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Abstract
Single image super-resolution (SISR) based on convolutional neural networks has been very successful in recent years. However, as the
computational cost is too high, making it di�cult to apply to resource-constrained devices, a big challenge for existing approaches is to
�nd a balance between the complexity of the CNN model and the quality of the resulting SR. To solve this problem, various lightweight SR
networks have been proposed. In this paper, we propose lightweight and e�cient residual networks (IRN), which differ from previous
lightweight SR networks that aggregate more powerful features by improving feature utilization through complex layer-connection
strategies. The main idea is to simplify feature aggregation by using simple and e�cient residual modules for feature learning, thus
achieving a good trade-off between the computational cost of the model and the quality of the resulting SR. In addition, we revisit the
impact of the activation function in the model and observe that different activation functions have an impact on the performance of the
model. The experiment results show that IRN outperforms previous state-of-the-art methods in benchmark tests while maintaining a
relatively low computational cost. The code will be available at https://github.com/kptx666/IRN.

1 Introduction
This paper focuses on the problem of single image super-resolution. Image super-resolution is a classic low-level vision task in computer
vision that has a wide range of applications in security, surveillance, satellite, and medical imaging, and it can be used as a built-in module
for other image recovery or recognition tasks. Single-image super-resolution refers to the reconstruction of visually appealing high-
resolution images from corresponding low-resolution images. In the past few years, deep learning has greatly advanced the development of
SR, and many deep neural network-based image SR methods have been proposed with great success. For example, Dong et al. [10] �rst
proposed a super-resolution convolutional neural network with only three layers, SRCNN, and achieved superiority over previous non-deep
learning methods. Subsequently, because deep convolutional neural networks [3] achieved good results in ImageNet classi�cation, people
were inspired to propose deeper and more complex architectures to improve the performance of SR methods. Kim et al. [5, 12] pushed the
depth of SR networks to 20 and achieved better performance than SRCNN. EDSR networks [13] reached a depth of more than 160 layers. It
was further demonstrated that deeper models are more bene�cial to improving the performance of SR models. Although these SR networks
greatly improved the quality of reconstructed images, their memory consumption and computational cost were huge, which made them
di�cult to deploy to resource-constrained devices, such as mobile devices. Therefore, improving the e�ciency of SR models and designing
lightweight models becomes critical.

To address these problems, a number of lightweight super-resolution models have been proposed. Ahn et al. [14] proposed a lightweight
e�cient cascaded residual network CARN-M with multiple residual connections, but its PSNR was too low. Hui et al. [4] proposed an
information distillation network IDN, which achieved better performance with a smaller number of parameters. Subsequently, the
Information Multiple Distillation Network (IMDN) [15] introduced an information multiple distillation block with a contrast-aware attention
layer, which further improved the IDN. Wenbo et al. [17] proposed a linear combinatorial pixel adaptive regression network (LAPAR) that
transformed direct LR to HR mapping learning into a linear coe�cient regression task based on a dictionary of multiple prede�ned �lter
bases. FALSR [18] employed Network Architecture Search (NAS) techniques to implement lightweight super-resolution models. However,
these SR models were not lightweight enough and the SR performance can be further improved.

For this purpose, this paper proposes a lightweight residual network (IRN) to better balance model performance and computational cost. It
is computationally less expensive than IMDN, LAPAR-A and FALSR [15, 17, 18] and has better performance compared to them. Unlike most
previous small parameter models that use recursive structures and information distillation, we design a residual block inspired by the
ConvNeXt Block [19], which is shown to increase the depth of the network at a smaller computational cost, thus improving the performance
of the network. Secondly, we introduce an effective Enhanced Spatial Attention (ESA) [16] module, which is used to improve the SR model's
ability to collect a variety of �ne-grained information. Speci�cally, we make use of more useful features (e.g. edges, corners, textures, etc.)
for image recovery.

The contributions of this paper can be summarized as follows:

1. We introduce the ConvNeXt Block to construct the residual block and demonstrate its effectiveness against SR.
2. We deploy an effective attention module(ESA), to strengthen the model with an additional �nite amount of computation.
3. Our proposed IRN integrates ConvNeXt Block and an effective attention module, which successfully enhances the compactness of the

model and reduces the computational cost without sacri�cing SR recovery accuracy.
4. Related Work

2 Related Work



Page 3/12

2.1 Single image super-resolution
In recent years, with the rapid development of deep learning, more and more deep learning methods have been applied to SR tasks, which
have greatly improved the performance of SR tasks. Dong et al. [10] �rst proposed the deep learning-based method SRCNN, a model that
achieves better performance than traditional methods despite having only three layers. Although SRCNN achieves good results, its pre-input
ampli�cation of SRCNN achieves good results but its bi-trivial interpolation of LR images for ampli�cation before input makes a large
number of redundant computations. The authors subsequently improved SRCNN in FSRCNN [11] by removing this pre-processing and
amplifying the image directly at the end of the network using transposed convolution to reduce the computational cost. To progressively
reconstruct higher resolution images, Lai et al. proposed the Laplace operator pyramidal super-resolution network (LapSRN) for progressive
upsampling networks [20] There are other works such as MS-LapSRN [21] and Progressive upsampling SR (ProSR) [22] which also adopt
this progressive upsampling SR framework and achieve relatively high performance. Shi et al. proposed an e�cient sub-pixel convolution
layer in ESPCN [23], where LR images were mapped through a series of features and then at the end of the network through a sub-pixel
convolution module are ampli�ed into an HR output. Due to the effectiveness of subpixel convolutional layers, later proposed networks
have used subpixel convolutional layers as reconstruction modules and obtained better performance. Kim et al. [5, 12] obtained deeper
layers of VDSR and DRCN by stacking convolutions using residual connections, resulting in a total of twenty layers and improved SR
performance. Lim et al. [13] obtained a deeper layer of VDSR and DRCN by removing the batch normalized (BN) layer of residual blocks [1]
were stacked to construct deeper and wider residual networks EDSR and MDSR and achieved signi�cant performance improvement. Zhang
et al. [27] proposed RDN based on EDSR by introducing dense connections [2, 7] to make full use of the information in all feature layers.
They introduced channel attention module [25] into the residual block and proposed the very deep residual attention network (RCAN) [8].
They then introduced the non-local module into the residual block to construct the residual non-local attention network (RNAN) [26] for
various image recovery tasks. Guo et al. [28] proposed a dual regression method to improve the performance of the SR model by
introducing additional constraints. Liang et al. [30] proposed a Transformer architecture for image recovery based on the Swin Transformer
[31], while Chen et al. [29] later proposed the SR model (HAT), which achieved signi�cant improvements in the performance of the SR
model.

2.2 E�cient SR Models
Although deep learning-based SR methods have achieved great success in terms of performance, their computational cost is too large and
not suitable for application to resource-constrained devices, such as mobile devices. Therefore, many methods have been proposed to
reduce the computational cost of SR models. For example, FSRCNN [11] reduced the redundant computation caused by direct bi-cubic
interpolation of input images by SRCNN [10] by introducing inverse transpose convolution at the end of the network. DRCN [12] applies
recurrent networks to SR models to reduce the number of parameters by reusing feature information multiple times. Ahn et al. [14] proposed
a lightweight and e�cient cascaded residual network CARN-M with multiple residual connections by using grouped convolution to reduce
the computational effort of standard convolution. Hui et al. [4] proposed the Information Distillation Network (IDN), which splits the
previously extracted features and then processes them separately to reduce the computational effort. The Information Multi Distillation
Network (IMDN) [15] improved on the IDN by introducing a contrast-aware attention layer, thus improving the performance of the SR model.
The Residual Feature Distillation Network (RFDN) [16] revisits the network architecture of the IMDN, further making the network lighter and
improving the performance of the SR model by using feature distillation connections (FDC) and shallow residual blocks (SRB).

2.3 Attention model
The attention mechanism has become an important component in improving the performance of deep neural networks and was widely
used in various computer vision tasks, such as image classi�cation. The attention mechanism can be interpreted as focusing on the more
useful information in the features. Hu et al. [25] proposed the (SE) block to exploit inter-channel attention at a lower computational cost,
improving ResNet and achieving signi�cant performance gains in image classi�cation tasks. Wang et al. [33] improved the e�ciency of the
module and improved the performance by improving the fully connected layer in the SE block. CBAM [32] modi�ed the SE block to enable
the use of both spatial and channel attention.

In recent years, several attention-based SR models have also been proposed and have signi�cantly improved the performance of SR. Zheng
et al. [15] proposed IMDN with a contrast-aware channel attention mechanism (CCA) to enhance the ability of SR models to collect various
�ne-grained information. Zhang et al. [8] introduced the channel attention mechanism into SR models and proposed RCAN. Dai et al. [34]
proposed a second-order attention network SAN to explore more powerful feature representations using second-order feature statistics.
Wang et al. [24] proposed a non-local module to generate an attention graph using the computation of the correlation matrix between each
spatial point in the feature graph, which is used to guide dense aggregation of contextual information.
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3 Method

3.1 Network Architecture
In this section, we describe in detail our proposed lightweight residual network (IRN), the overall network architecture of which is shown in.
Figure 1.

Our IRN consists of three main components: the �rst shallow feature extraction block, multiple stacked residual blocks (IRBs) and the
reconstruction module. We denote  and  as the input and output images of the IRN respectively. In the �rst stage we used a single 

 convolutional layer for shallow feature extraction, which can be represented as

where  denotes the convolution operation for shallow feature extraction and  denotes the extracted feature map. We then use
multiple IRBs in a cascade fashion for deep feature extraction, a process that can be represented as

where  denotes the nth IRB function and  is the nth output feature map.

In addition, we use a  convolutional layer to re�ne the deep features and then use the reconstruction module to generate , which
can be expressed as

 represents the reconstruction module, which consists of a  convolution with a  output channel and a sub-pixel
convolution. In addition,  represents a  convolution operation. The model is optimized using the  loss function, which can be
expressed as

where  is our IRN,  is the model-learnable parameter, and  is the  norm.

3.2 Residual blocks
In this subsection, we introduce the residual block (IRB). As shown in Fig. 2, the residual block consists of one  convolution and n
ConvNeXt Blocks, where n = 1 or 3, only in the second IRB of the model n = 3, and n = 1 in the rest of the IRBs. We use the  convolution
and ConvNeXt Blocks to extract features. In particular, our IRN uses fewer activation functions, with only the  layer in the
ConvNeXt Block using the GELU [36] activation function, and none of the other layers using any activation function. The ConvNeXt Block
[19] is an inverse bottleneck layer architecture that decomposes the standard convolution into depth-by-depth convolution and point-by-
point  convolution, as shown in Fig. 3, and has a wider feature before activation. [35] A model with wider features before activation
can signi�cantly improve the performance of single image super resolution (SISR) for the same parameters and computational budget. We
therefore introduce it into the model and experimental results show that it can signi�cantly reduce the computational cost while
maintaining SR model performance. Given an input feature of , the structure is described as

where  denotes a  convolutional block and  denotes a residual block made up of 1 or 3 ConvNext Blocks.  is the
feature extracted by the jth module. After two feature extraction modules, we add the �nal feature  and the skipped feature 
directly. This can be expressed as

where  is the �nal re�ned output feature.
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Next, we feed  into the ESA module [16] to obtain the �nal output of the IRB.

3.3 ESA Attention Module
As the effectiveness of the ESA module has been proven [16, 37], we introduce this module into our IRN. To keep the ESA module
su�ciently lightweight, it applies a  convolutional layer at the beginning to perform the reduction of the channel dimension of the
input features. Then a stepwise convolution and a maximum pooling layer are used to reduce the size of the feature map. After a set of
convolutions to extract features, interpolation-based up-sampling is performed to recover the original feature map size. Finally, an attention
mask is generated through the sigmoid layer. The speci�c architecture of the ESA module is shown in. Figure 4.

4 Experiments

4.1 Datasets and metrics
Following previous work, in our experiments, we used the DIV2K [38] dataset, which is widely used for image recovery tasks and contains
800 high-quality RGB training images to train the model. For testing, we used �ve widely used benchmark datasets: Set5 [39], Set14 [40],
BSD100 [41], Urban100 [42] and Manga109 [43]. We use two metrics, peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [44], to evaluate the quality of super-resolution images. Based on the existing work, we calculate PSNR and SSIM on the Y channel
of YCbCr converted from RGB.

4.2 Implementation details
Our model is trained on the RGB channel, and the LR images are generated by downsampling ( ,  and ) the HR images in MATLAB
using bicubic interpolation. In this paper, we use a randomly cropped HR image patch of size  from the HR image as input to
our model, with the mini-batch size set to 64. We augment the training data with random horizontal �ips and 90 rotations. Our model was
trained using the ADAM optimizer [45] with momentum parameters , , . The initial learning rate was set to 

 and was reduced by half after every  iterations. When training the �nal model, the  model was trained from scratch.
After the model converges, we use it as a pre-trained model for other scales. In the IRN, we set the number of IRBs to 4. We implemented our
network on the Pytorch framework and trained it on an NVIDIA RTX A5000 GPU.

4.3 Model analysis
In this subsection, we investigate the model parameters, the validity of the ESA, the effect of the activation function on the SR model and
the validity of the IRN.

Model parameters. In order to construct a lightweight SR model, the parameters of the network are crucial. From Table 3, we can observe
that our IRN achieves comparative or better performance compared to other state-of-the-art SR methods such as LAPAR-A (NeurIPS′21),
SRFBN-S (CVPR′19), etc. We also visualize the trade-off analysis between performance and Multi-Adds/Parameters in Fig. 5 We can see
that our IRN achieves a better trade-off between performance and computational cost.

Effectiveness of ESA. An ablation study was conducted and used to validate the effectiveness of the ESA module. As shown in Table 1, the
IRN without ESA showed a signi�cant performance degradation for a parameter drop of approximately 10%, and the complete IRN showed
signi�cant performance improvements on the Set5, Set14, BSD100, Urban100 and Manga109 datasets. The results show that the ESA
module can effectively improve the performance of SR.

Table 1 Ablation studies of ESA

Method Params[K] Multi-
Adds[G]

Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

IRN-
woESA

470 26 32.05 0.8932 28.45 0.7998 27.44 0.7350 25.86 0.7807 30.20 0.9050

IRN 524 28 32.15 0.8942 28.53 0.7810 27.53 0.7361 25.98 0.7841 30.35 0.9069

A study of different activation functions. When introducing the ConvNeXt Block, we retain GELU as its activation function. However, most
previous SR networks have used ReLU [46] or LeakyReLU [47] as the activation function. Therefore, we investigate the effects of these three

Fcdc

1 × 1

×2 ×3 ×4
192 × 192

β1 = 0.9 β2 = 0.999 ϵ = 10−8

5 × 10−4 2 × 105 ×2
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activation functions on the SR model. The results in Table 2 show that among these activation functions, GELU obtains a signi�cant
performance improvement. Therefore, we chose to retain GELU, as the activation function in our model.

Table 2 Quantitative comparison of different activation functions

Method Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ReLU 32.06 0.8933 28.49 0.7804 27.50 0.7352 25.91 0.7819 30.27 0.9055

LeakyReLU 32.12 0.8938 28.48 0.7806 27.52 0.7355 25.94 0.7833 30.32 0.9061

GELU 32.15 0.8942 28.53 0.7810 27.53 0.7361 25.98 0.7841 30.35 0.9069

Comparison with state-of-the-art methods. We compare the proposed IRN with state-of-the-art lightweight SR methods, and Table 3 shows
the quantitative comparison results for different scale factors. We also provide the number of parameters and Multi-Adds computed on an
output of 1280 × 720. We can observe that our IRN compares well with other state-of-the-art SR methods, including SRCNN [10], FSRCNN
[11], VDSR [5], DRCN [12], MemNet [6], SRDenseNet [7], DRRN [48], LapSRN [20], SelNet [49], CARN-M [14], CARN [14], SRMDNF [50], SRFBN-
S [51] and LAPAR-A [17], for  and  models, outperforming other comparative methods on most data sets, especially for the 
model, where IRN uses fewer parameters and Multi-Adds, greatly outperformed other methods on all benchmark datasets.

Figure 6 shows a comparison of the visualization on the Set14 and Urban100 datasets at . For the Urban100 “img_62” image, we can
see that the grid structure is better recovered. It also demonstrates the validity of our IRN

×3 ×4 ×3

×4
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Table 3
Comparisons on multiple benchmark datasets for lightweight networks. The Multi-Adds is calculated corresponding to a 1280 × 720 HR

image. Bold/red/blue: our/best/second best results
Scale Method Params MultiAdds Set5 Set14 BSD100 Urban100 Manga109

  SRCNN [10] 57K 53G 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.74/0.9661

  FSRCNN [11] 12K 6G 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9694

  VDSR [5] 665K 613G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9729

  DRCN [12] 1,774K 17,974G 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.63/0.9723

  MemNet [6] 677K 2,662G 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 -

  DRRN [48] 297K 6,797G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.92/0.9760

  LapSRN [20] 813K 30G 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740

×2 SelNet [49] 974K 226G 37.89/0.9598 33.61/0.9160 32.08/0.8984 - -

  CARN-M [14] 412K 91G 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193 -

  CARN [14] 1,592K 223G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 -

  SRMDNF [50] 1,513K 348G 37.79/0.9600 33.32/0.9150 32.05/0.8980 31.33/0.9200 -

  SRFBN-S [51] 282K 680G 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207 38.06/0.9757

  LAPAR-A [17]

IRN(Ours)

548K

503K

171G

106G

38.01/0.9605

38.08/0.9607

33.62/0.9183

33.64/0.9181

32.19/0.8999

32.20/0.8999

32.10/0.9283

32.11/0.9282

38.67/0.9772

38.83/0.9773

  SRCNN [10] 57K 53G 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107

  FSRCNN [11] 12K 5G 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080 30.98/0.9212

  VDSR [5] 665K 613G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9310

  DRCN [12] 1,774K 17,974G 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.31/0.9328

  MemNet [6] 677K 2,662G 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 -

  DRRN [48] 297K 6,797G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.74/0.9390

×3 SelNet [49]

CARN-M [14]

1,159K

412K

120G

46G

34.27/0.9257

33.99/0.9236

30.30/0.8399

30.08/0.8367

28.97/0.8025

28.91/0.8000

-

27.55/0.8385

-

-

  CARN [14] 1,592K 119G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 -

  SRMDNF [50] 1,530K 156G 34.12/0.9250 30.04/0.8370 28.97/0.8030 27.57/0.8400 -

  SRFBN-S [51] 376K 832G 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404

  LAPAR-A [17] 594K 114G 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441

  IRN(Ours) 512K 48G 34.46/0.9276 30.37/0.8430 29.11/0.8056 28.18/0.8529 33.70/0.9452

  SRCNN [10] 57K 53G 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505

  FSRCNN [11] 12K 5G 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280 27.90/0.8517

  VDSR [5] 665K 613G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809

  DRCN [12] 1,774K 17,974G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.98/0.8816

  MemNet [6] 677K 2,662G 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 -

  DRRN [48] 297K 6,797G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.46/0.8960

  LapSRN [20] 813K 149G 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845

×4 SelNet [49]

SRDenseNet [7]

1,417K

2,015K

83G

390G

32.00/0.8931

32.02/0.8934

28.49/0.7783

28.50/0.7782

27.44/0.7325

27.53/0.7337

-

26.05/0.7819

-

-
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Scale Method Params MultiAdds Set5 Set14 BSD100 Urban100 Manga109

  CARN-M [14] 412K 33G 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694 -

  CARN [14] 1,592K 91G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 -

  SRMDNF [50] 1,555K 89G 31.96/0.8930 28.35/0.7770 27.49/0.7340 25.68/0.7730 -

  SRFBN-S [51] 483K 1,037G 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008

  LAPAR-A [17] 659K 94G 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074

  IRN(Ours) 524K 28G 32.21/0.8952 28.61/0.7822 27.59/0.7370 26.04/0.7852 30.49/0.9091

4.4 Running Time
As shown in Table 4, our method has the lowest number of parameters and running time compared to LAPAR-A (NeurIPS′21) and IMDN
(ACM′19). For the average running time, as it is related to the optimization of the code and the computation of speci�c testbeds for
different operators (more  convolutions are used in our IRN than in IMDN and LAPAR-A). Therefore, our method does not differ much
from the runtime of IMDN (ACM′19).

Table 4 Comparison of our IRN with IMDN, LAPAR-A's 3x SR. Run times are the average of 10 runs on the Urban100 test set

Method Params[K] Runtime[ms] Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

IMDN 703 92.6 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445

LAPAR-
A

594 103.2 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441

IRN 512 89.4 34.46 0.9276 30.37 0.8430 29.11 0.8056 28.18 0.8529 33.70 0.9452

5 Conclusion
In this paper, we propose a lightweight and e�cient single image super-resolution residual network (IRN). By using simple and e�cient
residual blocks, which are used to reduce the number of network layers and simplify the connections between layers, our network is made
lighter and faster. In addition, we use effective ESA blocks to enhance the ability of model to collect �ne grained information. We then
investigate the effect of the activation function on the SR model to explore the best choice for our approach. Extensive experiments show
that our proposed IRN strikes a good balance between model size, performance and computational cost compared to other lightweight SR
models, so that it can be easily ported for use on mobile devices.
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The architecture of IRB

Figure 3

The architecture of ConvNeXt Block
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The architecture of ESA

Figure 5

Illustration of PSNR, Multi-Adds and parameter numbers of different SISR models on the Set5 dataset for 4x SR

Figure 6

Visual comparisons of IRN with other SR methods on Set14 and Urban100 datasets


