln(1 + Sn) +
γ

(ln(1 + Sn))
α

1−α
. (49)

Therefore, denoting for simplicity ln = (ln(1 + Sn))
1

1−α

and using the monotonicity of the sequence (ln)n>0 and

the convexity of x 7→ (1 + x)
1

1−α on R+ for the second

inequality, we get

ln+1 6 ln

(
1 +

γ

ln

) 1
1−α

6 ln

(
1 +

l0
ln

((
1 +

γ

l0

) 1
1−α

− 1

))
.

This implies by induction on n that

ln 6 l0 + nl0

((
1 +

γ

l0

) 1
1−α

− 1

)

6 l0

(
1 ∨

((
1 +

γ

l0

) 1
1−α

− 1

))
(n+ 1).

Raising this inequality to the power 1−α leads to (48),
which in turn implies the lower bound

∀n > 1, γn > γc̄
−α
1−α n−α. (50)

To bound (n+ 1)α−1 ln(1 + Sn) from below, we are

going to adapt the proof of Proposition 1. Since (γn)n>1

is bounded from above by the deterministic sequence

(γ(ln(1 + sn))
− α

1−α )n>1 which goes to 0 as n → ∞,

Proposition 3 shows that the sequence (Tk)k>0 defined
inductively by T0 = 0 and (25) satisfies (27). Moreover,

(46) still holds so that, using the concavity of the log-

arithm and the monotonicity of the sequence (γn)n>1

for the second inequality then setting c = γ ln(1+γ1)

Cα
T γ1 c̄α/(1−α)

and using (50) and (27) for the third, one has

ln θ̃Tk
> ln θ̃0 +

k∑

j=1

ln(1 + γTj )

> ln θ̃0 +
ln(1 + γ1)

γ1

k∑

j=1

γTj

> ln θ̃0 + c
k∑

j=1

j−α

> ln θ̃0 +
c

1− α

(
(k + 1)1−α − 1

)
.

With (27), one deduces that a.s., for all n ∈ N,

θ̃n > θ̃T⌊n/CT ⌋

> θ̃0 exp

(
c

1− α

(
(n+ 1)1−α

C1−α
T

−
1

C1−α
T

− 1

))
.

Inserting this lower-bound together with (48) into (47)

and setting c0 =
γθ̃0

c̄
α

1−α
exp

(
−

c(1+C1−α
T )

(1−α)C1−α
T

)
and c1 =

c
(1−α)C1−α

T

one gets

∀n ∈ N, Sn+1 > Sn +
c0

(n+ 1)α
ec1(n+1)1−α

.

Since x 7→ x−αec1x
1−α

is increasing for x >

(
α

c1(1−α)

) 1
1−α

,

one deduces that for all n > n1 :=

⌈(
α

c1(1−α)

) 1
1−α

⌉
,

Sn > Sn1 +

∫ n

n1

c0x
−αec1x

1−α

dx

= Sn1 +
c0

c1(1 − α)

(
ec1n

1−α

− ec1n
1−α
1

)

so that lim supn→∞(n+1)α−1 ln(1+Sn) > c1 > 0. This

concludes the proof since (n+ 1)α−1 ln(1 + Sn) > 0 for

all n > 0.

Proof (of Proposition 4) By Lemma 1, the sequence

(γn)n>1 defined by (31) is increasing, and bounded from
above by the deterministic sequence(
γ(ln(1 + sn−1))

− α
1−α
)
n>1

which goes to 0 as n → ∞.

Moreover,

P

(
γc̄−

α
1−α 6 inf

n>1
nαγn 6 sup

n>1
nαγn < +∞

)
= 1.

Since
∑

n>1
1
nα = +∞ and

∑
n>1

1
n2α < +∞, one de-

duces that (18) holds. The convergence is therefore a
consequence of Theorem 1.

To prove (32), we remark that (47) implies that

ln(1 + Sn+1) = ln(1 + Sn) +
γθn(I(Xn+1))

(ln(1 + Sn))
α

1−α
+ R

(1)
n+1,

where, setting h(x) = ln(1 + x) − x,

R
(1)
n+1 =h

(
γSnθn(I(Xn+1))

(1 + Sn)(ln(1 + Sn))
α

1−α

)

−
γθn(I(Xn+1))

(1 + Sn)(ln(1 + Sn))
α

1−α
.

From now on, C denotes a positive random variable

which may change from line to line. Lemma 1 implies

that

∀n > 0, ln(1 + Sn) > C(n+ 1)1−α.
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Since 0 > h(x) > −x2/2 for all x > 0 and

sup
x>0

(ln(1 + x))
α

1−α

1 + x
< +∞,

it follows that

∀n > 0,
∣∣∣R(1)

n+1

∣∣∣ 6 c(ln(1 + Sn))
− 2α

1−α

for some deterministic constant c ∈ (0,+∞). Writing

( ln(1 + Sn+1))
1

1−α = (ln(1 + Sn))
1

1−α

×

(
1 +

γθn(I(Xn+1))

(ln(1 + Sn))
1

1−α

+
R

(1)
n+1

ln(1 + Sn)

) 1
1−α

and remarking that x 7→ 1
x2

∣∣∣(1 + x)
1

1−α − 1− x
1−α

∣∣∣ is
locally bounded on R+, one deduces that

(ln(1 + Sn+1))
1

1−α

= (ln(1 + Sn))
1

1−α +
γθn(I(Xn+1))

1− α
+R

(2)
n+1,

where, for all n > 0,
∣∣∣R(2)

n+1

∣∣∣ 6 c′(ln(1 + Sn))
− α

1−α for

some deterministic constant c′ ∈ (0,+∞) depending on

S0. Lemma 1 ensures the existence of a positive random
variable C such that ∀n > 0, |R

(2)
n+1| 6 C(n+1)−α. One

has

1

n

(
ln(1 + Sn)

) 1
1−α

=
1

n

(
ln(1 + S0)

) 1
1−α

+
1

n

n∑

k=1

R
(2)
k

+
γ

(1− α)n

n∑

k=1

θk−1(I(Xk)).

The first term in the right-hand side converges a.s. to

0 as n → ∞. So does the second since

1

n

n∑

k=1

k−α
6

1

n

∫ n

0

x−αdx =
n−α

1− α
.

The choice f ≡ 1 in (17) ensures that the third term

converges a.s. to γ
d(1−α) . One concludes that nαγn+1 =

γ
(

1
n (ln(1 + Sn))

1
1−α

)−α

converges a.s. to γ
(

γ
d(1−α)

)−α

.
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G.: Convergence of the Wang-Landau. Mathematics of
Computation (2014). Accepted for publication

9. Fort, G., Jourdain, B., Kuhn, E., Lelièvre, T., Stoltz, G.:
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