
Computing the minimal perimeter polygon for sets
of rectangular tiles based on visibility cones
Petra Wiederhold

Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN)

Research Article

Keywords: minimum perimeter polygon, regular complex in rectangular mosaic, rectangular tiling,
boundary tracing, relative convex hull

Posted Date: October 10th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3412621/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Journal of Mathematical Imaging and
Vision on June 24th, 2024. See the published version at https://doi.org/10.1007/s10851-024-01203-z.

https://doi.org/10.21203/rs.3.rs-3412621/v1
https://doi.org/10.21203/rs.3.rs-3412621/v1
https://doi.org/10.21203/rs.3.rs-3412621/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10851-024-01203-z

Computing the minimal perimeter polygon for sets of
rectangular tiles based on visibility cones

Petra Wiederhold

Received: date / Accepted: date

Abstract In the context of digital image modelling
and convexity analysis of digital objects, the minimum

perimeter polygon (MPP) was defined in the 1970s in
several articles by Sklansky, Chazin, Hansen, and Ki-
bler, where sets of pixels were identified with plane mo-

saics or polygonal tilings, and, the Sklansky-Chazin-

Hansen algorithm (1972) and the Sklansky-Kibler algo-

rithm (1976) were proposed for determining the MPP

vertices. Both algorithms rely on constructing and it-

eratively restricting visibility cones, the MPP vertices
result as special vertices of the tiles. This paper re-
views both classical algorithms for regular complexes

which are special sets of rectangular tiles, and an adap-

tation to square tiles recommended in widely used mo-

dern digital image analysis text books (2018, 2020), to

construct approximations of simple digital 4-contours.

We show that these three algorithms are erroneous, spe-

cially, that the Sklansky-Chazin-Hansen algorithm has

numerous types of errors, and that their mathematical

foundation contains incorrect details. After analyzing

and correcting these errors, a new version of MPP algo-

rithm for certain sets of rectangular tiles is presented,

its correctness is proved, and the classical algorithms
are corrected.

Keywords minimum perimeter polygon · regular
complex in rectangular mosaic · rectangular tiling ·
boundary tracing · relative convex hull

Mathematics Subject Classification (2010) 52-

08 · 68R99 · 68U05 · 68U10

Petra Wiederhold
Departamento de Control Automático, Centro de Investi-
gación y de Estudios Avanzados (CINVESTAV-IPN), Av.
I.P.N. 2508, San Pedro Zacatenco, México 07360, CDMX
E-mail: pwiederhold@gmail.com

1 Introduction

Motivated by digital image modelling, the minimum

perimeter polygon (MPP) was defined in the 1970s in
several articles by Sklansky, Chazin, Hansen, and Ki-

bler [9,18–21], where pixels were identified with tiles

in plane mosaics or tilings. The MPP has important

applications in digital image analysis for object repre-

sentation and approximation. The MPP faithfully de-

scribes convexity and concavity properties of the object

[2,10,12,13,16,25]. Moreover, the MPP perimeter was
proved to be a multigrid convergent perimeter estima-
tor for a compact simply connected subset S of the Eu-

clidean plane whose frontier is a smooth Jordan curve
[22,24]. In this regard, the MPP frontier is the minimal
length Jordan curve which circumscribes the Inner Jor-
dan digitization of S and lies within the Outer Jordan

digitization of S [12,22,24]. The MPP concept in [22,
24] corresponds to digitizations based on square pix-
els, the difference set between Outer and Inner Jordan

digitizations is a polyomino supposed as simple grid-

continuum, that is, corresponding to a simple digital

4-curve. For that special case, the MPP coincides with

the MPP due to Sklansky et al. [9,18–21] which, at its

origin, is more general and uses a distinct digitization.

In [20,21] the first two algorithms for determining

the MPP vertices for digital objects represented by sets

of polygonal tiles, were proposed. They are based on

constructing and iteratively restricting cones of visi-

bility, all MPP vertices result as vertices of the tiles.

Under certain assumptions, the MPP of a set of tiles,

called complex, coincides with the relative convex hull

of certain subset of vertices of these tiles, with respect

to the complex body [21]. The algorithms from [20,21]

are many cited in the literature, including in widely

used modern textbooks such as [4,6], where applica-

2 Petra Wiederhold

tions and adaptations to simple 4-contours, also called

digital Jordan curves, are recommended to approxi-

mate objects in the digital plane (cZ)2 [11,10,12,13,

15]. The present paper analyses the Sklansky-Chazin-

Hansen MPP algorithm (1972) [20] and the Sklansky-

Kibler MPP algorithm (1976) [21] under the same sup-

position of regular complexes in rectangular mosaics,

although the Sklansky-Kibler algorithm originally was
proposed for more general complexes and mosaics. We
also review an adaptation of these classic algorithms to

special complexes of square tiles, which is proposed in

modern textbooks [4,6] (2018, 2020). We analyse these

three algorithms and show that they all are erroneous.

We develop a corrected version of MPP algorithm for

regular complexes in rectangular mosaics, prove its cor-

rectness, and show how the classical algorithms may be

corrected.

We also show that the mathematical foundation pre-

sented in [20,21] has incorrect details, in particular, the

input data need to satisfy stricter requirements to make

the algorithms applicable. The MPP algorithm we pro-

pose, applies to a special kind of boundary chain which

can be obtained from any regular complex by bounda-

ry tracing. Our paper offers a general boundary tracing

algorithm for complexes in rectangular mosaics, and de-
duces properties of so-called generic boundary chains.

Section 2 of this article summarizes mathematical

preliminaries. Section 3 analyses the MPP algorithm
from the textbooks [4,6,12] for simple digital 4-contours.
Section 4 presents theoretical backgrounds of the MPP

for complexes on polygonal mosaics due to [20,21]. The

Sklansky-Chazin-Hansen MPP Algorithm from [20] is

studied in detail in Section 5, the Sklansky-Kibler MPP

Algorithm from [21] in Section 6. Section 7 explains a

restriction to boundary chains generated by bounda-

ry tracing, and presents an algorithm for this. Section

8 presents a corrected version of MPP algorithm which

joins the correct ideas of all algorithms studied before in

this paper, but avoids their errors. The new algorithm

is illustrated by examples, its correctness is proved, and

its adaptation to correct both classical algorithms from

[20,21] is shown. Some Conclusions complete the paper.

2 Preliminaries

We denote by Z the set of integers, R2 is the Euclidean

plane with standard topology where cl, int, fr denote,

resp., the topological closure, interior, and frontier. For

p, q ∈ R
2, pq is the straight line segment joining them.

If p ̸= q, −→pq is the directed straight line segment from

p to q. All formulae and definitions are based on the

standard right-hand Cartesian coordinate system in R
2.

Fig. 1 From the left to the right: instances of a
sequence of simple polygons which converges to a
weakly simple polygon with cyclic vertex sequence
(m,n, a, b, c, d, e, f, g, h, g, i, j, k, l, k).

By a polygonal curve we mean a closed curve

γ = f([0, 1]) in R
2, with a continues function f , where

f(0) = f(1) and there exist n ∈ N and t1, t2, · · · , tn
with t0 = 0 < t1 < · · · < tn = 1 such that all f([ti−1, ti]),

i ∈ {1, 2, · · · , n}, are straight line segments. Then γ
has a finite length given as the sum of lengths of all its

straight line segments, and a point f(ti) ∈ γ (1 ≤ i ≤
n − 1) is a vertex of γ if f(ti) ̸∈ f(ti−1)f(ti+1)). A

closed curve γ = f([0, 1]) is simple or a Jordan curve

if f is injective on [0, 1). A simple polygon is a com-

pact connected subset of R
2 whose frontier is a Jor-

dan polygonal curve, such polygon has no holes, is two-
dimensional, and has at least three vertices.

A weakly simple polygon is enclosed by a polygonal
curve which may be not simple, it may touch itself or
trace back on itself, but never does transversely cross

itself [26,1]. Such a curve γ is obtained in [20,21] as

the limit of a sequence of Jordan curves γj where for

a finite number of curve points of γ, each such point

is the limit of a sequence of corresponding vertices of

the curves γj , see Figure 1. The region enclosed by γ is
the limit of the sequence of simple polygons enclosed by

the curves γj , hence, there is a Jordan curve arbitrarily

near to γ:

Definition 1 (based on [1,20,21]) A weakly simple

polygonal curve is a polygonal curve γ determined by

k ≥ 3 vertices p1, p2, · · · , pk, where for any ϵ > 0, there

exists a simple polygonal curve δ determined by k ver-

tices q1, q2, · · · , qk such that for each j ∈ {1, 2, · · · , k},
d(pj , qj) < ϵ, being d the Euclidean distance. Then

the polygon P enclosed by γ is called weakly simple

polygon . Any vertex of γ is called vertex of P . Addi-

tionally, any single point p is a weakly simple polygo-

nal curve having the unique vertex p, and, for distinct

p, q ∈ R
2, the straight line pq is a weakly simple polyg-

onal curve with the cyclic vertex sequence (p, q).

Under a polygon we understand any compact sub-

set of R2 which is a weakly simple polygon, clearly any

simple polygon is weakly simple. We assume that Jor-

dan curves and weakly simple polygonal curves always

are traced in counterclockwise orientation, in concor-

Minimal perimeter polygon in rectangular mosaics 3

dance with [10,12,13,20,21]. Fixed the tracing orienta-

tion, the polygon enclosed can be uniquely represented

as cyclic sequence of its vertices (p1, p2, · · · , pk), where
pi ̸∈ p(i−1mod k)p(i+1mod k) for all i ∈ {1, · · · , k}. For a
simple polygon, the vertices in this sequence are pair-

wise distinct, this is not guaranteed for a weakly simple

polygon, see Figure 1. If a polygon P is given by its

cyclic sequence (p1, p2, · · · , pk) of vertices, its perime-

ter is the sum of lengths of the straight line segments
pipi+1, 1 ≤ i ≤ k − 1, and pkp1. Denoting by d the

Euclidean distance,

perimeter(P) =

i=k−1
∑

i=1

d(pi, pi+1) + d(pk, p1).

The polygon P = pq has perimeter 2 ·d(p, q), a polygon

given as a single point has perimeter zero.

We use the orientation of a triple of points p1 =

(x1, y1), p2 = (x2, y2), p3 = (x3, y3) ∈ R
2 given by the

determinant

D(p1, p2, p3) = det





x1 y1 1
x2 y2 1

x3 y3 1



 .

Any right-hand Cartesian coordinate system satisfies

that D(p1, p2, p3) < 0 if and only if p3 lies on the right

of −−→p1p2, (p1, p2, p3) forms a right turn. D(p1, p2, p3) > 0
is equivalent to p3 lying on the left of −−→p1p2, (p1, p2, p3)

forms a left turn. D(p1, p2, p3) = 0 is equivalent to
collinearity, then p1, p2, p3 belong to the same straight

line segment which may be degenerated to a point. For

consecutive points p1, p2, p3 in a finite cyclic sequence

of curve points of a polygonal curve γ, due to counter-

clockwise tracing, p2 is called convex if D(p1, p2, p3) >

0 (left turn), and concave if D(p1, p2, p3) < 0 (right

turn), linear point if p2 ∈ p1p3, and a peak ifD(p1, p2, p3) =

0 but p2 ̸∈ p1p3. A simple polygonal curve has no peaks.

For any weakly simple polygonal curve γ counterclock-

wisely traced, the polygon P enclosed lies on the left

side of γ. This justifies to consider the internal angle
at any vertex pi, measured in mathematically positive

sense between pi−1pi and pipi+1. The internal angle at
any convex vertex is strictly between 0◦ and 180◦, and

between 180◦ and 360◦ at any concave vertex.

3 An MPP algorithm for square tiles and

simple digital boundaries proposed in modern

textbooks

The books “Digital Image Processing” [4] (4th edition

2018) and “Digital Image Processing using Matlab” [6]

(3rd edition 2020), belong to the widely used textbooks

and references on digital image processing and analysis.

Part of Section 11.2 of [4], which appears also as part

of Section 13.3 of [6], suggests the minimum perimeter

polygon (MPP) to represent and approximate digital

boundaries in 2D digital images1. The MPP algorithm

in [4,6] is proposed for simple (edge-adjacency) paths

of squares corresponding to pixels in the discrete plane

(cZ)2, in particular, for simple 4-contours being a sort

of digital Jordan curves. Such a simple path is a cyclic
sequence of square tiles where each two consecutive tiles

share a side, and each tile shares some side with exactly

two other tiles in the path, see our Section 4. Those

paths informally are called “simply connected cellular

complexes” in [4,6] where the authors cite the articles

[20,24] and the Digital Geometry textbook [12].

In [20], the MPP is defined for complexes in polygo-

nal tilings, see our Section 4, and the Sklansky-Chazin-

Hansen algorithm to determine the MPP for certain

complexes in rectangular tilings is proposed. This algo-

rithm will be analysed in our Section 5, its application

to simple edge-adjacency paths of square tiles corre-

sponds to a very special case. The algorithm of [4,6]

coincides, except the notation, with the algorithm from

the book [12], which originally was published in [11,13]
where the authors affirm to base their work on [24].

Due to the approach of [24], see also [22,23], the

MPP is defined for simple polygons A, B in the plane,

where A lies in the topological interior of B. The MPP

is the relative convex hull of A with respect to B, also
called geodesic hull, the MPP frontier is the shortest

length Jordan curve which circumscribes A and does

not leave B. To develop multigrid convergent perime-

ter estimators, the authors of [24] apply the MPP to
simple 4-curves presenting digital boundaries: identi-

fying the discrete plane (cZ)2 with a square tiling, a

bounded simply connected region S ⊂ R
2 can be digi-

tized to obtain its Inner Jordan digitization J−(S) (the

set of all tiles completely contained in S), and Outer

Jordan digitization J+(S) (the set of all tiles which in-

tersect S). If S is bounded by a smooth Jordan curve,

for sufficiently large digitization resolution c−1 , the 4-

boundary of J+(S) given as F = J+(S) \J−(S), forms
a simple 4-curve, also called simple 4-contour. For this

special case, the MPP frontier is the minimal length

Jordan curve which circumscribes J−(S) but is con-

fined by the union of tiles of J+(S), hence the curve lies

in F . The article [24] proposes some algorithms, but it

does not contain any MPP algorithm strictly related to

the algorithms from [4,6,12,20].

1 The sections on the MPP algorithm and its foundation
appear with the same content in the 3rd ed. (2007) of “Digi-
tal Image Processing” [3], and in the 2nd ed. (2009/2010) of
“Digital Image Processing using Matlab” [5,7].

4 Petra Wiederhold

The union of tiles belonging to F = J+(S) \ J−(S)

forms an annular subset of R2 which has an inner fron-
tier and an outer frontier, called inner wall and outer

wall in [4,6], or inner track and outer track in [12], see

the example in Figure 2. The MPP algorithm from [4,

6,12] relies on the following:

– The uppermost-leftmost vertex of the inner wall is a
convex vertex of the MPP [20].

– There is a bijective correspondence between the con-

cave vertices of the inner wall and the concave vertices

of the outer wall, called mirrored concave vertices in [4,

6], which were first used in [11–13]. This fact is only

true if F forms a simple 4-contour which is a type of
digital Jordan curve [12].

– Each convex vertex of the MPP is a convex vertex of

the inner wall, and each concave vertex of the MPP is

a mirrored concave vertex [20,24].

As consequence, the MPP vertices can be found

based on tracing the inner wall of F , starting with its
uppermost-leftmost vertex V0 which provides the first

(convex) MPP vertex. The algorithm in [4,6] traces the

inner wall in counterclockwise sense and analyses each

convex vertex and each mirrored concave vertex. Only

those vertices are MPP vertex candidates, they are not

at the original grid point positions: for pixels in Z
2,

these candidates and hence all MPP vertices have co-

ordinates of type z + 1
2 , z ∈ Z. The algorithm uses two

so-called crawler points (named beetles in [11,13,12]):

W crawls along convex vertices, B along mirrored con-

cave vertices, see Algorithm 1.

As stated in [4,6], “the algorithm stops when it

reaches the first vertex, again”. This is included in Al-
gorithm 1 in Step 4: if there is no more element in L,

tracing L as cyclic list would find V0 as next element.

Fixed the last found MPP vertex VL, the crawlers define

a cone of visibility through the forthcoming tiles of the
input chain. The cone is expected to become narrower

while the crawlers are updated, the last found convex
vertexW determines the left cone border, the last found

mirrored concave vertex B determines its right border.

Hence, the cases of Step 5 mean the following:

(a) If V lies strictly on the left outside the current cone,

W is found as next (convex) MPP vertex.

(b) If V lies inside the cone, or on its borders, then

the convex/concave crawler, resp., is updated if V is
convex/concave. As updating result, one of the border

cones is restricted, or, the cone is confirmed.

(c) If V lies strictly on the right outside the current

cone, B is found as next (concave) MPP vertex.

Our Examples 1 and 2 show that these actions may

generate erroneous MPP vertices. The articles [11,13]

affirm that the correctness of the actions in cases (a)

and (c) was proven in [24]. We found it difficult to locate

Algorithm 1 Algorithm due to [4,6] to determine the

MPP of a complex of square tiles.

Input: A simple 4-contour in the digital plane (cZ)2, that is,
a simple edge-adjacency path of tiles forming the bounda-
ry chain β(C), corresponding to counterclockwise tracing,
of a complex C of square tiles.

Output: List MPP of MPP vertices.

1: Determine a convex MPP vertex V0 as the uppermost--
leftmost vertex of the inner wall of β(C).
Set VL = V0, add VL to the list MPP.

2: Starting with V0, trace β(C) to construct the candidate
list L: add V0 as first element of L, each convex vertex
found on the inner wall is added to L. For each concave
vertex found on the inner wall, its mirrored concave ver-
tex is added to L.

3: Set W = VL (crawler along convex vertices).
Set B = VL (crawler along concave vertices).
Situate on the last found MPP vertex VL in the list L.

4: The algorithm stops if there is no more element in L.
Otherwise, read the next element V from the list L.

5: (a) If D(VL,W, V) > 0 then set VL = W and add VL to
MPP (new convex MPP vertex found).
Then go to Step 3.
(b) If D(VL,W, V) ≤ 0 and D(VL, B, V) ≥ 0 then update
a crawler: if V is convex then set W = V , if V is concave
then set B = V . Then go to Step 4.
(c) If D(VL,W, V) < 0 then set VL = B and add VL to
MPP (new concave MPP vertex found).
Then go to Step 3.

Fig. 2 A complex with its simple 4-contour shaded, white
discs present convex vertices of the inner wall, mirrored con-
cave vertices (belonging to the outer wall) are drawn as black
discs, broken black lines show their bijection to the concave
vertices of the inner wall. The MPP frontier is drawn in red,
g is the unique MPP vertex between VL and s.

that proof in the extensive paper [24] which develops

theoretical bases for shortest paths problems in R
2, and

mentions ideas for MPP algorithms based on iterative
constructions of convex hulls and polygon partitions,

in particular, into visibility polygons. The work [11,13]

does not cite the much earlier papers [20,21] but the

strategies used in all these algorithms are similar.

Example 1: We apply Algorithm 1 from [4,6] to the

complex of Figure 2. Starting from the MPP vertex VL,

the next candidates are given as a, b, c, d, e, g, r, s.

The next MPP vertices after VL are given as g and s,

g is needed since
−−→
VLs has slope 4/15, but

−−→
VLg has the

larger slope 3/11,
−−→
VLs does not fit in the boundary.

Minimal perimeter polygon in rectangular mosaics 5

The algorithm obtains an initial cone with left border

determined by W = a (
−−→
VLa has slope 1/3) and right

border by B = b,
−−→
VLb and

−−→
VLd have slope 1/4. The

next candidate W = c restricts the left border,
−−→
VLc has

slope 2/7, B = d confirms the right border. The slope

of
−−→
VLe is 3/10 which exceeds 2/7, hence e lies on the left

outside the cone. Step 5(a) implies that a new polygon

vertex is found as W = c, which is a false result. The
algorithm finds c as additional vertex which makes the

perimeter of the polygon larger than that of the MPP.

Example 2: We apply Algorithm 1 from [4,6] to the

complexes of Figure 3, consider the point 1 as the last

found MPP vertex. For the smallest complex (d), point

6 is the unique MPP vertex between the MPP ver-

tices 1 and 8, the polygonal curve 1-6-8 has length√
32 + 42 +

√
2 ≈ 6.41. The algorithm initializes a cone

with the ray
−→
1, 2 (W=2) as left border and the ray−→

1, 3 (B=3) as right border. Then, W=4 confirms the

left border, B=5 restricts the right border (slope 2/3),

finally W=6 restricts the left border (slope 3/4), the

cone is well-defined since 2/3 < 3/4. Point 7 lies on

the right outside the cone, the ray
−→
1, 7 has slope 3/5 <

2/3. As consequence, point 5 is found as MPP vertex

which is a false result. It is easy to see that point 8 is
found as next MPP vertex, the curve 1-5-8 has length√
32 + 22 + 2

√
2 ≈ 6.43, which makes the perimeter of

the polygon larger than that of the MPP.

Figures 3(a,b,c) are generated by repeating the pat-

tern of the sequence 2-3-4-5, before reaching the same
situation as for 6-7-8 in (d). The sequence 2-3-4-5 ap-

pears four times in (a), and the pattern starting at
point 1 is the same as those starting at points 5,9,13.
The MPP for (a) has the unique vertex 18 between
the vertices 1 and 20, the curve 1-18-20 has length√
92 + 132 +

√
2 ≈ 17.225. The algorithm finds points

5,9,13,17 as erroneous MPP vertices, the curve 1-5-9-

13-17-20 has length 4
√
13 + 2

√
2 ≈ 17.251. Similarly,

instead of the MPP vertex 14, points 5,9,13 are found

for (b), and, points 5,9 are found for (c) instead of

the MPP vertex 10. By repeating the pattern of 2-

3-4-5 a number k of times, complexes may be con-

structed where Algorithm 1 finds k erroneous points
as MPP vertices, causing en error between the length
√

(1 + 2k)2 + (1 + 3k)2 +
√
2 of the MPP frontier part

from point 1 to the point numbered 4(k + 1), and the

curve length k
√
13+2

√
2 based on the points computed

by the algorithm. The sequence 1-2-· · · -12 of complex

(c) was reported in the appendix of [27] to show that

the MPP algorithm from [12] may fail.

4 Minimum perimeter polygon for complexes

in mosaics

A mosaic is defined in [20,21] as a locally finite family
of compact convex subsets of R2, there called cells, each

of them having non-empty interior, whose union covers

the plane, and whose interiors are pairwise disjoint. We

will name these sets as tiles. The family is locally finite
if for any p ∈ R

2 there exists an open disc centered at

p which meets only a finite number of tiles. It follows

that each tile is a convex polygon, then the mosaic is a

polygonal plane tiling due to [8,17], that conclusion is

part of the folklore, for a proof see [29]. The intersection

of any two tiles, either is empty, or is a non-zero length

straight line segment called an edge of the tiling, or is
a single point which is a vertex of at least one of these

tiles. Any edge belongs to the frontier of exactly two

tiles, in the case that each edge coincides with a full

side of each of these two tiles, the mosaic is called edge-

to-edge [8]. A rectangular mosaic is an edge-to-edge

mosaic whose elements all are rectangles [20,21].

Two distinct tiles sharing an edge are called edge-

adjacent, adjacent, or edge-neighbors. For a rec-

tangular mosaic, edge-adjacency generalizes the rela-

tion of 4-neighbors used in the discrete plane Z2. Recall
that p = (x1, y1), q = (x2, y2) ∈ Z

2 are 4-neighbors if

|x1−y1|+ |x2−y2| = 1. The 4-neighborhood graph is
given by the node set Z2 and the 4-neighbors relation,

this provides 4-paths and 4-connectivity [12]. By iden-

tifying each pixel p ∈ Z
2 with the unitary square cen-

tered at p, Z2 becomes identified with a plane tiling of

squares, where two tiles are edge-neighbors if they share

a side. These terms are easily generalized to the plane

(cZ)2 with c ∈ R, being c > 0 the distance between ad-
jacent pixels. Here, each pixel is identified with a square

tile of side length c. A rectangular mosaic M repre-

sents a more general discrete plane where each pixel p

is identified with the rectangle centered at p, each rect-

angle has four edge-neighbors. The (edge-)adjacency

graph G(M) given by the node set M and the edge-

adjacency relation, is a straightforward generalization

of the 4-neighborhood graph, it provides adjacency-

paths and adjacency-connectivity . In analogy to sim-

ple 4-curves used in Digital Geometry [12], also called

Jordan digital curves, we define a simple adjacency-

path as closed adjacency-path whose each element has

exactly two edge-neighbors in this path.

In more general models, a digital image is defined

on a set of pixels (a discrete set in R
2) identified with

the elements of a polygonal tiling, for example, of the

triangular or the hexagonal tilings. As defined in [21],

an acute mosaic satisfies that the union of any two

adjacent tiles forms a convex set. Evidently any acute

6 Petra Wiederhold

Fig. 3 Four complexes with their simple 4-contours shaded (only the boundary of the largest one is completely drawn), white
discs present the convex vertices of the inner wall, the mirrored concave vertices are drawn as solid black discs, the MPP
frontiers are outlined in red (see Examples 2 and 11).

Fig. 4 Two complexes (shaded grey) which are images of the
same polygon.

mosaic is edge-to-edge, both the quadratic and triangu-

lar tilings are acute mosaics, but the hexagonal tiling

is not. Modelling a digital image as defined on a mo-

saic, objects of interest become sets of tiles, they are

understood as the image under some digitization map-

ping from the Euclidean plane R2 onto the mosaic. The

authors of [21] interpret that digitization as a “many-

to-one transformation produced by an artificial retina”.

Now let M be a mosaic fixed in R
2. We adopt from

[20,21] the notion of complex defined as any finite non-
empty subset of M. We will not use notions from [20,

21] such as cellular mosaic, cell (instead of tile), cellular

complex, cellular image, or cellular boundary, to avoid

confusions with the structure of cellular complex or cell

complex known from combinatorial topology which also

is used for modelling discrete sets [12,14,29]. For any

complex C ⊆ M, its point set union |C| = ⋃ C = {p ∈
R

2 : p ∈ T for some tile T ∈ C} ⊂ R
2 is named its body.

Definition 2 (from [20,21]) Assume that C ⊆ M is a

complex and P ⊂ R
2 is a polygon. Then C is called

an image of a P , and P is called a preimage of C, if
P ⊆ |C| and T ∩ P ̸= ∅ for each tile T ∈ C.
Any polygon that has shortest perimeter among all

polygons which are preimages of C, is called a mini-

mum perimeter polygon (MPP) of C.

Fig. 5 Two polygons which are preimages of the same com-
plex (shaded grey), the right polygon is the MPP.

This definition does not provide a digitization map-

ping since the image of a polygon is not a unique com-
plex, see Figures 4, 5. In general, the MPP of C is not

unique, and its vertices are not guaranteed to belong to
the set of vertices of the tiles of C [20,21]. To report on

restrictions on complexes and properties of the MPP

which lead to its uniqueness and then to an algorithm

for determining its vertices, some more definitions are

quoted below from [20,21]. For this, let C be a complex
in a rectangular mosaic M.

In [20,21], an adjacency-path β = (T1, T2, · · · , Tk)
in C is called a chain, it is closed if Tk and T1 also are

adjacent. A chain is named regular if Ti−1 ̸= Ti+1 for
each 2 ≤ i ≤ k − 1 (and Tk−1 ̸= T1, Tk ̸= T2, for a

closed chain). As already defined above for paths, β is

a simple chain if it is closed, and each tile of β has

exactly two edge-neighbors in β. For any two adjacent

tiles S, T in a chain, the edge shared by S and T is
called a transversal edge . A non-empty adjacency-

connected complex is called chained complex.

The boundary B(C) of C is defined as the set of tiles

of C that meet the frontier fr(|C|). Any closed chain

which consists exactly of all tiles of B(C), is called a

boundary chain of C, B(C) is non-repeating if its ele-

ments are pairwise distinct. B(C) is a uniquely defined

set, but there may exist several boundary chains of C,
some of them being regular or non-repeating, or simple,

Minimal perimeter polygon in rectangular mosaics 7

others not. If |C| has holes, B(C) may result as not edge-

adjacency-connected, then C has no boundary chain.

If C has at least two elements, a tile T ∈ C is called

end tile2 if T is adjacent to exactly one other tile of

C. If C has at least two elements and |C| is connected,
a vertex q of a tile T ∈ C is called cut point3 for C
if the set (|C| \ {q}) is not connected in R

2. C is called

regular complex if the frontier fr(|C|) is a Jordan

curve (then C is called simply chained in [20,21]) and

C has a regular boundary chain. A regular complex C
has no end tile and no cut point. If fr(|C|) is a Jordan
curve then |C| is (simply) connected, and there is no

cut point for C, hence C is edge-adjacency-connected. C
is a normal complex if it has no end tile and |C| is
a simply connected subset of R2. Clearly, any regular

complex is normal.

As defined in [21], the core of C is the point set

union of all tiles of C, all edges belonging to tiles of C,
and all vertices of tiles of C, whenever these do not meet

the curve fr(|C|). We will denote this as core(C), note
that core(C) ⊂ R

2. If any of the end points of an edge
belongs to fr(|C|), that edge does not contribute to the

core. Also, if the frontier of a tile of C intersects fr(|C|),
this tile is not part of the core. C is a simply cored

complex if core(C) ̸= ∅, and C has a non-repeating

boundary chain, which implies that fr(|C|) is a Jordan

curve (Theorem 5 of [20]).

The definition of core in [20] (1972) depends on a

boundary chain which, in general, is not unique for the

boundary B(C). To avoid vagues details resulting from

this, we quoted above the definition of core from [21]
(1976), which also needs additional effort to relate the

convex vertices of the MPP with certain points of the
core. Even for a regular complex, core(C) not necessar-
ily is a polygon, core(C) may be non-connected, its con-

nected components are weakly simple polygons. In ge-

neralized sense, all vertices of all connected components

of core(C) are considered as vertices of the core , for
example, both end points of each component consisting

in a straight line segment, and also each isolated point
of core(C), are convex vertices of core(C).

Part (1) of the following Lemma 1 was proved in

[20] (Theorem 6), part (2) was stated in Theorem 8
of [20], partly as consequence of facts affirmed to be
shown in [18]. As shown in [21], for any points a, b in a

polygon B, there is a unique polygonal shortest path,

2 In [20], T is defined as end cell “if S = T ∩ (|C| \ T) is a
single edge of T”, but then S = ∅ since T is closed. A correct
version would require that S = T ∩ cl(|C| \T) is a single edge
(of M) which makes sense only if C has at least two elements,
this is our definition above.
3 A cut point is defined in [21] for any connected subset of

R
2, but later used as special element of a complex, however,

a complex only contains tiles.

called geodesic in B, which connects a and b. For two

polygons A ⊆ B, A is called convex relative to B if A
contains each geodesic in B which connects points a, b

from A. The relative convex hull of A with respect to

B (also called geodesic hull, see our Section 3) is the

intersection of all sets which contain A and are convex
relative to B. For a normal complex C, the set of all

its cut points and all vertices of its core C is called the
spread of C in [21], where the MPP of C was shown to

coincide with the relative convex hull of the spread of

C with respect to |C|. The spread of a regular complex

coincides with the set of all vertices of its core, which

implies part (3) of Lemma 1.

Lemma 1 Any regular complex C in a rectangular mo-

saic satisfies the following:

(1) C has a uniquely determined MPP.

(2) Any concave vertex of the MPP is a concave ver-

tex of fr(|C|), and any convex vertex of the MPP is a
convex vertex of core(C).
(3) The MPP of C coincides with the relative convex

hull of core(C) with respect to |C|. In particular, the
MPP contains core(C) and is contained in |C|.

The Sklansky-Kibler MPP algorithm was proposed

in [21] for normal complexes in acute mosaics, but in

the present article, we only consider it for the restricted

case of regular complexes in rectangular mosaics.

The algorithm from [4,6] described in our Section

3 works with simple 4-contours of special 4-connected

subsets of (cZ)2. Comparing with the concepts from
[20,21], J+(S) and J−(S) are edge-adjacency-connec-

ted complexes of square tiles, F = J+(S)\J−(S) is the
boundary of the complex C = J+(S) representable by a

simple boundary chain β(C). Under this special condi-

tion, core(C) is connected, tracing β(C) corresponds to
trace the inner wall fr(core(C)) which contains the con-

vex MPP vertices. The concave MPP vertices belong to

the outer wall fr(|C|) but are in bijective relation to the

concave vertices of the inner wall. This latter may be

not valid for more general complexes. For example, the

core of the complex in Figure 8 is not connected, and

the “inner wall” of its boundary does not exist.

5 Sklansky-Chazin-Hansen MPP algorithm

5.1 Suppositions and main ideas

The Sklansky-Chazin-Hansen MPP algorithm (1972)

from [20] applies to a boundary chain β(C) = (β0, β1,

· · · , βt) of any regular complex C in a rectangular mo-

saic, β(C) corresponds to counterclockwise tracing of

the Jordan curve fr(|C|). Then |C| has no hole, no cut

8 Petra Wiederhold

point, but has a regular boundary chain. It is not stated

in [20] whether β(C) should be regular or not. It is as-
sumed that the mosaic is in axis parallel orientation due

to the standard Cartesian coordinate system.

The algorithm pretends to construct the MPP fron-

tier of C as polygonal curve traced in counterclockwise

sense, which intuitively is a “stretched elastic thread”

lying within the boundary (body) |B(C)| and passing

through all tiles of β(C) due to their order in a given
boundary chain β(C) = (β0, β1, · · · , βt). Since each MPP

vertex coincides either with a concave vertex of fr(|C|),
or with a convex vertex (in generalized sense) of core(C),
all MPP vertices are vertices of the tiles of β(C). Dur-

ing tracing this chain, the algorithm constructs a joint

ordered list of MPP vertex candidates, being concave

vertices of fr(|C|) and convex vertices of core(C).
The algorithm starts with finding the lower right

corner point m1 of the leftmost tile T0 in the top row

of C, then m1 is a convex MPP vertex of C as proved in
[20]. From each last found MPP vertex mn, a straight

line segment confined by |B(C)|, is traced as long as pos-

sible up to the next MPP vertexmn+1. It is constructed

as belonging to a cone rooted at mn which shows vis-

ibility from mn through the forthcoming tiles of β(C).
The left and right cone borders are updated as more

tiles are taken into account, the cone is expected to

become more and more narrow. Meanwhile the cone is

well-defined, the straight line segment to be constructed

may be enlarged. When a contradiction about that cone

is generated, the next MPP vertex mn+1 is found. To

determine the cone borders, the frontier of each tile of

β(C) is decomposed in two parts, and some angle calcu-
lus is done. If core(C) is connected, tracing β(C) means

to trace both the whole “outer” frontier fr(|C|) and

“inner” frontier fr(core(C)).

5.2 Tools

Definition 3 (from [20]) For any regular complex C
with boundary chain β(C) = (β0, β1, β2, · · · , βt) and

1 ≤ i ≤ t, decompose fr(βi) = wi ∪ vi ∪ ui as follows:

Let w0 = β0 ∩ fr(|C|), and wi be the set of points of

βi ∩ fr(|C|) which can be connected to wi−1 via a path

in fr(|C|). Let vi = (βi∩βi−1)∪(βi∩βi+1) (union of two

edges). Let ui = fr(βi) \ wi \ v̂i where v̂i is the union

of the edges (βi ∩ βi−1) and (βi ∩ βi+1) but excluding
their end points.

It is stated in [20] that, up to 90◦ rotations, only

three situations may occur for any triple (βi−1, βi, βi+1)

of tiles in β(C), see Figure 6, for 1 ≤ i ≤ t − 1 or

(i− 1, i, i+1) = (t− 1, t, 0) or (i− 1, i, i+1) = (t, 0, 1):

Case (a) wi = βi ∩ fr(|C|) is a single point which is a

concave vertex of fr(|C|), ui is the connected union of
two sides of βi. Abusing from notation, we will denote

by wi (which is an one point set) also the point itself,

it is a candidate for a concave MPP vertex. Informally

said, βi performs a right turn.

Case (b) wi = βi∩fr(|C|) is the connected union of two
sides of βi, ui is a single point which is a convex vertex

of core(C). Abusing from notation, we will denote by

ui (being an one point set) also the point itself, it is a

candidate for a convex MPP vertex. Informally said, βi

performs a left turn.

Case (c) (βi−1, βi, βi+1) performs straight passing, wi =
βi ∩ fr(|C|) is a side of βi which belongs to fr(|C|), ui

is the opposite side of βi.
Each MPP vertex p coincides with the point wi

found in Case (a), or with the point ui found in Case

(b), for a unique i, 0 ≤ i ≤ t. Then, if bi denotes the

centre point of the tile βi, bi is a convex or concave ver-

tex of the curve bi−1bi ∪ bibi+1. As explicitly indicated

in Figure 9 of [20], the reference vector4 r is defined

as the ray which starts at the point p and whose direc-

tion is opposite to the direction of the vector
−−−→
bi−1bi, r

will be used for angle measurements which are essential

to find the MPP vertices.

Vectors from p to points of the sets wk and uk of

any tile βk ∈ β(C) with i+ 1 ≤ k ≤ t are considered in
[20], and angles are defined as follows:

hk=max{∡(r,−→pz), z∈uk}, gk=min{∡(r,−→pz), z∈wk}

where ∡(r,−→pz) denotes the angle at the point p from

the vector r to the vector −→pz measured in mathematical

negative (clockwise) sense, quoting the definition5 from

Figure 11 of [20].

The sets wi and ui from Definition 3 are of essen-

tial importance for the Sklansky-Chazin-Hansen Algo-

rithm. Regularity of C is required for Definition 3 to
guarantee that any situation presents one of the cases

4 We quote the definition of reference vector r from [20] as
given there in Figure 9. The text on page 266 of [20] defines r
as starting at p and pointing clockwise along fr(|C|) or on the
core boundary, depending on whether p is concave (authors
say “lies on |C|”, but it lies on fr(|C|)) or convex (authors say
“lies on core(C)”, but it should lie on the core boundary, or, on
the spread, since not each core point can be an MPP vertex).
This declaration contradicts the indications of Figure 9 which
are applied in the example of Figure 11. It is quite unclear
what does it mean for a vector to point clockwise along the
core boundary when this latter set may be disconnected or
even a set of isolated points.
5 The text on page 266 of [20] defines ∡(r,−→pz) as “the ab-

solute value of the angle swept out by a vector through p

starting from r and rotating counterclockwise to p.” This
statement contradicts Figure 11 on the same page where all
angles are measured in clockwise sense from r for a convex
MPP vertex in an example.

Minimal perimeter polygon in rectangular mosaics 9

Fig. 6 A complex C shaded grey with its frontier fr(|C|) (black), the frontier of core(C) (red), and the MPP frontier (blue
broken lines). Right figure: a regular boundary chain β(C) = (β0, β1, · · · , β19) illustrating the possible cases for (βi−1, βi,

βi+1) and wi, ui due to Definition 3. Case (a) is valid, for example, for i = 17, the point w17 (concave vertex of fr(|C|)) is
drawn blue and the set u17 green. Case (b) is satisfied for i = 10, 12, the points u10, u12 (convex vertices of core(C)) are marked
brown, the sets w10, w12 pink. Case (c) occurs for i = 5, the line segments w5 and u5 are drawn pink and green, respectively.

(a),(b),(c), as stated in [20]. A non-regular complex may

have end tiles where a distinct situation would occur.

By definition, all sets wi lie on fr(|C|), visiting them in

the order w0, w1, · · · , wt is expected to correspond to

counterclockwise tracing of fr(|C|). Proposition 1 of [20]

states that all sets ui belong to the frontier of core(C) if
C is simply cored6. As example, the complex presented

in Figure 8 has thin parts, hence it is not simply cored

since any boundary chain repeats tiles, some sets ui do
not lie on the core but on fr(|C|) as subsequent figures
show. Even so, wi and ui are well-defined for all tiles

for this example.

It is not stated in [20] whether the type of boun-

dary chain β(C) should be restricted, neither for Defi-
nition 3 nor for the algorithm. It turns out that even

regularity of the boundary chain of a regular complex
does not guarantee the concepts of Definition 3 to be
well-defined. Figure 7 shows a complex C with a regu-

lar boundary chain β(C), where Definition 3 gives non-

sense results which make fail the sets wi and ui to pro-

vide MPP vertex candidates. They also make false the
fact stated in [20] that the sequence (w0, w1, · · · , wt)

corresponds to tracing the frontier of |C|. That complex
C has non-empty core. Additionally to β(C), C also has

a non-repeating boundary chain given as (β0, β1, β2,

β5, β6, β7, β4, β3), using the notation from Figure 7.

Hence C is simply cored. However, for the chain β(C),
some ui do not lie on the frontier of core(C), declaring
false Proposition 1 of [20].

Complexes as the last example which are “two tiles

thick”, may have arbitrary length and may be parts of
any regular complex, giving rise to regular boundary
chains with numerous tiles where the sets wi and ui are

not well-defined, hence the Sklansky-Chazin-Hansen al-
gorithm would not be applicable. Definition 3 and the
algorithm must be restricted to a class of boundary

6 Proposition 1 of [20] affirms a fact about the sets ui, but
does not restrict the type of boundary chain.

chains which guarantees that all wi are non-empty sub-

sets of fr(|C|), that a concave MPP vertex candidate
is provided in each Case (a), and a convex candidate

in each Case (b). The class of non-repeating bounda-

ry chains is too restrictive since a regular complex may

have thin parts where any boundary chain passes twice.

In Section 7, we will restrict our new algorithm to boun-

dary chains obtained by boundary tracing.

5.3 Determination of MPP vertices

The first part of the algorithm finds a special convex

MPP vertex m1. This is performed by scanning some

finite simply chained complexN in (the infinite mosaic)
M with C ⊂ N where the tiles are labeled to belong

to C or to the background (N \ C). Applying that the

rectangular tiles are in axis parallel position and N is

edge-to-edge, scanning is performed from the top to the

bottom of N on horizontal lines, each one from the left

to the right, until finding the leftmost tile T0 in the
top row of C. The lower right corner point C0 of T0 is

a convex MPP vertex (Theorem 10 in [20]). As β(C)
contains all tiles of B(C), T0 ∈ β(C), cyclic shifting of

the list β(C) is performed until β0 = T0. The resulting

chain β(C) = (β0, β1, β2, · · · , βt) is used as input to

generate the output sequence of polygon vertices.

The second part, called “MPP Finder” in [20], as-

suming that the last MPP vertex was found as vertex of
a tile βi ∈ β(C), pretends to find the next MPP vertex

as vertex of some βj ∈ β(C), j ≥ i + 1. Starting with
m1 = C0, the next vertex m2 is found, then, using m2,

m3 is found, and so on. When an MPP vertex ms+1

found coincides with m1, the algorithm stops, then the

list of MPP vertices (m1,m2, · · · ,ms) is completed. Al-

gorithm 2 quotes the MPP algorithm as proposed on

page 267 in [20] (where it was less detailed), although

we have changed some notations.

10 Petra Wiederhold

Fig. 7 The regular complex C, shaded grey, coincides with its boundary B(C), core(C) is marked red in the left figure, it is
connected and coincides with its frontier. Moreover, core(C) coincides with the MPP of C, having two convex vertices. The
boundary chain β(C) = (β0, β1, · · · , β11) is regular but causes problems for Definition 3: w0, w1 (marked pink) and u0 = u1

are well-defined, but w2 and w3 are not. Since β2 corresponds to a left turn, u2 should result as equal to u1, providing a
convex MPP vertex candidate, and the β2-side drawn as broken pink line, should belong to w2. But Definition 3 gives that
this side together with the point u1 forms the set u2. Even worst for β3 which defines a right turn and hence should provide a
concave MPP vertex candidate w3: due to Definition 3, w3 is empty since no point of β3 ∩ fr(|C|) can be connected to w2 by
a path. As result, u3 (marked green) is a disconnected set which contains the right lower vertex of β3 (intuitively, that vertex
should be w3). The sets u2 and u3 are not subsets of the core of C.

Algorithm 2 Sklansky-Chazin-Hansen algorithm due

to [20] to determine the MPP of a regular complex C in

a rectangular mosaic.

Input: List β(C) = (β0, β1, · · · , βt), a boundary chain of C.
Output: Lists MPP (MPP vertices) and L (candidates).

1: Determine a convex MPP vertex m1 as the lower right
corner of the leftmost tile T0 in the top row of C. Per-
form cyclic shifting on β(C) = (β0, β1, · · · , βt) until β0

becomes the tile T0. Add m1 to MPP, add C0 = m1 to
L. Set n = 1, l = 0, p0 = m1 (first found candidate).

2: For the last found MPP vertex mn, determine r the refer-
ence vector and K(n): K(1) = 1, for n ≥ 2, K(n) should
satisfy that mn is the upper right corner of βK(n) when
r points on the right.

3: Set k := K(n) (continue tracing β(C) with fixed mn).
4: Continue if k ≤ t, otherwise, the algorithm is finished.
5: Determine wk, uk of βk, and compute angles:

hk := max{∡(r,−−→mnz), z ∈ uk},
gk := min{∡(r,−−→mnz), z ∈ wk},
Hk := max{hj : K(n) ≤ j ≤ k},
Gk := min{gj : K(n) ≤ j ≤ k}.

6: Update the last found candidate: If wk is a single point
then l := l + 1, add Dl = wk to L, pk := wk. If uk is a
single point then l := l + 1, add Cl = uk to L, pk := uk.
Otherwise pk := pk−1.

7: If Hk < Gk then set k := k + 1, then go to Step 4.
If Hk > Gk then set n := n + 1, mn := pk (new MPP
vertex found).
If mn = m1, the algorithm finishes, otherwise, add mn

to the list MPP, then go to Step 2.

In Step 1 of Algorithm 2, n is the index in the
list MPP, l for the list L. In Step 2, if the last found

MPP vertex mn was provided by βi, the algorithm

restarts from mn first analysing βi+1, this is the idea

behind the function K(n) whose value should then be

i + 1. The first MPP vertex m1 comes from β0, jus-

tifying K(1) = 0 + 1 = 1. The definition of K(n)
from [20] is correct only if mn is convex, as examples

below will show. Step 5 determines the sets wk, uk,

and calculates the angles. If uk is a single point then

hk = max{∡(r,−−→mnz), z ∈ uk} = ∡(r,−−−→mnuk), similarly

gk = min{∡(r,−−→mnz), z ∈ wk} = ∡(r,−−−→mnwk) for a sin-
gle point wk. The angles Hk and Gk define the left and

right border of a cone of visibility based at mn through
the forthcoming tiles of β(C), it is expected to become

moren narrow for increasing k.

As affirmed in [20], each βk satisfies exactly one of

the cases (a),(b),(c) related to Definition 3. This per-

mits to construct the candidate list L in Step 6: the
point wk is added as Cl to L in Case (a), the point uk

is added as Dl to L in Case (b). In Case (c), βk does not
provide an MPP vertex candidate. L is a joint list of all

MPP vertex candidates, appearing as they are detected

tracing β(C). Its points are labelled: each Cl is a convex

candidate, each Dl is concave, but the algorithm does

not use these labels later.
Updating the last found candidate pk in Step 6, just

after having computed Hk and Gk, and before checking
whether Hk < Gk or Hk > Gk, is the exact transcrip-

tion of the indications in the algorithm, stated in text

and pseudocode on page 267 of [20]: pk is the convex

candidate uk, or, pk is the concave candidate wk, or,

pk = pk−1 is confirmed if βk provides no candidate.
Note that pk−1 always exists, even for k = K(1) = 1

we have p0 = C0 from Step 1. In Step 7, pk provides the

next MPP vertex if the condition Hk > Gk is satisfied.

5.4 Examples to analyse the Sklansky-Chazin-Hansen

algorithm (Algorithm 2)

Example 3: We apply Algorithm 2 to the complex

from Figure 8. After finding the first MPP vertex m1,

β(C) is shifted to become β(C) = (β0 = T0, β1, β2, · · · ,

Minimal perimeter polygon in rectangular mosaics 11

Fig. 8 A regular complex C of square tiles with boun-
dary chain β(C) indicated by the numbers of its tiles
β0, β1, · · · , β23, the frontier of core(C) is drawn as red, the
MPP frontier by broken blue lines.

Fig. 9 Algorithm 2 for Example 3, n = 1 and n = 2.

β23), p0 = C0 = m1 is the first found candidate and

added to L. Now n=1, K(1) = 1, the reference vector
r is shown in Figure 9 which illustrates the advances

of the algorithm. For k=1, the candidate u1 = m1

is found, h1 = ∡(r,−−−→m1m1) cannot be measured since
−−−→m1m1 has zero length. This shows an error of the rules

in Step 5: if a vector −−→mnz is degenerated to a single

point, hk,gk may be not well-defined. Correction: Hk

and Gk should remain as unchanged from the earlier

(k-1)th step; for the starting case k = K(n), it is con-
venient to set Hk = 0◦, Gk = 360◦, then augment k

and go to Step 4.

For k=2, the candidate w2 = D1 is found, h2 =

max{∡(r,−−→m1z), z ∈ u2} = 45◦ = H2, g2 = ∡(r,−−−→m1w2)

= 90◦ = G2, p2 = D1 = w2, H2 < G2. The an-
gles H2, G2 define a cone rooted at m1, r lies on the

left from this cone, H2 defines the left border, G2 the

right border. For k=3, β3 gives no candidate, h3 =

max{∡(r,−−→m1z), z ∈ u3} > 45◦, H3 = h3 reduces the

cone, g3 = min{∡(r,−−→m1z), z ∈ w3} = 90◦ = G3, p3 =
p2, H3 < G3. k=4 gives u4 = C2, h4 = ∡(r,−−−→m1u4) =

H3 = H4, g4 = min{∡(r,−−→m1z), z ∈ w4} < G3, G4 = g4
restricts the cone, p2 = D1 = w2, H4 < G4.

For k=5,6,7, the algorithm constructs the cone sha-

dowed grey in Figure 9, w5 = D3 is found from β5.

k=8 provides no candidate, h8 = max{∡(r,−−→m1z), z ∈
u8} = H7 = H8. g8 = min{∡(r,−−→m1z), z ∈ w8} < G7,
G8 = g8, p8 = p7. Since H8 > G8, we get n=2, the

next MPP vertex m2 = p8 = p7 = u7 = C4 is found.

Note that H8 > G8 means that the cone is empty, its

right border defined by G8, lies on the left from the left

border determined by H8.

Restarting with n=2 in Step 2, K(1) = 8, r is
shown in Figure 9. For k=8, β8 gives no candidate,

h8 = max{∡(r,−−→m2z), z ∈ u8} = 90◦ = H8, g8 =

min{∡(r,−−→m2z), z ∈ w8} = G8 > H8. A cone based

at m2 is opened by H8 (left border), G8 (right border).

For k=9, the candidate u9 = C5 is found, h9 =

∡(r,−−−→m2u9) = 90◦ = H8 = H9, g9 = min{∡(r,−−→m2z), z ∈
w9} = 90◦ < G8, G9 = g9 = 90◦, p9 = u9, H9 =

G9. Error : H9 = G9 is not considered in Algorithm 2.
Correction: the construction of the MPP frontier should

be continued when the visibility cone is reduced to a ray,

Hk < Gk in Step 7 should be substituted by Hk ≤ Gk.

For k=10, β10 provides no new candidate, h10 =

max{∡(r,−−→m2z), z ∈ u10} = 90◦ = H9 = H10, g10 =
min{∡(r,−−→m2z), z ∈ w10} < G9, G10 = g10, p10 = p9.

Since H10 > G10, we get n = 3, m3 = p10 = p9 = u9 =
C5 is the next MPP vertex.

Restarting in Step 2 with n=3, K(3) = 10, observe
the reference vector r in Figure 10. For k=10, there

is no new candidate, h10 = max{∡(r,−−→m3z), z ∈ u10} =

90◦ = H10, g10 = min{∡(r,−−→m3z), z ∈ w10} = 135◦ =

G10, p10 = p9 = m3, H10 < G10. For k=11,12,13,

the candidates w11 = D6 and u12 = C7 are found,

H11 = h11 and G13 = g13 reduce the cone which is

shaded grey in Figure 10.

k=14 gives u14 = C8, h14 = ∡(r,−−−−→m3u14) < H13,

H14 = H13 , g14 = min{∡(r,−−→m3z), z ∈ w14} < G13,

G14 = g14, p14 = u14. Since H14 > G14, we get n = 4,

p14 = u14 is considered as next MPP vertex m4. This is

a false result and shows an error of Algorithm 2. The

12 Petra Wiederhold

Fig. 10 Advances of Algorithm 2 for Example 3, n = 3.

Fig. 11 Algorithm 2 for Example 3, n = 4 and n = 5.

next MPP vertex should be p13 = p12 = u12, see Figure

10. Skipping u12 and taking u14 as next polygon vertex,

the polygon would not result as preimage of C since β12

would lie in its complement.

Let us restart with n=4 but using the correct MPP

vertexm4 = u12:K(4) = 13, r and the cone borders are

shown in Figure 11. Using our corrections, for k=15,

the next MPP vertex m5 = p14 = u14 is found. Restar-

ting with n=5 and K(5) = 15, for k=18, the cone is

reduced to a ray. Proceeding with our correction, for

k=19 one finds the first concave MPP vertex m6 =

p19 = p18 = p17 = w17 = D9.

For n=6 see Figure 12, K(6) should have value 18,

but the rule in Step 2 gives the result 17. Starting with

β17, ∡(r,
−−−−→m6w17) cannot be measured, which leads to

start with k = 18, using our correction, r is shown in

Figure 12. Error and correction: The geometric rule is

not correct if mn is concave, then K(n) should satisfy

thatmn is the lower right corner of βK(n) when r points

on the right.

Continuing with k=18, β18 provides no candidate.
Recall that all angles are measured in clockwise sense

from r to the vector −−→m6z. As now m6 is a concave MPP

vertex, the angles turn out as larger that 180◦. We get

g18 = min{∡(r,−−→m6z), z ∈ w18} which is not defined

since m6 ∈ w18, using our correction, set H18 = 0◦,

G18 = 360◦. For k=19 (no candidate), h19 = H19 =
max{∡(r,−−→m6z), z ∈ u19}, g19 = G19 = min{∡(r,−−→m6z),

z ∈ w19} = 270◦, H19 < G19. A cone based at m6 is

opened by H19 (left border) and G19 (right border).

For k=20, the candidate w20 = D10 is found, h20 =

max{∡(r,−−→m6z), z ∈ u20} = 270◦ > H19, H20 = h20,

g20 = ∡(r,−−−−→m6w20) = 270◦ = G20 = H20, p20 = w20.
The cone became reduced to a ray, we proceed due to

our correction: k=21 gives no new candidate, h21 =

max{∡(r,−−→m6z), z ∈ u21} > 270◦, H21 = h21, g21 =

min{∡(r,−−→m6z), z ∈ w21} = 270◦ = G20 = G21, p21 =

p20. Since H21 > G21, n = 7, m7 = p21 = p20 = w20 is

the next MPP vertex.

Restarting with n=7: K(7) = 21 due to our correc-

tion, r is shown in Figure 12. There are no new candi-

dates for k=21,22, h21 = max{∡(r,−−→m7z), z ∈ u21} =

H21 is well-defined, but g21 = min{∡(r,−−→m7z), z ∈ w21}
is not since m7 ∈ w21. By our correction, set H21 = 0◦,
G21 = 360◦. Then h22 = max{∡(r,−−→m7z), z ∈ u22} =

H22, 180
◦ < H22 < 270◦, g22 = min{∡(r,−−→m7z), z ∈

w22} = 270◦ = G22, H22 < G22.

For k=23, u23 = C11 is found, h23 = ∡(r,−−−−→m7u23) =

H22 = H23, g23 = min{∡(r,−−→m7z), z ∈ w23} < G22,

G23 = g23, p23 = u23, H23 < G23. The cone defined by
H23 and G23 is shadowed grey in Figure 12. Algorithm

2 ends since β23 is the last element of β(C), returning
the lists MPP = (m1, m2, m3, m4, m5, m6, m7) and

L = (C0, D1, C2, D3, C4, C5, D6, C7, C8, D9, D10,

C11) where C11 = u23 = u0 = C0.

As another error, the stop condition is never reached.
It is necessary to visit β0 after β23, to obtain the con-

dition Hk > Gk satisfied, and so to find the MPP ver-

tex m1, again. This can be achieved by copying β0 at

the end of the input list β(C). Proceeding in this way,

β24 = β0, we get k=24 and u24 = u23. Then h24 =

∡(r,−−−−→m7u24) = H23 = H24, g24 = min{∡(r,−−→m7z), z ∈
w24} < G23, G24 = g24, p24 = u24. Now H24 > G24

Minimal perimeter polygon in rectangular mosaics 13

Fig. 12 Algorithm 2 for Example 3, n = 6 and n = 7.

Fig. 13 Algorithm 2 for Example 4.

leads to n = 8, m8 = p24 = u24 is the next MPP ver-

tex, but m8 = m1, so it is discarded, the algorithm

finishes with the complete list of MPP vertices.

For this small example, Algorithm 2 presents several

types of errors which occur a large number of times, it

would not determine the correct MPP.

Example 4: We apply Algorithm 2 to the complex in

Figure 13, showing a last found MPP vertex m and

the cone borders up to k = 6, p6 = u6. For k=7,

Fig. 14 Complex boundary for Example 5.

the candidate w7 is found, h7 = max{∡(r,−→mz), z ∈
u7} > H6, H7 = h7 defines a new left cone border.

g7 = ∡(r,−−→mw7) > G6 hence G7 = min{g7, G6} = G6,

p7 = w7, H7 ≤ G7. k=8 provides no candidate, h8 =

max{∡(r,−→mz), z ∈ u8} > H7, H8 = h8 defines a new

“left border”, g8 = min{∡(r,−→mz), z ∈ w8} = G7 = G8,

p8 = p7. Now H8 > G8, a new MPP vertex p8 = p7 =
w7 is found. This is a false result because mw7 does not

fit in the boundary |B(C)|. The last candidate found
before was p6 = u6, which also is not the next MPP

vertex, although mu6 fits in the boundary. The correct

next MPP vertex is given as p5 = w5, but this cannot

be found by the algorithm.

Example 5: For the complex in Figure 14, up to k = 5

we have p4 = u4 (convex), p5 = w5 (concave),H5 < G5.

For k=6, h6 = max{∡(r,−→mz), z ∈ u6} < H5, hence h6

is ignored, H6 = H5, g6 = min{∡(r,−→mz), z ∈ w6} =

G5 = G6 > H6, there is no new candidate, p6 = p5.

For k=7,8, we find p7 = u7 (H7 = H6, G7 defines a

new right border, H7 < G7), and p8 = w8 (cone borders
confirmed), H8 < G8. For k=9, u9 is a new candidate,

h9 = ∡(r,−−→mu9) < H8 hence H9 = H8, h9 is ignored,

g9 = min{∡(r,−→mz), z ∈ w9} < G8, G9 = g9 = H9,

p9 = u9. The cone has become a ray, by our correction,

we proceed with k=10, to find the candidate w10, h10 =

max{∡(r,−→mz), z ∈ u10} < H9 hence H10 = H9, h10 is

ignored. g10 = ∡(r,−−−→mw10) = G9 = G10 = H10, the cone
remains, p10 = w10. By our correction, we continue.

For k=11, u11 is found, h11 = ∡(r,−−−→mu11) < H10

hence H11 = H10, h11 is ignored, g11 = min{∡(r,−→mz),

z ∈ w11} < G10, G11 = g11 (new right border), p11 =

u11. NowH11 > G11 which makes us find the next MPP

vertex as p11 = u11 which is a false result since −−−→mu11

leaves the boundary.

14 Petra Wiederhold

Fig. 15 A complex with the core frontier marked red, the
MPP frontier drawn by blue lines. Below: the sets uk, wk

and the cone borders for m = u14 as last found MPP vertex.
The reference vector results as lying inside the cone, causing
ambiguities for angle calculations and errors.

We have continued twice when the cone has become

a ray. Without this correction, Algorithm 2 stops at

k = 9 or k = 10 and finds p9 = u9 or p10 = w10 as

MPP vertex, the candidate found before was w8. All
these candidates, u11, w10, u9, w8, do not provide the

next MPP vertex, as may be observed in Figure 14.

Clearly u11 is an MPP vertex, but not the next one.

The curves m − w10 − u11 and m − w8 − u11 both fit

in |B(C)|, the first one has length
√
36 + 9 ≈ 7.71, the

second one has length
√
25 + 4 +

√
4 + 1 ≈ 7.62. The

correct MPP vertex is given as u7 which is a candidate
found long before, the curve m− u7 − u11 fits in |B(C)|
and has the shortest length

√
16 + 4 + 2

√
2 ≈ 7.30.

Example 6: For the complex in Figure 15, let us restart

from the MPP vertex m = u14, the reference vector r is

distinct from that of Example 3, we proceed with k =

kStart = 15. Since m ∈ u15 and m ∈ u16, h15, h16 are

not well-defined. Let us ignore β15, β16, to continue with
k=17: the candidate u17 is found, h17 = ∡(r,−−−→mu17) =

H17 = 0, g17 = min{∡(r,−→mz) : z ∈ w17} = G17 = 0,
p17 = u17. The cone is reduced to a ray. Note that β15,

β16, β17, all lie on the right of r.

k=18 provides the candidate w18. It is not clear

whether g18 = ∡(r,−−−→mw18) = 360◦ (β18 lies on the left of

r), or g18 = 0◦ since w18 ∈ r, in any case G18 = 0. The
same doubt applies to h18 = max{∡(r,−→mz) : z ∈ u18}:
is it 360◦ (β18 lies on the left of r), or 0◦ since u18

intersects r ?

– For h18 = 360◦ we get G18 = 0 < 360◦ = H18.

Algorithm 2 finds w18 as MPP vertex which is a false
result. Moreover, G18 and H18 describe the same ray,

there is no geometric contradiction for the cone, the
process should continue.

– For h18 = 0 we get G18 = 0 = H18, the cone still is a

ray (which is correct). Proceeding to k = 19, the candi-

date u19 defines a new left cone border by H19 = h19 =

∡(r,−−−→mu19). On the other hand g19 = max{∡(r,−→mz) :

z ∈ w19} may be interpreted as 360◦ (β19 lies on the

left of r) or as 0 (w19 intersects r), in any case G19 =

0 < H19 which is the condition of Line 18 of Algo-

rithm 2. Hence the last candidate u19 is found as MPP

vertex which is a false result (w18 which was found be-

fore, would also be false). Note that G19 < H19 means
that the new cone is empty, that is, its right border lies

strictly on the left of the previous cone, or, its left bor-
der lies strictly on the right of the previous cone, but
none of these situations does occur.

5.5 Analysis of Algorithm 2

All examples exposed above use square tiles and regular

boundary chains where all sets ui, wi due to Definition

3, are well-defined. Even under that ideal conditions,

the examples reveal various types of errors.

Procedure errors. .

– The values hk, gk are based on angles ∡(r,−→pz) for
z ∈ uk or z ∈ wk, resp., which are not defined for

p = z. The situation p ∈ uk or p ∈ wk may occur at
each restart after finding a new MPP vertex, βk then

does not provide any candidate, the algorithm should

ignore βk, skip the calculation of hk, gk, maintain Hk,

Gk as unchanged from the previous (k-1)th step, and

then advance to the next tile of β(C). For k = K(n), it

is justified to define initial valuesHk = 0◦ (Hk is a max-

imum over angles) and Gk = 360◦ (Gk is a minimum
over angles), this may be added to Step 2.

– Algorithm 2 does not consider7 the case Hk = Gk.

Constructing a straight line segment belonging to the
MPP frontier, may be continued if the cone is reduced
to a ray, the line still fits in B(C). The condition Hk <

Gk in Step 7 should be corrected to Hk ≤ Gk.

– The rule stated in [20] for definingK(n) is correct only

if mn is convex. For concave mn, K(n) should satisfy

that mn is the lower right corner of βK(n).

– In Example 3, the stop condition never was satisfied.
The algorithm pretends to trace β(C) = (β0, β1, · · · , βt)

until the first MPP vertex m1 is found, again. This

requires to analyse β0 after βt.

– Updating pk is made too early: suppose that pk is
updated in Step 6 and then Hk > Gk in Step 7, that

is, Hk−1 ≤ Gk−1. Then pk is considered as next MPP
vertex which is a false result, because pk just caused

the contradiction Hk > GK meaning that the cone is

empty. Then pk already fails to be the possible next

MPP vertex since mnpk is not longer guaranteed to fit

7 If Hk = Gk, both conditions of Step 7 are not satisfied,
this leads to increase k with no previous updating, which is
not always correct.

Minimal perimeter polygon in rectangular mosaics 15

in |B(C)|. The true next MPP vertex is then given as

a candidate found in some previous step.

Theoretical errors. The input data are assumed in [20]

as any boundary chain β(C) of a regular complex. As

observed in Section 5.2, this does not guarantee that

each tile βk satisfies one of the three cases (a),(b),(c)

related to Definition 3, and, that cases (a),(b) provide
MPP vertex candidates, not even if β(C) is regular. This
errors makes the algorithm not applicable in some cases.
Example 6 shows another error: the reference vector r

may result as lying inside the cone which causes ambi-
guities in angle calculations and erroneous results.

Errors in the correctness proof. Algorithm 2 is affirmed

in Theorem 11 of [20] as determining the ordered se-
quence of MPP vertices. The main argument of the
proof supposes that mn is a MPP vertex, and Algo-

rithm 2 has reached Step 7 and Hk > Gk is true, that

is, Hk−1 ≤ Gk−1. Let sk be the interior (that is, with-

out its end points) of a segment of the MPP frontier

joining mn by counterclockwise tracing to any point

of the tile βk, assuming also that K(n) ≤ j < k for
some tile βj which provides a candidate. The proof in

[20] (page 267) states that then sk contains exactly one

MPP vertex which precisely is given as the last found

candidate pk. Both these affirmations are false.

To see this, consider Example 3 from Section 5.4 for

n = 3 and k = 14, see Figure 10. The MPP frontier

intersects β14 only at the point u14, hence (m3u12 ∪
u12u14) \ {m3, u14} is the unique possibility for s14. It
is true that s14 contains exactly one MPP vertex, but

this is u12 which does not coincide with the last found
candidate p14 = u14. In Example 4 from Section 5.4,

see Figure 13, Hk > Gk is satisfied for the first time

for k = 8, β8 provides no candidate, p8 = p7 = w7.

The MPP frontier tracing from m passes first w5, then

w7, then continues at the inferior horizontal side of β8.
Hence, for any point p ̸= w7 lying on that side of β8,

the curve mw5∪w5w7∪w7p (excluding its end points m
and p) is a possible case for s8. Each such s8 contains

the two MPP vertices w5 and w7, but the last found

candidate w7 is not the correct next MPP vertex which

should be found for k = 8.

Strategy analysis. The determination of the sets uk, wk

and laborious angle calculus make Algorithm 2 difficult

to understand and to implement. From the last found

MPP vertex m provided by βs ∈ β(C), Algorithm 2 pre-

tends to construct a straight line segment to the next

MPP vertex. This line goes through βs+1, βs+2, βs+3, · · · ,
until its prolongation would not fit in |B(C)|. All sets

uk, k = s+1, s+2, · · · , are situated on the left, all sets

wk are on the right, of that line. A current cone based

at m, which contains the desired line, is generated using
βs+1 and then updated for each k, k = s+2, s+3, · · · ,
by comparison with the k-th cone.

Let us ignore all definition and procedures errors

and assume that hk, gk are well-defined and r correctly
describes the situation of a vector −→mz with respect to

r, for z belonging to uk or wk, or to a cone border,
where relations of lying on the left or on the right, are

encoded by angles between r and −→mz. The left bor-

der of the k-th cone is given as −−→mak where ak is the

point of uk that lies furthest the right, represented by

hk = ∡(r,−−→mak) = max{∡(r,−→mz), z ∈ uk}. The angle

gk = min{∡(r,−→mz), z ∈ wk} = ∡(r,
−−→
mbk) corresponds

to the point ck of wk which lies furthest to the left,

it determines the right cone border −−→mck. The current

(updated) cone, initially given as the (s + 1)-th cone,

is described by Hk (left border) and Gk (right border),

it is well-defined if Hk ≤ Gk. For k ≥ s + 2, the main
actions of Algorithm 2 may be described as follows:

– Determine uk, wk, ak, ck, hk, gk.
– If ak lies strictly on the right of the left current cone

border (hk > Hk−1) then ak determines a new left bor-

der represented by Hk = hk = max{hj : s+1 ≤ j ≤ k},
otherwise Hk = Hk−1.

– If ck lies strictly on the left of the right current cone
border (gk < Gk−1), then ck determines a new right

border represented by Gk = gk = min{gj : s+ 1 ≤ j ≤
k}, otherwise Gk = Gk−1.

– Update the last found candidate: if uk is a single

point then pk = uk = ak, if wk is a single point then

pk = wk = ck, otherwise pk = pk−1.

– Final decision: If Hk ≤ Gk (originally only stated as

Hk < Gk) then increase k and continue, incorporating

the next tile. If Hk > Gk (the current cone is not longer
well-defined), pk is declared as the next found MPP

vertex.

The most important strategy errors of Algorithm 2

are that, it does not use the distinction between convex

and concave candidates, and, it ignores that not each

candidate is prospective to be an MPP vertex.

6 Sklansky-Kibler MPP algorithm

6.1 Strategy, tools, algorithm

We consider the Sklansky-Kibler Algorithm (1976) from

[21], originally proposed for normal complexes in acute

mosaics, under the restricted suppositions that C is a

regular complex in a rectangular mosaic, with all tiles

in axis parallel orientation in the standard Cartesian

coordinate system, and β(C) = (β0, β1, · · · , βt) is a

regular boundary chain of C.

16 Petra Wiederhold

In distinction to the Sklansky-Chazin-Hansen Algo-

rithm, instead of tracing the entire “outer and inner
frontiers” fr(|C|) and fr(core(C)), the idea now is to

jump from one transversal edge to the next. These edges

are named windows in [21]: for each βi, βi+1 ∈ β(C), the
edge ei = βi ∩ βi+1 is the i-th window with end points8

xi ∈ fr(|C|) and yi. Since tracing β(C) follows fr(|C|)
counterclockwise, points xi determine the right border
vector of the cone of visibility through the next win-

dows, points yi determine its left border. The cone is

expected to become more narrow as more forthcoming

windows are taken into account. As affirmed in [21], fi-

nally, when the next window “is not in sight at all”, a

new MPP vertex mn+1 is found: if that window falls

on the right (resp., left) hand side of the cone then

mn+1 lies on the right (resp., left) cone border line, it

is the last found vertex candidate on that line. This

marks an important difference to the Sklansky-Chazin-

Hansen Algorithm, where each new MPP vertex was

obtained as the last point of a joint list of candidates.

To determine the cone borders, some angle calculus is

done with respect to a reference vector distinct from

that of Algorithm 2.

“Algorithm M” in [21] starts at a first MPP vertex

m given as “any point of the spread of C”. For a regular

complex, that means that m could be any vertex of
core(C). We comment that this is false since no concave

vertex of the core could be an MPP vertex. There is no

specific suggestion in [21] how to find m. So, let us find

m as a first convex MPP vertex, as explained in Section

5.3 for the Sklansky-Chazin-Hansen Algorithm. Then

m is a vertex of a special tile T0 of C, suppose now that

T0 coincides with β0 of β(C). Algorithm 3 presents a
pseudocode of the Sklansky-Kibler algorithm9. It uses

the tools from the following definition based on informal
definitions from [21].

Definition 4 For any regular boundary chain β(C) =
(β0, β1, · · · , βt), a vertex m ∈ βi of the MPP of C,
0 ≤ i ≤ t, and a tile βj with j ≥ i + 1 which is the

first one such that m does not belong to the window
ej = βj ∩ βj+1 (that is, m ̸∈ ej and m ∈ ez for all

i+1 ≤ z ≤ j−1), define a reference system and angles:

If ej has end points xj ∈ fr(|C|) and yj , the straight

ray starting at m and passing through xj is named the

8 In [21], xi and yi are called “coordinates”, but they are
the end points of the straight line segment ei = βi ∩ βi+1.
9 The “Implementation of Algorithm M” in [21] contains

four steps. The first two ones describe a boundary detection
technique where for a known boundary tile β0 of C, the next
boundary tile β1 is found, that permits to locate the window
b0. Then β2 is found and hence the window b1, and so on. In
the present article, we ignore these parts since we are inter-
ested only in the MPP algorithm, we use the complete input
boundary chain β(C) to obtain all windows.

base line (of m). The following values of angles of vec-

tors starting at m are measured from the base line in
counterclockwise sense: for any window ek with k ≥ j,

let θk = ∡(−−→mxj ,
−−→mxk), θ

′

k = ∡(−−→mxj ,
−−→myk). The cone

[θk, θ
′

k] is defined for any 0 ≤ θk ≤ θ′k ≤ 360◦ as the

union of all rays which start at m and form angles with
the base line of values between θk and θ′k. The cone

[θk, θ
′

k] is defined as the empty set if θk > θ′k.

The angles for the window ej determine a cone based

at m with right border −−→mxj and left border −−→myj . For

forthcoming windows ek with k ≥ j+1, the angles serve
in the algorithm to update the right (θk) and left (θ′k)

cone borders. A cone [θk, θ
′

k] is not empty but degene-
rated to a straight ray if θk = θ′k.

Algorithm 3 Sklansky-Kibler algorithm due to [21],

to determine the MPP of a regular complex C in a rect-

angular mosaic.

Input: boundary chain β(C) = (β0, β1, · · · , βt) (counter-
clockwise tracing), special convex MPP vertex m ∈ β0.

Output: List MPP of MPP vertices.

1: Add m1 = m to the list MPP, set i := 0 , n := 1.
2: if i > t then STOP, end if.
3: Determine end points xi (right) and yi (left) of window

ei = βi ∩ βi+1.
4: if (m ̸= xi and m ̸= yi) then
5: θi = 0, θ′i = ∡(−−→mxi,

−−→myi) (−−→mxi is a new base line)
6: θ = 0 , θ′ = θ′i (new right and left cone borders)
7: k := i

8: while [θk, θ′k] ∩ [θ, θ′] ̸= ∅ do
9: k := k + 1 (continue with fixed base line)
10: if k > t then STOP, end if.
11: Determine end points xk, yk of ek = βk ∩ βk+1.
12: θk = ∡(−−→mxi,

−−→mxk), θ′k = ∡(−−→mxi,
−−→myk)

13: if θk ≥ θ then (p := xk and zp := k), endif.
14: if θ′k ≤ θ′ then (q := yk and zq := k), endif.
15: update cone borders:

θ := max{θ, θk} , θ′ := min{θ′, θ′k}
16: end while
17: (Now [θk, θ′k]∩[θ, θ

′] = ∅, a new MPP vertex is found:)
18: if θk < θ then (m := p and z := zp), end if.
19: if θk > θ then (m := q and z := zq), end if.
20: n := n+ 1, add the point mn = m to the list MPP.
21: i := z + 1 (continue searching with βz+1)
22: Go to Line 2.
23: end if
24: i := i+ 1
25: Go to Line 2.

Algorithm 3 determines in Line 3 the end points
x0, y0 of window e0. Since m1 = m = y0, Line 4 causes

to increase i and return to Line 3, this is repeated until

(m ̸= xi and m ̸= yi) for some i, which is equivalent

to m ̸∈ ei. Also for any other last found MPP vertex

m which was provided by some βi−1, when returning to

Lines 2-3, ei is ignored if m ∈ ei. When having found an

index i with m ̸∈ ei, Lines 5-6 are reached, −−→mxi defines

Minimal perimeter polygon in rectangular mosaics 17

a new base line. The i-th cone [θi, θ
′

i] with θi = 0, is
opened by xi, yi, it provides the initial values θ = θi =

0, θ′ = θ′i for the current cone [θ, θ′]. We mention that

the latter instruction is explicitly stated in [21] only for

the first window (there given for i = 1), and erroneously

as θ = 0, θ′ = θ1 (instead of θ = 0, θ′ = θ′1), which
evidently is a typing error there.

The condition of Line 8 is trivially true for k = i.
The aim is now to go through forthcoming windows

ek from the list β(C), k ≥ i + 1, with fixed base line
−−→mxi, while the cone [θk, θ

′

k] has non-empty intersection

with the current cone [θ, θ′]. Note that this condition
requires that [θk, θ

′

k] ̸= ∅. It is expected that in most

situations, the new angles θk, θ
′

k restrict, or confirm, the
current cone, that is, θk ≥ θ (right cone border) and

θ′k ≤ θ′ (left cone border). This justifies updating by

θ := max{θ, θk} and θ′ := min{θ′, θ′k} in Line 15. For

θk ≥ θ, θ is updated as θk, in case θk < θ, θk is ignored.

For θ′k ≤ θ, θ′ is updated as θ′k, in case θ′k > θ′, θ′k
is ignored. We mention that the updating instruction

for θ′ is stated in [21] erroneously as θ′ := min{θ′, θi},
which clearly is a typing error there.

Part of “Step 3” of the algorithm on page 647 in [21]
states that “As long as [θk, θ

′

k]∩ [θ, θ′] ̸= ∅, find another

boundary cell and its associated window, and set θ to

max[θ, θi] and θ′ to min[θi, θ
′]” (they use index i instead

of k, and it includes the typing error in the rule for

θ′). Transcribing this into our pseudocode, increasing k
in Line 9 enables to search for the next boundary cell

whose window is determined in Line 11, the new angles
θk, θ

′

k are calculated in Line 12 and are compared with

the current cone dates in Lines 13-14.

The algorithm on page 647 in [21] continues with “If

[θk, θ
′

k] ∩ [θ, θ′] = ∅, then let l be the line ...”. For this,

note first that θk ≥ θ means restriction or confirmation

of the right cone border, then p := xk is the last found

convex candidate on the ray from mn in direction θk.
θ′k ≤ θ′ means restriction or confirmation of the left

cone border, then q := yk is the last found concave can-
didate on the ray from mn in direction θ′k. The index of
the tile which provides p or q in case of being updated,

will be needed in case that one of these points later be-
comes the next found MPP vertex, it is saved as zp or

zq in Lines 13-14, and later in Lines 18-19 as z.

For [θk, θ
′

k]∩ [θ, θ′] = ∅, the instructions in [21] state

that a new MPP vertex is found, as follows: in case
that θk < θ, let l be “the line” from “the origin” m in

direction θ, and, let l be “the line” from m in direc-
tion θ′ in case that θk > θ. The new MPP vertex is

given as “the last vertex on l, excluding its end point”,

there is no explanation in [21] on this. The “line” l is

the ray starting at the current last found MPP vertex,
“the origin” m (which is the unique “end point” of l),

Fig. 16 Algorithm 3 for Examples 7 and 8.

determined by the angle θ or θ′. The angle is defined

by the point xk (θ) or yk (θ′) which lies on l. It is pos-
sible that during Lines 8-14 of Algorithm 3, the same

angle θ had been defined by some previous point xj (or

θ′ by yj) with j < k, so that the points m,xj , xk (or

m, yj , yk) are collinear on l, but evidently, xk or yk is

the last window end point (“vertex”) found on l. Hence,
the original instruction is understood such that xk, or

yk, is “the last vertex on l”, the exclusion of its “end
point” m is ensured by Line 4.

6.2 Examples and a partial correction

Note that the base line is distinct from the reference

vector used in Algorithm 2, and angles now are mea-
sured in counterclockwise sense.

Example 7: We apply Algorithm 3 to the complex
from Example 3, see Figure 16. For n=1, since y0 =

y1 = m, consider i = 2: e2 = β2 ∩ β3, x2 = x1 ̸= m and

y2 ̸= m, a new base line is defined as −−→mx2, θ = θ2 = 0,

θ′ = θ′2 = 45◦. For k=2, [θ2, θ
′

2] ∩ [θ, θ′] = [θ2, θ
′

2] ̸= ∅.
For k=3, e3 = β3 ∩ β4, p = x3 since θ3 = θ, q = y3

18 Petra Wiederhold

since θ′3 < θ′, θ remains the same, θ′ := θ′3. For k=4,

e4 = β4∩β5, p = x4 since θ4 > θ, q = y4 = y3 since θ
′

4 <

θ′, θ := θ4, θ
′ stays the same. For k=5, e5 = β5 ∩ β6,

p = x5 = x4 since θ5 = θ, q is not updated since θ′5 > θ′,

θ, θ′ both do not change. For k=6, e6 = β6 ∩ β7, p is

not updated since θ6 < θ, q = y6 since θ′6 = θ′, θ, θ′

both stay the same. For k=7, e7 = β7 ∩ β8, p = x7

since θ7 > θ, q = y7 = y6 since θ′7 = θ′, θ := θ7 (new

right cone border), θ′ remains the same.

For k=8, e8 = β8∩β9, θ8 > θ > θ′ implies updating
p = x8, since θ′8 > θ′, q is not updated (q = y7), [θ8, θ

′

8]

is a non-empty cone outside the current cone [θ, θ′].

Line 15 requires updating θ := max{θ, θ8} = θ8 (new

right cone border), θ′ := min{θ′, θ′8} = θ′ stays the
same. Returning to Line 8, now [θ8, θ

′

8]∩[θ, θ′] = ∅ since

[θ, θ′] = ∅ (θ > θ′). We reach Line 17, a new MPP vertex
is found: still k = 8, but θ, θ′ have already been updated

using θ8, θ
′

8, hence now θ8 = θ and θ′8 > θ′. The decision

in Lines 18-19 whether p or q provides the next MPP

vertex, cannot be taken since both conditions θ8 < θ

and θ8 > θ, are not satisfied. This shows a subtle but
important error of Algorithm 3: The condition for k = 8

makes find a new MPP vertex, comparison of θ8, θ
′

8 with
the current cone [θ, θ′] should be used to decide which

of the stored candidates, p or q, provides the next MPP

vertex. The updating in Line 15 destroys the possibility

of that comparison. This error may cause that no next

MPP vertex is found ever, after the first one m1.

The error just detected cannot be corrected by inter-

changing Lines 8-16 with Lines 17-22 in the pseudocode,

that is, first treating the case that [θk, θ
′

k] ∩ [θ, θ′] = ∅,
up to the command of returning to Line 2, and then

dealing with the case that [θk, θ
′

k] ∩ [θ, θ′] ̸= ∅. The

updating, currently performed in Line 15, still would

be wrongly placed and causes the same problem as de-

scribed above. That line has to be moved such that

updating θ and θ′ is performed “at the beginning of
the next step”. This can be achieved by substituting

Lines 8-16 of Algorithm 3 by the Lines 8-16 of Algo-
rithm 4 which presents a partially corrected version of
the Sklansky-Kibler algorithm.

Using Algorithm 4, when having restarted in Line 2,

and having defined a new base line and initial values for

θi = θ, θ′i = θ′, k = i (Lines 5-7), the condition of Line

8 [θk, θ
′

k]∩[θ, θ′] ̸= ∅ is trivially satisfied, and the updat-
ing now performed in Line 9 means that θ, θ′ remain the

same. In any subsequent step, suppose that for some
k ≥ i + 1, after determining θk, θ

′

k and updating p, q

(Lines 14-15), returning to Line 8, [θk, θ
′

k] ∩ [θ, θ′] ̸= ∅
turns out to be false, a fact which was caused by the
new data θk, θ

′

k. Line 17 is reached, when the current

cone data θ, θ′ still are untouched by θk, θ
′

k, hence one

Algorithm 4 Partially corrected version of the

Sklansky-Kibler algorithm, to determine the MPP of

a regular complex C in a rectangular mosaic.

Input: boundary chain β(C) = (β0, β1, · · · , βt) (counter-
clockwise tracing), special convex MPP vertex m ∈ β0.

Output: List MPP of MPP vertices.

1: Add m1 = m to the list MPP, set i := 0 , n := 1.
2: if i > t then STOP, end if.
3: Determine end points xi (right) and yi (left) of window

ei = βi ∩ βi+1.
4: if (m ̸= xi and m ̸= yi) then
5: θi = 0, θ′i = ∡(−−→mxi,

−−→myi) (−−→mxi is a new base line)
6: θ = 0 , θ′ = θ′i (new right and left cone borders)
7: k := i

8: while [θk, θ′k] ∩ [θ, θ′] ̸= ∅ do
9: update cone borders:

θ := max{θ, θk} , θ′ := min{θ′, θ′k}
10: k := k + 1 (continue with fixed base line)
11: if k > t then STOP, end if.
12: Determine end points xk, yk of ek = βk ∩ βk+1.
13: θk = ∡(−−→mxi,

−−→mxk), θ′k = ∡(−−→mxi,
−−→myk)

14: if θk ≥ θ then (p := xk and zp := k), endif.
15: if θ′k ≤ θ′ then (q := yk and zq := k), endif.
16: end while
17: (Now [θk, θ′k]∩[θ, θ

′] = ∅, a new MPP vertex is found:)
18: if θk < θ then (m := p and z := zp), end if.
19: if θk > θ then (m := q and z := zq), end if.
20: n := n+ 1, add the point mn = m to the list MPP.
21: i := z + 1 (continue searching with βz+1)
22: Go to Line 2.
23: end if
24: i := i+ 1
25: Go to Line 2.

of the two comparisons in Lines 18-19 will be true, and

the next MPP vertex is obtained. In the following ex-

amples, we will use Algorithm 4, the partially corrected

Sklansky Kibler Algorithm.

Returning to our Example 7 for k=8, as obtained
above, Lines 8-16 result in p = x8 since θ8 > θ, q =

y7 since θ′8 > θ′. Due to Algorithm 4, θ, θ′ are not

yet updated, they are still given as θ = θ7, θ
′ = θ′3,

see Figure 16 for n=1. Returning to Line 8, we have

[θ8, θ
′

8]∩[θ, θ′] = ∅, hence Line 17 is reached. Now θ8 > θ
(actually θ8 > θ′, x8 lies on the left outside the current

cone), hence Lines 18-19 give n = 2, m2 = m = q = y7
correctly as the next MPP vertex, i = 8, to restart

in Line 2. Algorithm 4 also detects the MPP vertices

m3 = y9, m4 = y12, m5 = y15.

Example 8: We continue the last example restarting
with the MPP vertex m5 = y15 = y14, then n=5, see

Figure 16. For i = 16, −−−→mx16 is a new base line, θ =

θ16 = 0, θ′ = θ′16 = 45◦. Then k=16, [θ16, θ
′

16]∩[θ, θ′] ̸=
∅ is trivially true, updating in Line 9 maintains θ, θ′.

For k=17, x17 = x16 hence θ17 = θ and p = x16. θ
′

17

restricts the left cone border since θ′17 < θ′, then q =

Minimal perimeter polygon in rectangular mosaics 19

Fig. 17 Algorithm 3 for Example 8, second occurrence of a
base line inside the cone.

y17. Returning to Line 8, [θ17, θ
′

17]∩ [θ, θ′] = [θ17, θ
′

17] ̸=
∅, updating in Line 9: θ stays the same, θ′ := θ′17.

For k=18, θ18 = ∡(−−−→mx16,
−−−→mx18) > θ, hence p = x18

and θ′18 = ∡(−−−→mx16,
−−−→my18) = 0, θ′18 restricts the left cone

border, θ′18 ≤ θ′ implies q = y18. Now [θ18, θ
′

18] = ∅ be-

cause θ18 > θ′18, the condition of Line 8 is not satisfied.

This leads to Lines 17-19: θ18 > θ hence the next MPP

vertex is found as m6 = m = q = y18, which is a false
result and shows an error of Algorithm 4. The base

line which is the reference vector for angle calculation,
does not permit to analyse correctly the situation of
x18 which lies on the right outside the current cone,

the base line “lies inside the scene”.

Let us continue with the correct MPP vertex m =
m6 = x17, n=6, then z = 17 and i = 18, −−−→mx18 is a

new base line, θ = θ18 = 0, θ′ = θ′18 = 45◦, see Figure

17. For k=18, [θ18, θ
′

18] ∩ [θ, θ′] ̸= ∅ is trivially true,
updating in Line 9 maintains θ, θ′. For k=19, x19 lies

on the base line, hence θ19 = θ and p = x19, θ
′

19 gives a

new left border since θ′19 < θ′, then q = y19. Returning

to Line 8, [θ19, θ
′

19] ∩ [θ, θ′] = [θ17, θ
′

17] ̸= ∅, updating
maintains θ = 0, θ′ := θ′19. For k=20, θ20 = θ since

x20 = x19, hence p = x20, θ
′

20 = ∡(−−−→mx18,
−−−→my20) = 0

since y20 lies on the base line, then q = y20. The cone
[θ20, θ

′

20] is on the base line. The condition of Line 8 is

true, updating in Line 9 gives θ = θ′ = 0.

Now k=21, x21 lies on the right outside the cur-

rent cone, which is not correctly described by θ21 =

∡(−−−→mx18,
−−−→mx21) ≈ 330◦, θ21 > θ implies p = x21. The

point y21 also lies on the right outside the cone, θ′21 =

∡(−−−→mx18,
−−−→my21) ≈ 340◦, θ′21 > θ′ hence q is not up-

dated. Returning to Line 8, [θ21, θ
′

21] ∩ [θ, θ′] = ∅ since

the cone [θ21, θ
′

21] is not empty but does not contain
the current cone [θ, θ′] which equals the base line. This

leads to Lines 17-19, where θ21 > θ implies that the
next MPP vertex is found as m7 = m = q = y20, which

is a false result. Again, the base line does not permit
correct angle computations.

6.3 Analysis of the Sklansky-Kibler algorithm

Laborious angle calculations and complicated manage-

ment of intersections of cones, make this algorithm dif-

ficult to understand and to implement. The procedure

error of the original Algorithm 3 described in the last

section does not permit the algorithm to find the MPP

vertices except the first one. Even after correcting this,

Algorithm 4 faces the problem that the base line may

result as situated inside the cone, causing errors in the

angle calculus and hence in the determination of MPP

vertices, for certain complexes.

The MPP algorithm in [21] was proposed as a new

algorithm for much more general complexes as the pre-

vious Algorithm 2 from [20] (partly by the same au-

thors). There is no mention in [21] about any error of

the previous version of theory and algorithm from [20].

Even so, Algorithm 4 turns out as correcting important

errors of Algorithm 2, mostly in the strategy, but also

some procedure details. For example, restarting from a

last found MPP vertex m, the first tiles βi, βi+1, · · · are
ignored when containing m, they caused in Algorithm

2 that angles hk, gk are not well-defined.

Strategy analysis. Starting with the last found MPP

vertex m provided by a window es = βs ∩ βs+1, a
straight line segment is constructed up to the next MPP

vertex, that line goes through es+1, es+2, · · · , until its
prolongation would not fit in |B(C)|. All window end

points yk, k = s+ 1, s+ 2, · · · , are situated on the left,

all end points xk are on the right, of that line. A cur-

rent cone [θ, θ′] based at m, which contains the desired

line, is generated using the first window ei, i ≥ s + 1,
which does not contain m, and then updated for each k,

k = i + 1, i + 2, · · · , by comparison with the k-th cone

[θk, θ
′

k]. In contrast to Algorithm 2 which in any mo-

ment stores the last found candidate, Algorithms 3and

4 separately store the last found concave candidate p

(some xk) and convex candidate q (some yk).

Let us ignore the base line error, supposing that

θk, θ
′

k correctly describe the positions of vectors−−→mxk,
−−→myk

with respect to the base line. The left border of the k-th
cone is given as −−→myk corresponding to θ′k, θk describes

the right cone border −−→mxk, the cone is non-empty if

θ′k ≤ θk. The current cone [θ, θ′] (θ′ describes its left

border, θ the right border) initially is given as the i-

th cone, it is non-empty if θ′ ≤ θ. The comparison
between both cones is performed by analysing the set

[θk, θ
′

k] ∩ [θ, θ′]: if it is non-empty, certain last found

20 Petra Wiederhold

candidate is updated before incorporating the next win-

dow. But [θk, θ
′

k]∩ [θ, θ′] = ∅ indicates that a new MPP
vertex was found, this occurs when the k-th cone is

empty, or, when the k-th cone lies strictly outside the

current cone. For a base line and a current cone [θ, θ′]

initialized from k = i (Lines 5-6), Algorithm 4 performs
the following:

(a) While [θk, θ
′

k] ∩ [θ, θ′] ̸= ∅ do (a1),(a2),(a3),(a4).

(a1) Update the current cone [θ, θ′]: if xk lies on the left
of the current right border (θk > θ) then θ := θk (new

right border), if yk lies on the right of the current left

border (θ′k < θ′) then θ′ := θ′k (new left border).

(a2) k := k + 1 to involve the next tile, then, for the

new k:

(a3) Determine ek = βk ∩ βk+1, its end points xk, yk,

and the angles θk, θ
′

k.

(a4) Update a candidate: if xk lies on the left of (or

on) the current right border (θk ≥ θ) then set p := xk

(concave), if yk lies on the right of (or on) the current
left border (θ′k ≤ θ′) then set q := yk (convex).

(b) If [θk, θ
′

k]∩[θ, θ′] = ∅, a new MPP vertex m is found:

if xk lies strictly on the right of the current right border

(θk < θ) then set m := p (concave), if xk lies strictly
on the left of the current right border (θk > θ) then set

m := q (convex).

Part (a) is the while-loop of Lines 8-16. Its condi-
tion is trivially true for k = i, hence the initial current

cone remains as [θ, θ′] = [θi, θ
′

i]. Steps (a3) and (a4) are

performed for k ≥ i+ 1. The while-loop continues aug-

menting k to involve subsequent tiles, while the k-th

cone [θk, θ
′

k] results well-defined and intersecting [θ, θ′].

Algorithm 4 distinguishes between convex and con-

cave candidates, and in (a4), the last candidate p is not

updated (as its corresponding angle) if xk lies strictly
on the right outside the current cone, similarly, q is not

updated if yk lies strictly on the left outside the cone.

These actions correct strategy errors of Algorithm 2.

Errors in the correctness proof based on an incorrect

Proposition. Although the strategy of the algorithm in

[21] is mainly correct as analysed above, its correctness

proof in Theorem 5.3 of [21] is not. The proof is based

on Proposition 5.2 of [21] which is presented there with

a non-clear proof. That proposition affirms that for any
normal complex C in an acute polygonal mosaic, any

polygon P which satisfies the following conditions 1),

2), 3), is the MPP of C.
1) P is a preimage of C and contains the core of C,
2) each concave vertex of P is a concave vertex of

fr(|C|),
3) each convex vertex of P is a convex vertex of the

core of C, or, is a cut point point of C.

Fig. 18 A complex C (shaded grey) showing that Proposition
5.2 of [21] is false. First row: In the left figure, the core of C is
drawn red with its convex vertices marked, concave vertices
of fr(|C|) as green points, the right figure presents the MPP.
The second row shows two polygons which are distinct from
the MPP while satisfying all conditions of that proposition.

In the present article we consider the much more

restricted conditions of rectangular mosaics and regu-

lar complexes (which have no cut points). Consider the

example of a regular complex in the square mosaic in

Figure 18 presenting polygons which are distinct from

the MPP although they satisfy the conditions 1), 2),

3). Hence Proposition 5.2 of [21] is false.

7 Restriction to boundary chains generated by

boundary tracing

Section 5.2 showed that some tools for the Sklansky-

Chazin-Hansen Algorithm are not well-defined for any

boundary chain of a regular complex in a rectangu-

lar mosaic, not even for a regular chain. A convenient

more restrictive class contains all boundary chains gen-

erated by boundary tracing, also called boundary fol-
lowing, contour tracing, or contour following, which is

a well-known method from digital image processing to

find the frontier of a digital object.

Boundary tracing for 4-contours is described in de-

tail in [28], for general mentions see textbooks as [4,12,

6]. Identifying the discrete plane Z
2 with a quadratic

mosaic (each pixel p ∈ Z
2 with the unit square tile cen-

tered at p), boundary tracing to find the 4-contour of

any finite 4-connected set of pixels can easily be refor-
mulated to find the boundary (being a set of tiles) of
the corresponding square complex. The method finds
an ordered sequence of boundary tiles, forming a spe-

cial type of boundary chain. This latter rely on the fact

that adjacency for tiles in a rectangular mosaic is the

same as 4-adjacency for square tiles, equivalently, for

pixels in Z
2. In consequence, boundary tracing can be

generalized to rectangular mosaics in a straightforward

manner, as follows.

Consider a rectangular mosaic M, a regular com-

plex C ⊂ M, and a finite set N with C ⊂ N ⊂ M and

Minimal perimeter polygon in rectangular mosaics 21

Fig. 19 Freeman code for edge-adjacency in a rectangular
mosaic. Below: a complex (shaded grey) with its generic boun-
dary chain, obtained by the boundary tracing algorithm. The
boundary chain starting at the leftmost tile of the top row,
has the Freeman chain code (3, 2, 3, 0, 3, 0, 0, 1, 0, 0, 0, 3,
0, 1, 0, 1, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2).

such that the background tiles from (N \ C) fully sur-

round the complex C. The edge-adjacency graph G(M)

(see Section 4) has the finite induced subgraphs G(N)

and G(C) where each node has a valence at most four.

We apply the Freeman chain code known for 4-neigh-
borhood graphs to represent any edge-adjacency-path

in N , see Figure 19: for any fixed tile T ∈ G(N), the

direction of passing from T to any of its edge-neighbors

T ′, is coded by a number f(T, T ′) ∈ {0, 1, 2, 3}. Whereas

f(T, T ′) describes the direction of passing from T to

T ′, the reverse direction results as coded by f(T ′, T) =

(f(T, T ′) + 2) mod 4.

All tiles of a boundary chain β(C) belong to the

uniquely defined boundary B(C), they meet the frontier

fr(|C|). To find such a chain β(C), boundary tracing

starts with determining a first tile of B(C). Due to the

nature of a rectangular mosaic, this can easily be done

by scanning N (or G(N), interpreting each node as the
centre point of the corresponding tile), which begins at

some tile in the background (N \ C), until a first tile

T0 of C is found. Evidently T0 ∈ B(C). The boundary

tracing algorithm presented in Algorithm 5, uses one

of the options, where T0 is found such that its edge-
neighbor on the left, belongs to the background, that

is, T0 ∈ C but if f(T0, q) = 2 then q ̸∈ C. It determines
a boundary chain given as ordered cyclic sequence of

tiles β(C) = (T0, T1, T2, · · · , Tt) such that, when boun-

dary tracing would be continued, the next tiles found

would be, again, Tt+1 = T0, Tt+2 = T1.

Algorithm 5 finds a boundary chain β(C) = (T0, T1,

· · · , Tn) of special type. Step 2 will found T0, again,

when boundary tracing is finished, but it may hap-

pen also if the boundary chain touches itself at T0,

the end condition test distinguishes between both si-

Algorithm 5 Boundary tracing for an edge-adjacency-

connected complex C in a rectangular mosaic.
Input: A finite subset N of a rectangular mosaic, a com-

plex C ⊂ N which is fully surrounded by tiles from the
background (N \ C).

Output: List β(C), a boundary chain of C.

1: Step 0: Find a boundary tile T0 ∈ C whose left edge-
adjacency neighbor is in (N \ C), then go to Step 1.

2: Step 1: Initialize list β(C) := (T0) and set d := 2. Then
perform iteratively d := (d + 1) mod 4. For each such
d, analyse whether the tile T ′ that satisfies f(T0, T

′) =
d, belongs to C. While this is false, d is augmented to
continue searching for a tile of C. If T ′ ∈ C, add T ′ to
β(C), then go to Step 2.

3: Step 2: Set d := (f(Tn−1, Tn)+2) mod 4 for the current
list β(C) = (T0, T1, T2, · · · , Tn). Then perform iteratively
d := (d+ 1) mod 4. For each such d analyse whether the
tile T ′ with f(Tn, T

′) = d belongs to C. While T ′ ̸∈ C, d
is increased to continue searching for a tile of C. If T ′ ∈ C,
proceed to the End Condition Test.

4: End Condition Test:
5: if T ′ ̸= T0 then add T ′ to β(C), then go to Step 2.
6: else (now T ′ = T0) add T ′ to β(C). Then run Step 2 with

the current list β(C) only to obtain a new next boundary
tile T ′ ∈ C. Then,

7: if T ′ = T1 then remove the last tile from the list
β(C), then STOP.

8: else (now T ′ ̸= T1) add T ′ to β(C),
then go to Step 2.

9: end if
10: end if

tuations. The resulting boundary chain corresponds to

a closed path in the edge-adjacency graph G(N), β(C)
is an ordered cyclic sequence of tiles which can be de-

scribed by its Freeman chain code (f(T0, T1), f(T1, T2),

f(T2, T3), · · · , f(Tn−1, Tn), f(Tn, T0)), Figure 19 shows
an example. The following properties are evident.

Lemma 2 Let C be an edge-adjacency connected com-
plex in a rectangular mosaic M, β(C) = (β0, β1, · · · , βt)

the boundary chain generated by Algorithm 5, denote by

bi the centre point of the tile βi, i = 0, 1, · · · , t. Then
β(C) satisfies the following:

(1) The cyclic sequence β(C) is unique.

(2) The polygonal curve γ = b0b1∪b1b2∪· · ·∪bt−1bt∪btb0
is weakly simple and traced in counterclockwise sense.

During this tracing, γ leaves all centre points of tiles of

C on its left side (or on itself), but it leaves the centre
points of tiles of (M\ C) strictly on the right.

(3) There do not exist tiles βi, βi+1 in β(C) such that

both points bi, bi+1 are concave vertices of the curve γ
from (2).

(4) If C is regular then β(C) is regular, that is, βi−1 ̸=
βi+1 for all 0 ≤ i ≤ t.

(5) If C is regular, when visiting the tiles βi in the or-

der as they appear in β(C), the Jordan curve fr(|C|) is

22 Petra Wiederhold

Fig. 20 A generic boundary chain does not contain two im-
mediately consecutive concave turns, the boundary tracing
algorithm finds a followed by its edge-neighbor c.

traced in counterclockwise sense, where it leaves |C| on
the left and (R2 \ |C|) strictly on the right.

Proof (4) is true since C has no end tile. The remai-
ning affirmations are evident from the Freeman code as

defined in Figure 19 and the performance of Algorithm

5 which follows the boundary B(C) such that the chain

β(C) leaves C on the left, and the background (M \
C) strictly on the right. For (3), suppose tiles βi, βi+1

in β(C) such that their centre points bi, bi+1 both are

concave vertices of γ. This corresponds to a situation
as those in Figure 20 where γ contains the subsequence

(a, bi, bi+1, c), or, a longer one, with some linear points

after a and before c. This is not possible for β(C) since
Algorithm 5 finds a followed by c.

⊓⊔

Definition 5 For any edge-adjacency connected com-

plex C ⊂ M in a rectangular mosaic M, its boundary

chain determined by the boundary tracing Algorithm

5, is called the generic boundary chain of C.

Algorithm 5 can be applied to any edge-adjacency

connected complex C. If C has end tiles, Algorithm

5 returns a well-defined (non-regular) boundary chain

whose corresponding edge-adjacency subgraph has nodes

of valence 1. Even if |C| has holes, Algorithm 5 can be
adapted to find the “exterior boundary chain” and all

other chains of boundary tiles which circumscribe the

holes. The latter is common practice in digital image

processing for 4-contours.

8 A new MPP algorithm for regular complexes

in rectangular mosaics

8.1 Strategy, pseudocode, and examples

The new MPP algorithm presented in Algorithm 6, and

equivalently in Algorithm 7, takes advantage from our

analysis of the algorithms in the previous sections, it

joints all correct ideas from the previous algorithms but

avoids their errors. Algorithm 6 is inspired by the par-

tially corrected Sklansky-Kibler algorithm presented in

Algorithm 4 which essentially contains the correct stra-

tegy. Nevertheless, Algorithm 6 does not use a base line
or reference vector and achieves an optimization by ig-
noring tiles which provide no MPP vertex candidates.

Algorithm 6 New algorithm to determine the MPP of
a regular complex C in a rectangular mosaic.

Input: Generic boundary chain β(C) = (β0, β1, · · · , βt)
(counterclockwise tracing) with its cyclic sequence of tile
centre points (b0, b1, · · · , bt).

Output: List MPP of MPP vertices.

1: Determine a convex MPP vertex m = m1 as the lower
right corner of the leftmost tile T0 in the top row of C.
Perform cyclic shifting on β(C) = (β0, β1, · · · , βt) until
β0 becomes the tile T0.

2: Add m1 to the list MPP, set i := 0 , n := 1.
3: if i > t then STOP endif
4: Determine the end points xi (right) and yi (left) of the

edge ei = βi ∩ βi+1.
5: if (m ̸= xi and m ̸= yi and bi−1, bi, bi+1 are not

collinear) then
6: p := xi (concave, initial right cone border −→mp)
7: q := yi (convex, initial left cone border −→mq)
8: k := i

9: while (m, yk, xk form a right turn or are collinear,
and xk, yk are not both on the same side
strictly outside the cone) do

10: Update last concave candidate and right border:
if (m, p, xk form a left turn or are collinear) then
(p := xk and zp := k) endif

11: Update last convex candidate and left border:
if (m, q, yk form a right turn or are collinear) then
(q := yk and zq := k) endif

12: k := k + 1 (continue with the same cone)
13: if k > t then STOP, endif
14: if bk−1, bk, bk+1 are collinear then go to Line 12

endif (ignore βk)
15: Determine the end points xk, yk of ek = βk∩βk+1.
16: end while
17: (A new MPP vertex is found:)
18: if (m, p, xk) forms a right turn, or are collinear, then

(m := p and z := zp) endif
19: if (m, p, xk) forms a left turn then

(m := q and z := zq) endif
20: n := n+ 1, add the point mn = m to the list MPP.
21: i := z + 1 (continue searching with βz+1)
22: Go to Line 3.
23: end if
24: i := i+ 1
25: Go to Line 3.

Algorithm 6 requires as input data the generic boun-
dary chain β(C) = (β0, β1, · · · , βt) of a regular complex

C in a rectangular mosaic, and generates the ordered

list of MPP vertices. We suppose that the input chain

β(C) = (β0, β1, · · · , βt) includes data about the ver-

tices and the centre point bi of each tile βi. Then β(C)
corresponds to the polygonal curve γ represented by

the cyclic sequence (b0, b1, · · · , bt−1, bt) of curve points,

Minimal perimeter polygon in rectangular mosaics 23

and, it is easy to calculate the end points xi, yi of each

edge ei = βi ∩ βi+1, where xi ∈ fr(|C|).
Algorithm 6 determines in Line 1 a first special con-

vex MPP vertex as proposed in the Sklansky-Chazin-

Hansen algorithm (Algorithm 2) from [20].

Only concave vertices xi of fr(|C|) and points yi cor-
responding to convex vertices of γ are candidates for

MPP vertices. Algorithm 6 in Lines 5 and 14 ignores
each tile βi where bi−1, bi, bi+1 are collinear (straight

passing of the boundary), since such βi provides no

MPP vertex candidate. Algorithm 1 also ignores such
tiles, but Algorithms 2, 3, 4 include them for angle cal-
culus and the iterative restriction of the cone.

The while-condition [θk, θ
′

k] ∩ [θ, θ′] ̸= ∅ in Line 8

of Algorithm 4 is equivalent to that the cone [θk, θ
′

k] is

not empty and intersects the current cone [θ, θ′]. The

latter means that xk, yk do not lie both on the same side

strictly outside [θ, θ′]. Clearly [θk, θ
′

k] ̸= ∅ if and only if

xk lies on the right of, or on, −−→myk, that is,m, yk, xk form
a right turn or are collinear. Hence the while-conditions

of Algorithm 4 and Algorithm 6 (Line 9) are equivalent.

Algorithm 4 (Line 9) updates the cone as follows:

– The right border is restricted or confirmed if xk lies

on the left of, or on, the current right border, which is

equivalent to updating p := xk (last concave candidate)

if m, p, xk form a left turn or are collinear, this is Line
10 of Algorithm 6.

– The left border is restricted or confirmed if yk lies
on the right of, or on, the current left border, which is

equivalent to updating q := yk (last convex candidate)

if m, q, yk form a right turn or are collinear, this is Line

11 of Algorithm 6.

Algorithm 4 (Lines 14,15) updates the candidates p,
q but not the cone borders used in the while-condition.

Our correction made in Section 6.2 was that for a new

tile βk, its angles first need to be analysed by the while-

condition, before updating the cone borders. Our new

algorithm does not use the angles, but the candidates

themselves determine the cone borders and are updated

after successful checking by the while-condition.
A new MPP vertex is found if the while condition in

Line 9 is not satisfied, then the boundary performs at βk

an essential movement to the left, or to the right, which

makes find a convex or concave new polygon vertex in

Lines 18-19, given as the last candidate which defined,

resp., the left or right current cone border.

Example 9: We apply Algorithm 6 to the complex

studied before in Example 8 where the Sklansky-Kibler

algorithm fails to detect the correct MPP vertices after

y14. Suppose m = y14 = y15 to be the last found MPP

vertex, see Figure 21. Algorithm 6 starts with i = 16,
m ̸= x16, m ̸= y16, but β16 presents straight passing

hence it is ignored. For i = 17, β17 provides an initial

Fig. 21 The complex studied before in Example 8 where the
Sklansky-Kibler algorithm fails, considered now in Example 9
working with the new Algorithm 6. Blue lines illustrate right
cone borders, left borders are outlined as green. For m = x17,
the initial cone is degenerated to the ray m− x20 − y20.

cone with p = x17 (right border) and q = y17 (left bor-
der). For k = 17, the while-condition is trivially true,

Lines 10,11 do not change p and q. Then k = 18, but

β18 and β19 are ignored. For k = 20, x20 lies on the left

of −−−→my20, making the while-condition not satisfied. As

x20 lies on the right outside the cone, Line 18 gives the

next MPP vertex m = p = x17.

Algorithm 6 continues with m = x17, β18, β19 are
ignored. For i = 20, β20 provides an initial cone with

p = x20 (right border) and q = y20 (left border). That

cone is a ray since m,x20, y20 are collinear, see the grey

line in Figure 21. Then k = 21, but β21, β22 are ignored.

For k = 23, x23 lies on the right of −−−→my23, but x23, y23
both lie on the right outside the cone hence the while-

condition is not fulfilled, and Line 18 provides the next

MPP vertex m = p = x20.

Proceeding withm = x20, β21 and β22 are ignored, a

cone is initialized by p = x23 (right border) and q = y23
(left border). Augmenting k in the next step leads to
k = 24 > t, the algorithm stops and returns a list which

ends with the correct MPP vertices y14, x17, x20.

Example 10: We apply Algorithm 6 to the complex

boundary studied before in Example 1. We are inter-

ested only in the part between the MPP vertices m

(called VL in Example 1) and s, therefore, let the boun-

dary tiles βi be numbered as shown in Figure 22. The

point g is the unique MPP vertex between m and s,

this cannot be obtained by Algorithm 1.
Algorithm 6 starts from m with β1 (i = 1), x1 ̸= m,

y1 ̸= m but β1, β2, β3 are ignored since these tiles

present straight passing of the boundary. The initial

cone is determined from i = 4 by p = x4 (right border
−→mp) and q = y4 (left border

−→mq). Advancing with k = 5,

p = x5 = x4 confirms the right border, y5 is ignored

since it lies outside the cone on the left. Tiles β6, β7,

24 Petra Wiederhold

Fig. 22 Part of the 4-contour from Figure 2, to be processed by Algorithm 6 in Example 10. Thin black lines illustrate the
cone with left border determined by c and r and right border defined by g, the points m, g, s are consecutive MPP vertices.

β8 are ignored (straight passing). For k = 9, p = x9

confirms the right border, y9 lies inside the cone, q =

y9 = c restricts the cone by defining a new left border

(slope 2/7). For k = 10, p = x10 = x9 confirms the right

border, y10 is ignored since it lies outside the cone on the
left. Tiles β11, β12 are ignored. For k = 13, p = x13 = g

restricts the cone by a new right border (slope 3/11),

but y13 = e is ignored since it lies on the left outside

the cone. Summarizing the next steps, p = x14 confirms

the right border, y14, β15, β16, β17, x18 all are ignored,

q = y18 confirms the left border −−→my9 = −→mc. For k = 19,

both x19 and y19 are ignored, the same for x20, y20.
For k = 21, x21 lies strictly on the left of −−−→my21, the

while-condition is not satisfied, Line 17 is reached: since
x21 lies strictly on the right of the right border given

by p = x14 = g, the next MPP vertex m = p = g

is correctly found. It is easy to see that, starting with

m = g, Algorithm 6 finds the next MPP vertex s = x19.

Algorithm 6 corrects the error of Example 1 thanks

to the correct strategy that concave candidates xk which

lie strictly on the right of the cone, and convex candi-
dates yk which lie strictly on the left of the cone, are

ignored for updating the cone borders. This strategy is

also contained in the Sklansky-Kibler algorithm, but, it

is not part of the other algorithms studied in the previ-

ous sections. The partially corrected Sklansky-Kibler

algorithm (Algorithm 4) also determines the correct
MPP vertices for this example.

Example 11: We apply Algorithm 6 to the complexes

of Figure 3 studied before in Example 2 where Algo-
rithm 1 found erroneous MPP vertices. Consider the
smallest complex (d) where the points 1,6,8 are the

MPP vertices. Starting at point 1, Algorithm 6 finds

a cone with left border defined by q = 4 (slope 1) and

right border given by p = 5 (slope 2/3). For the next

tile, y = 6 lies in the cone hence a new left border is

defined by q = 6 (slope 3/4). In distinction to Example

2, x = 7 now is ignored since it lies outside the cone on
the right. For the next tile, y = 8 (outside the cone on

the left) and x = 7 (outside the cone on the right) both

are ignored. Then y = 8 is ignored but x = s confirms

the right border, see Figure 3, p = x = s is updated.

The next tile provides y = 9 and x = n, x lies on the
right of the ray

−→
1, y but also outside the cone on the

left since
−→
1, n has slope 5/6 larger than 3/4. The while-

condition of Algorithm 6 is not fulfilled, hence the next

MPP vertex m = q = 6 is correctly found.

The MPP for the complex (a) has the unique MPP

vertex 18 between the MPP vertices 1 and 20, which

is detected by Algorithm 6 as follows: a cone with left

border determined by q = 6 (slope 3/4) and right bor-

der given by p = 5 (slope 2/3) is obtained, x = 7

is ignored. In the next steps, y = 8 and x = 8 both

are ignored, and x = 9 confirms the right border with
p = x = 9. Then, x = 11 is ignored, but y = 10 lies

inside the cone since
−−→
1, 10 has slope 5/7 ∈ (2/3, 3/4),

hence q = y = 10 defines a new left border with slope

5/7. Continuing, y = 12, x = 11 both are ignored,

x = 13 confirms the right border with p = x = 13.

Then, x = 15 is ignored, but y = 14 lies inside the cone,−−→
1, 14 has slope 7/10 ∈ (2/3, 5/7), q = y = 14 defines a

new left border with slope 7/10. Later, y = 16, x = 15

both are ignored, x = 17 confirms the right border with
p = x = 17. Then, x = 19 is ignored, but y = 18 lies

inside the cone since
−−→
1, 18 has slope 9/13 ∈ (2/3, 7/10),

hence q = y = 18 defines a new left border with slope

9/13. As next, y = 20 and x = 19 are ignored, x = s

confirms the right border with p = x = s. The next tile

provides y = 21 and x = n, x lies on the right of the
ray

−→
1, y but also outside the cone on the left since

−→
1, n

has slope 11/15 larger than 9/13. The while-condition

of Algorithm 6 is not satisfied, the next MPP vertex is

correctly found as m = q = 18.

Minimal perimeter polygon in rectangular mosaics 25

Fig. 23 A complex C with a thin part near the tile β0, C coincides with its boundary. (a) Tiles numbering due to the generic
boundary chain, the MPP of C is a weakly simply polygon with vertex sequence (y0, y3, x8 = y0, y13) drawn with blue broken
lines. (b) cone illustration for Algorithm 6 starting with m = y0, for m = y3 in (c), for m = x8 in (d).

Example 12: We apply Algorithm 6 to the complex of

rectangles in Figure 23. Starting with m = y0, i = 1,

β1 and β2 are ignored. For i = 3, β3 provides an initial

cone with p = x3 defining its right border and q = y3
giving its left border, that cone is a ray drawn as bold

grey line in Figure 23(b). For k = 4, the while-condition

is not true, x4 lies on the left of −−→my4, and of the cone,
the next MPP vertex is found as m = q = y3.

Continuing with m = y3, see Figure 23(c), y4 =

y5 = m hence i = 6 provides an initial cone with p = x6

(right border) and q = y6 (left border). For k = 7, β7

is ignored, k = 8 gives p = x8, q = y8, the cone has

become a ray. For k = 9, x9, y9 both lie on the right

outside the cone, the while-condition is not fulfilled,
Line 18 provides the next MPP vertex m = p = x8.

Proceeding with m = x8, β9, β10 are ignored, an

initial cone is found from i = 11, p = x11, q = y11
(left border), the cone is a ray, see Figure 23(d). For
k = 12, x12 is ignored since it lies on the right outside

the cone, q = y12 confirms the left border. For k = 13,

p = x13 and q = y13 both confirm the cone. For k = 14,
x14 lies on the left of −−−→my14 and of the cone, the while-

condition is not true, we find the next MPP vertex as

m = q = y13. Finally, for m = y13, β14 (m = y14), β15,

β16, β17 all are ignored. We get i = 18 which exceeds

t (Line 3), hence Algorithm 6 stops and delivers the

correct sequence (y0, y3, x8, y13) of MPP vertices.

The Sklansky-Kibler algorithm correctly handles the

starting situation of this example, but later on, wrong

angle calculus causes errors: from m = y3, since m =

y4 = y5 we reach k = i = 6 where x6 defines a new base

line (and right cone border), y6 defines the left border.

For k = 7, p = x7 lies on the cone border, q = y7
restricts the cone. For k = 8, p = x8 = x7 confirms
the right border, q = y8 restricts the left border, the

cone has become a ray, θ′ = θ. For k = 9, although

the cone [θ9, θ
′

9] is well-defined, it does no intersect the

cone [θ, θ′], the while-condition is not satisfied. Since

θ9 > 0 = θ (which does not correctly describe that x9

lies on the right outside the cone), Algorithm 4 gets

m = q = y8 as next MPP vertex which is false.

We will see in Section 8.4 that the Sklansky-Chazin-
Hansen algorithm cannot process the (generic boundary

chain of the regular) complex from Figure 23 since the
sets u1, w1 are not well-defined.

8.2 An MPP algorithm equivalent to Algorithm 6

Recall from Section 2 that in any right-hand Carte-
sian coordinate system, the sign of the determinant

D(p1, p2, p3) indicates the orientation of the triple of
points: D(p1, p2, p3) < 0 ⇐⇒ (p1, p2, p3) forms a right

turn,D(p1, p2, p3) > 0⇐⇒ (p1, p2, p3) forms a left turn,

D(p1, p2, p3) = 0 ⇐⇒ p1, p2, p3 are collinear.

Using this, Algorithm 6 can be rewritten as Algo-

rithm 7: the definition of that determinant implies that
the corresponding Lines 5, 10, 11, and 14, of both al-
gorithms are equivalent. In the while condition of Al-

gorithm 6 (Line 9), m, yk, xk form a right turn or are

collinear if and only ifD(m, yk, xk) ≤ 0. Supposing that

this is satisfied,

– xk, yk both lie strictly outside the cone on its left side
if and only if D(m, q, xk) > 0;

– xk, yk both lie strictly outside the cone on its right

side if and only if D(m, p, yk) < 0.

The while condition negates these facts, it yields that
(D(m, q, xk) > 0 or D(m, p, yk) < 0) is false if and only

if (D(m, q, xk) ≤ 0 and D(m, p, yk) ≥ 0) is true, hence
Lines 9 of Algorithms 6 and 7 are equivalent.

8.3 Correctness proof of Algorithm 6

Definition 6 Let C be a regular complex in a rect-

angular mosaic and β(C) = (β0, β1, · · · , βt) a boun-

dary chain of C. For i ∈ {0, 1, · · · , t}, denote by bi
the centre point of the tile βi, and let γ be the curve

γ = b0b1 ∪ b1b2 ∪ · · · ∪ bt−1bt ∪ btb0. For any transversal

edge ei = βi ∩ βi+1 (including et = βt ∩ β0), denote by

xi the right (with respect to
−−−→
bibi+1) end point of ei, and

by yi its left end point. The candidate list Cand(C)

= (p1, p2, · · · , ps) is constructed as follows:

26 Petra Wiederhold

Algorithm 7 Algorithm to determine the MPP of a

regular complex C in a rectangular mosaic, equivalent

to Algorithm 6, using the determinant describing the

orientation of a point triple.

Input: Generic boundary chain β(C) = (β0, β1, · · · , βt)
(counterclockwise tracing) with its cyclic sequence of tile
centre points (b0, b1, · · · , bt).

Output: List MPP of MPP vertices.

1: Determine a convex MPP vertex m = m1 as the lower
right corner of the leftmost tile T0 in the top row of C.
Perform cyclic shifting on β(C) = (β0, β1, · · · , βt) until
β0 becomes the tile T0.

2: Add m1 to the list MPP, set i := 0 , n := 1.
3: if i > t then STOP end if
4: Determine the end points xi (right) and yi (left) of the

edge ei = βi ∩ βi+1.
5: if (m ̸= xi and m ̸= yi and D(bi−1, bi, bi+1) ̸= 0) then
6: p := xi (concave, initial right cone border −→mp)
7: q := yi (convex, initial left cone border −→mq)
8: k := i

9: while (D(m, yk, xk) ≤ 0 and D(m, q, xk) ≤ 0 and
D(m, p, yk) ≥ 0) do

10: Update last concave candidate and right border:
if D(m, p, xk)≥0 then (p := xk, zp := k) endif

11: Update last convex candidate and left border:
if D(m, q, yk)≤0 then (q := yk, zq := k) endif

12: k := k + 1 (continue with the same cone)
13: if k > t then STOP endif
14: if D(bk−1, bk, bk+1) = 0 then go to Line 12 endif
15: Determine the end points xk, yk of ek = βk∩βk+1.
16: end while
17: (A new MPP vertex is found:)
18: if D(m, p, xk) ≤ 0 then (m := p, z := zp) endif
19: if D(m, p, xk) > 0 then (m := q, z := zq) endif
20: n := n+ 1, add the point mn = m to the list MPP.
21: i := z + 1 (continue searching with βz+1)
22: Go to Line 3.
23: end if
24: i := i+ 1
25: Go to Line 3.

For each i ∈ {0, 1, · · · , t},
– if bi is a concave vertex of γ then add the point xi to

the list Cand(C).

– if bi is a convex vertex of γ then add the point yi to

the list Cand(C).

Each point pj of Cand(C) is called candidate, denote

by ind(pj) the index i in the list β(C), of the tile βi

which provided pj .

The list Cand(C) does not contain points xi, yi
provided by boundary tiles of straight passing, hence
Cand(C) may result shorter than β(C), and the index j

of a point pj in Cand(C) may be smaller than the index

i = ind(pj) of the tile that provided pj , in β(C).
The following two lemmas join properties of the

generic boundary chain determined by Algorithm 5,
which is used as input list in Algorithm 6.

Fig. 24 A complex C (shaded grey) with its generic bounda-
ry chain depicted by small black discs and thin black arrows.
The list Cand(C) is visualized by thick black arrows, convex
candidates (red discs) are convex vertices of the core, con-
cave candidates (green discs) are concave vertices of fr(C).
In this example, the MPP of C is given by the vertex sequence
(p1, p3, p5, p9, p11, p13).

Lemma 3 Let C be a regular complex in a rectangular

mosaic, β(C) = (β0, β1, · · · , βt) its generic boundary

chain, and Cand(C)= (p1, p2, · · · , ps) its candidate list.

(1) If βi, βi+k, k ≥ 1, generate successive candidates

pj , pj+1 in Cand(C) then pjpj+1 ⊂ βi∪βi+1∪· · ·∪βi+k.

(2) The curve δ = p1p2 ∪ p2p3 ∪ · · · ∪ ps−1ps ∪ psp1
is traced in counterclockwise sense and goes through all

tiles of β(C) due to their order in that list, δ is contained

in the point set union of the boundary B(C).
(3) The curve δ is weakly simple, it represents the fron-

tier of a weakly simple polygon P which is a preimage

of C and satisfies that core(C) ⊂ P ⊂ |C|. Meanwhile
P is circumscribed, P lies on the left of (or on) δ, and

(R2 \ P) lies strictly on the right of δ.

(4) Let = (q1, q2, · · · , qn) be a subsequence of Cand(C),
n ≤ s, that is, for each j ∈ {1, 2, · · ·n}, there exists

i ∈ {1, 2, · · · , s} and k ≥ 1 such that qj = pi, qj+1 =

pi+k. If each segment qjqj+1 is contained in βind(pi) ∪
βind(pi)+1∪βind(pi)+2∪· · ·∪βind(pi+k)−1∪βind(pi+k) then

the curve λ = q1q2 ∪ q2q3 ∪ · · · ∪ qn−1qn ∪ qnq1 has the

same properties (2),(3) as δ.

Proof All properties are consequences of the perfor-

mance of Algorithm 5 and of Lemma 2.

(1): suppose that bi, bi+k, k ≥ 1, generate successive
candidates pj , pj+1. For k = 1, pjpj+1 consists in a

rectangle side belonging to βi ∪ βi+1, for example, as

p1p2 and p4p5 in Figure 24.

Assume now k ≥ 2, then bi, bi+1, · · · , bi+k−1, bi+k

are collinear. If bi, bi+k both are concave, or, both are

convex, pjpj+1 is parallel to a coordinate axis since it

is the union of collinear tile sides, for example, as p7p8
(concave) and p5p6 (convex) in Figure 24). If one of the

points bi, bi+k is convex and the other one is concave,

pjpj+1 is the diagonal of a rectangle which is the union

of consecutive tiles, for example, as p11p12 and p2p3 in

Figure 24. In any case, pjpj+1 lies in βi∪βi+1∪· · ·∪βi+k.

(2),(3): As consequence of (1), δ is contained in the
point set union of B(C) since for all j = 1, · · · , s − 1,

Minimal perimeter polygon in rectangular mosaics 27

Fig. 25 Convex turn (a) and concave turn (b) of a boundary
chain, considered in the proof of Lemma 4.

pjpj+1, and also psp1, belong to βi ∪ βi+1 ∪ · · · ∪ βi+k

for ind(pj) = i and ind(pj+1) = i + k. Moreover, the

generic boundary chain circumscribes the whole com-

plex, always having the tiles of C on its left side, or on

itself, and leaving the complement of C strictly on the
right. Hence δ goes through all boundary tiles, visiting

them in the order due to the list β(C), and encloses a

weakly simple polygon P which contains all other tiles

of C. In consequence, P is a preimage of C, contains
core(C), and is contained in |C|.
(4): the explicit supposition ensures the same properties
of δ, for the curve λ.

⊓⊔

Lemma 4 Let C be a regular complex in a rectangular

mosaic and β(C) = (β0, β1, · · · , βt) its generic bounda-
ry chain, Cand(C) its candidate list, bi the centre point

of βi, and γ = b0b1∪b1b2∪· · ·∪bt−1bt∪btb0. Let xi be the

right (with respect to
−−−→
bibi+1) end point of ei = βi∩βi+1,

and yi its left end point.

(1) If bi is a concave vertex of γ then xi = xi−1 is a

concave vertex of fr(|C|).
(2) If β(C) is non-repeating and bi is a convex vertex of
γ then yi = yi−1 is a convex vertex of core(C).
(3) Each vertex of the MPP of C is a point xi ∈ ei
where bi is a concave vertex of γ, or, a point yi ∈ ei
where bi is a convex vertex of γ.
(4) All vertices of the MPP of C are contained in the

candidate list Cand(C).

Proof .

(1) If bi is a concave vertex of γ, it belongs to a situation

as in Figure 25(b). The edges d and e lie on fr(|C|) since
βi−1, βi, βi+1 belong to a generic boundary chain (which
leaves the background on the right), hence xi = xi−1 is

a concave vertex of fr(|C|).
(2) The hypothesis means that C has no thin parts

where the boundary chain passes twice. If bi is a convex

vertex of γ, it belongs to a situation as in Figure 25(a),

where βi−1, βi, βi+1 ∈ β(C). Since β(C) is a closed edge-

adjacency path, from βi+1, it continues until reaching

βi−1, again. That path could not start at βi+1 and then

Fig. 26 (a) In a complex containing the tiles A,B,D,E, p
is an isolated point of the core, considered in the proof of
Lemma 4. (b) In a complex containing the tiles shaded grey,
p is the end point of a straight line segment belonging to
fr(core(C)) drawn red, that line may contain two o more
vertices of tiles.

curve clockwise up to βi−1, since then the curve fr(|C|)
would enclose a hole of |C|, which contradicts that C is
regular and hence fr(|C|) is a Jordan curve. In conse-

quence, β(C) goes from βi+1, curving counterclockwise

until reaching βi−1. Since β(C) does not repeat tiles and
does not circumscribe a hole of |C|, the tile S belongs

to C. It is easy to see that then, in all cases for the

tiles R, T , to belong to C, or not, yi is an isolated point
of core(C), or, is the end point of one of the edges d, e

which then is a thin part of core(C). In each situation,
yi is a convex vertex of core(C).

(4) is an immediate consequence of (3). To see (3), first,

let p be a convex MPP vertex. By Lemma 1 (known

from [20,21,24]), then p is a convex vertex of fr(core(C)).
There are three possible situations:

– If p is an isolated point of core(C), each one of the four

edges starting at p does not fully belong to fr(core(C)),
hence its other end point lies in fr(|C|), see Figure

26(a). Then the tiles A,B,D,E belong to the boun-

dary of C. If C does not contain more tiles, the cyclic
sequence β(C) = (D,E,B,A) is the generic boundary

chain. Then p may be detected as yi due to (2) taking

βi = B since B corresponds to a left turn of γ. If C
contains some other tile F , F is an edge-neighbour of

one of the tiles A,B,D,E, without lost of generality,

assume of E, see Figure 26(a). Then β(C) contains the
subsequence (F,E,B,A,D), p may be detected due to

(2) from βi = B, for example.

– If p is the end point of a straight line segment being a
thin part of core(C), the situation is as in Figure 26(b),

note that the tiles marked X do not belong to C. In any

case, β(C) contains the subsequence (B,A,D,E) which

permits to detect p due to (2), taking A or D as βi. The

situation near p is the same if p is the end point of a

curve segment being a thin part of core(C), since such

28 Petra Wiederhold

a curve is made up from rectangle sides and ends at p

with a straight line segment.

– If p is neither an isolated point of the core, nor the
end point of some thin part of the core, then p is a

convex vertex of fr(core(C)) as the point yi in Figure
25(a) where two edges starting at p belong to the core,

but the other two edges reach fr(|C|). Hence the point

p bounds tiles βi−1, βi, βi+1 as in the figure, and p may

be detected due to (2) from βi via the convex vertex bi.

If p is a concave MPP vertex then p is a concave

vertex of fr(|C|), as known from [20,21,24]. In conse-
quence, the situation near p is as in Figure 25(b) where

p bounds tiles βi−1, βi, βi+1 such that pmay be detected
due to (1) from βi via the concave vertex bi of γ. This

completes to prove (3).

⊓⊔

Algorithm 6 works with the visibility cones, the cur-

rent cone given by (m, p, q) is rooted at the last found

polygon vertex m, −→mp is its right border, −→mq the left

border. It is firstly generated as the initial cone in

Lines 6-7: p = xi, q = yi. Then, each βk taken from the

input list, provides a k-th cone given by (m,xk, yk)
(right border −−→mxk, left border −−→myk). The condition in

Line 9 requires that the k-th cone is well-defined, which
means that m,xk, yk forms a left turn, or, are collinear.

If all conditions of Line 9 are satisfied, the k-th cone

is compared with the current cone, as result, the cone

borders eventually are updated in Lines 10-11.

Lemma 5 For any regular complex C in a rectangular

mosaic, and its generic boundary chain of C as input

list, the visibility cones used in Algorithm 6 satisfy the

following:

(1) Each initial cone given by (m,xi, yi) defined in Lines

6-7, is well-defined. The angle given as α = ∢(−−→mxi,
−−→myi)

satisfies 0◦ ≤ α < 90◦.

(2) Each current cone given by (m, p, q), obtained by

eventual updating in Lines 10-11, is well-defined, and,

is a subset of the initial cone.

(3) Situating m at the origin of the plane, the initial

cone belongs to exactly one quadrant of the plane, or,
is a ray lying on the x- or y-axis.

(4) Suppose that Algorithm 6 in Line 9 finds a k-th

cone which is not well-defined, that is, (m,xk, yk) forms
a right turn. Then, both points xk, yk lie on the same

side strictly outside the current cone, or, xk lies strictly

outside the current cone on the left and yk lies on the

ray −→mq, or, yk lies strictly outside the current cone on

the right and xk lies on the ray −→mp.

(5) If C belongs to a quadratic mosaic, the initial cone

forms an angle α such that 0◦ ≤ α ≤ 45◦.

Proof Inspecting all possible initial cones generated by

Algorithm 6 in Figures 27 and 28, confirms the facts

stated in (1) and (3). The angle formed by the ini-

tial cone depends on whether there are collinear tiles

starting with βz+1 or not, but also on the proportion

between width and height of the appearing tiles. The

figures make evident that the largest possible cone an-

gle is of 45◦ if all tiles are squares, which confirms (5).

The initial cone, which is the first current cone, is well-

defined by construction, xi determines the right border

and yi the left border. Each current cone resulting from

updating in Lines 10-11, is well-defined because upda-

ting only is performed if the while condition of Line 9 is

satisfied. That condition also guarantees that updating

confirms or restricts the current cone, so, each time, the

current cone remains the same, or, becomes a smaller

subset, this confirms (2).

To prove (4), suppose that Algorithm 6 has deter-
mined a current cone given by (m, p, q), which had been

initialized by xi, yi from βi∩βi+1. Now, in Line 9, k was

found where (m,xk, yk) forms a right turn but for all

t ∈ {i, i + 1, · · · , k − 1}, the t-th cone is well-defined

((m,xt, yt) is a left turn, or they are collinear).

Assuming m as situated at the origin of the plane,

by (3), the current cone lies in exactly one quadrant of

the plane, or, is a ray lying on some coordinate axis.

Up to rotation by multiples of 90◦, all possible initial

cones are shown in Figures 27, 28. Since C belongs to a

rectangular mosaic, the movement from βk to βk+1 may

be only in directions up, to the right, down, and to the
left, and the edge βk ∩ βk+1 is parallel to a coordinate

axis. The current cone goes through all tiles from the
tile which provided the point m, until βk.

First consider a current cone belonging exactly to
the first quadrant, the discussion for other quadrants

would be similar. Then the cone looks like those of Fig-

ure 29 where (a)(b) show that any movement from βk

to βk+1 in directions up, or, to the right, generates a

well-defined k-th cone, although xk or yk may lie out-

side the current cone. In contrast, any movement from

βk to βk+1 to the left, or down, causes that (m,xk, yk)

forms a right turn. Moreover, the initial cone started

with movements to the right and up (or, vice versa), see

Figures 27(b)(g)(j) and 28(b)(c)(e). Therefore, a move-

ment to the left is only possible if βk presents a left
turn (βk−1 lies below βk), and a movement down needs

βk to present a right turn (βk−1 lies on the left of βk),
where βk−1 also intersects the current cone, see Figure

29(c)(d). By the updating rules in Lines 10-11, when

Algorithm 6 reaches βk, yk−1 defines the left cone bor-

der, or lies on the left outside the cone. Likewise, xk−1

defines the right cone border, or lies on the right out-

side the cone. For βk being a left turn, see Figure 29(c),

Minimal perimeter polygon in rectangular mosaics 29

Fig. 27 All possible initial cones generated by Algorithm 6 if the last found polygon vertex m is convex, up to rotations by
multiples of 90◦. Notations as z within a tile mean βz. The algorithm found m as vertex of βz, m is a vertex of core(C), the
curve drawn in (a) illustrates the boundary of C. From βz+1, the boundary chain may continue only to the right, up, or, to
the left, since C has no end tiles. If βz+2 lies on the right of βz+1, see (b), βz+1 is a candidate (right turn), hence xz+1, yz+1

determine the initial cone. If βz+2 lies above βz+1, βz+1 presents straight passing and hence is ignored. If then βz+2 presents
a turn which may be to the left (f), or to the right (g), xz+2, yz+2 define the initial cone. But βz+2 may present straight
passing as well as other tiles being all collinear, until some βz+s presents a right (j) or left turn. The latter case is not drawn,
the initial cone would be degenerated to a ray. If βz+2 lies on the left of βz+1, βz+1 is ignored since yz+1 = m, βz+2 offers
possible continuation to the left (c), up (d), or, down (e). In (e), βz+3 = βz−1, no initial cone is generated, the algorithm ends
returning m as unique polygon vertex, which is correct for this complex of four tiles.

Fig. 28 All possible initial cones generated by Algorithm 6 if the last found polygon vertex m is concave, up to rotations by
multiples of 90◦. Notations as z within a tile mean βz. Now m is a vertex of fr(|C|), the curve drawn in (a) gives an idea of
the boundary of C. From βz+1, the boundary chain may continue only up, or, to the right. If βz+2 lies above βz+1, see (b),
βz+1 is a candidate (left turn), hence xz+1, yz+1 determine the initial cone. If βz+2 lies on the right of βz+1, βz+1 presents
straight passing and is ignored, hence xz+2, yz+2 are considered. If βz+2 presents a turn which may be to the left (c) or to the
right (d), xz+2, yz+2 define the initial cone. There may exist more collinear tiles, until some βz+s presents a turn as in (e).
The case of βz+s being a right turn is not drawn, the initial cone would be degenerated to a ray. Note that it is not possible
for βz+2 to lie below βz+1, since the frontier point m could not be completely surrounded by complex tiles.

if yk = yk−1 lies outside the cone then both xk, yk are

outside the cone on the left side, but if yk = yk−1 de-
fines the left cone border then yk lies on −→mq and xk on

the left outside the cone. For βk being a right turn, Fig-

ure 29(d) shows when xk = xk−1 lies outside the cone,

then both xk, yk are outside the cone on the right side,

but xk = xk−1 also could define the right cone border,

then xk would lie on −→mp and yk on the right outside the

cone. This proves (4) for a cone in the first quadrant.

Let now the current cone be a ray −→c lying on a

coordinate axis. We treat the positive part of the x-

axis, the arguments for other cases would be similar.

Such a ray is result of updating from an initial cone

as those in Figures 27(b,d,f,h) and 28(d). Since all tiles

βi, βi+1, · · · , βk−1, βk touch the ray −→c and belong to a
rectangular mosaic, each tile shares its bottom or top

side with −→c . Figure 30(a-f) shows that for any move-

ment from βk up or down, or to the right, to βk+1, the

k-th cone is well-defined. A right turn (m,xk, yk) only

appears in the situation of Figure 30(g): β(C) moving

from βk to the left to βk+1 is only possible if βk−1, βk−2

are situated as shown in the figure, then yk lies on −→mq
and xk stays outside the cone on the left. This com-

pletes to prove (4).

⊓⊔

Algorithm 6 determines the end points xk, yk of each
boundary edge ek = βk ∩ βk+1, these are ignored if

βk performs straight passing of β(C) (Lines 5, 14). For
each βk which performs a left or right turn, both points

xk, yk are used to eventually update the cone borders by

p = xk, q = yk. In Lines 18-19, one of the points p and

q is considered as next polygon vertex. If βk presents
a left turn, yk is a candidate but xk is not. Similarly,

for βk presenting a right turn, xk is a candidate but yk
is not. Nevertheless, the next lemma ensures that all

polygon vertices found by Algorithm 6 are candidates.

Lemma 6 For any regular complex C in a rectangular

mosaic, and its generic boundary chain of C as input

30 Petra Wiederhold

Fig. 29 Current cones in the first quadrant may result, for
example, from initial cones as in Figures 27(b)(g)(j) and
28(b)(c)(e), right borders are drawn blue, left borders brown,
the notation k within a tile means βk. In (a)(b), a movement
from βk up or to the right, to βk+1, always generates a well-
defined k-th cone given by (m,xk, yk). In (c)(d), the k-th
cone is not well-defined: (m,xk, yk) is a right turn. In (c) βk

presents a left turn, xk−1 and yk−1 determine the current
cone. In (d) βk+1 lies below βk, yk−1 defines the left current
cone border but xk−1 lies on the right outside the cone.

Fig. 30 All possible movements from βk to βk+1 studied
in the proof of Lemma 5(4) in relation to a current cone
degenerated to a ray lying on the positive part of the x-axis,
when m is situated at the plane origin. Note that situation
(h) is not possible since then the central point xk ∈ fr(|C|)
would be surrounded by complex tiles.

list, all polygon vertices found by Algorithm 6 are can-

didates, that is, they belong to the list Cand(C)).

Proof First, consider a convex turn of the boundary

chain where the end point xk of βk ∩ βk+1 restricts

or confirms the right border of the cone rooted at the

last found polygon vertex m. Any such situation, up
to rotations by multiples of 90◦, is as in Figure 31. Al-

gorithm 6 sets p = xk which is a non-candidate point.

The polygon vertex m was provided by some tile βz,

the cone is constructed such that it goes through all

tiles βz, βz+1, βz+2, · · · , βk. The candidate yk may up-

date the left cone border, then q = yk, but yk also may

lie outside the cone on the left as in Figure 31(b), then

q = yj remains determining the left cone border for

some yj found before, z < j < k. The situation gua-
rantees that m belongs to the plane quadrant situated

below the line determined by the upper side of βk−1,

and on the left of the right side of βk−1, see Figure

31(a). Since C has no end tiles, the next tile βk+2 in the

list β(C) can only be one of the tiles R,S, T .

If βk+2 = R, yk+1 = yk, xk+1 is the upper right
corner of R. Then xk+1 lies strictly on the left of −−−−→myk+1,

see Figure 31(a), the condition of Line 9 is not satisfied.

Hence, q = yk (or q = yj) is found as next polygon

vertex, xk has become irrelevant and non-selectable as

polygon vertex.

If βk+2 = S, the cone rooted at m with left bor-

der given by yk+1 (or yj) and right border by xk+1, is
well-defined, see Figures 31(b),(c). Dependently of the

position of m and the sizes of βk+1, βk+2, xk+1 may

lie inside our outside the cone. If xk+1 lies inside the

cone (or, on its borders) as in Figure 31(b), Algorithm

6 resets p = xk+1 which restricts the cone defining a

new right border, this makes xk irrelevant. If xk+1 lies
strictly outside the cone on the left, see Figure 31(c)),

both xk+1 and yk+1 lie on the left strictly outside the

cone, invalidating the condition of Line 9. Hence q = yk
(or q = yj) is considered as next polygon vertex, xk has

become irrelevant.

If βk+2 = T , xk+1 is a candidate which confirms the
right cone border, and xk+1 = xk, xk+1 may later result

as polygon vertex, but xk itself has become irrelevant.

Summarizing, the non-candidate xk which temporar-

ily determines the right cone border, would not result

by itself as next polygon vertex. Algorithm 6 could de-

termine a candidate found later which coincides with

xk, as polygon vertex.

For the second case of a concave turn of the boun-

dary chain, a similar discussion would show that a non-

candidate end point yk temporarily may determine the

left cone border, but, could not be selected (by itself)

as next polygon vertex by Algorithm 6.

⊓⊔

Theorem 1 For any regular complex C in a rectan-

gular mosaic, using one complete tracing (in counter-

clockwise sense) of the generic boundary chain of C as

input list, Algorithm 6, equivalently, Algorithm 7, de-

termines the ordered sequence of vertices of a weakly

simple polygonal curve which represents the frontier of

the MPP of C.

Proof .

(1) The equivalence between Algorithms 7 and 6 was

explained in Section 8.2. Algorithm 6 already discussed

in Section 8.1, clearly needs only one complete tracing

of the input boundary chain.

Minimal perimeter polygon in rectangular mosaics 31

Fig. 31 A convex turn of the generic boundary chain of a
rectangular complex, considered in the proof of Lemma 6. The
notation k inside a tile means βk. The right border of the cone
rooted at the last found polygon vertex m is determined by
the non-candidate point xk. The candidate yk may update
the left cone border as in (a) and (c), or, could lie outside the
cone on the left as in (b), m lies in the plane quadrant limited
by the orange lines and indicated by the orange arrow in (a).

Fig. 32 Examples of regular rectangular complexes (shaded
grey) whose MPP is a straight line segment (drawn red).

(2) If the MPP of C has exactly one vertex m, C is a

four tiles rectangular block around the tile vertex m,
see Figure 27(e), C coincides with its boundary. Algo-

rithm 6 finds m1 = m from β0, the other three tiles
also have m as vertex, hence the condition of Line 5

never is satisfied, we reach Line 3 with i = 4 > t = 3,

the algorithms ends and returns the correct MPP ver-

tex list (m1). If the MPP of C has exactly two vertices

m1,m2, the MPP is the line segment m1m2. Figure 32
shows examples of such complex which coincides with

its boundary. It is easy to see that Algorithm 6 correctly
finds the MPP vertex list (m1,m2). For the following

suppose that the MPP of C has at least three vertices.

(3) Algorithm 6 determines in Line 1 a special polygon

vertex m1 which is a convex MPP vertex as proved

in [20]. From each polygon vertex m = mn, n ≥ 1,
provided by some βz ∈ β(C), the next polygon vertex is

found with the help of a cone of visibility through the
forthcoming tiles. The cone rooted at m is initialized

in Lines 6-7 by its right border −→mp and left border −→mq

with p = xi, q = yi, being the right and left end points

of ei = βi ∩ βi+1 where i is the first index larger than z
such that bi−1, bi, bi+1 are not collinear. In Lines 8-16,

the cone is updated after inspecting each βk: p = xk

is updated if xk restricts or confirms the right border,

q = yk is updated if yk restricts or confirms the left

border. The condition of Line 9 requires that m,xk, yk
form a left turn, or, are collinear, and that xk, yk do

not lie on the same side strictly outside the cone. It is

Fig. 33 All possible cases where Algorithm 6 finds the con-
dition of Line 9 not satisfied for βk, being the current cone
given by p, q. Each yellow arc joins rays which may coincide.

important that in Line 10, xk is ignored if it lies strictly

outside the cone on the right, because then, xk must

not be used to update the right cone border, since the

straight linemxk leaves the boundary. The same in Line
11: yk is ignored if it lies strictly outside the cone on

the left, yk must not be used to update the left border,
since myk leaves the boundary. Therefore, Lines 9-11

guarantee that (m, p, q) well-defines the cone, and that
mp andmq always belong to the union of corresponding

tiles, from βz up to the tile which provides p or q.

As result, since p or q defines the next polygon

vertex mn+1 (Lines 18-19) provided by some tile βj ,

mnmn+1 belongs to βz ∪ βz+1 ∪ · · · ∪ βj . By Lemma 6,

all polygon vertices are candidates. In consequence, the

vertex list of the polygonal curve constructed by Algo-

rithm 6 is a subsequence of Cand(C) which satisfies the

suppositions of Lemma 3. Hence Algorithm 6 generates

the ordered vertex list of a weakly simple polygon P

which is a preimage of C, and where core(C) ⊂ P ⊂ |C|.
(4) Figure 33 shows all possible situations for the con-

dition of Line 9 being not satisfied. A global boundary

movement to the left makes Algorithm 6 find a convex

polygon vertex given as q which defines the current left

cone border, see Figure 33(a)(b)(c). A boundary move-
ment to the right makes necessary to find a concave
polygon vertex given as p which determines the cur-

rent right border, see Figure 33(d)(e)(f). Taking into ac-
count that the current cone given by (m, p, q), and any

well-defined cone given by (m,xk, yk) (Figure 33(c)(f)),

may be degenerated to a ray, Lines 18-19 of Algorithm
6 use just one of the possible manners to distinguish
between the convex and concave cases.

(5) Algorithm 6 finishes when the input list β(C) =

{β0, β1, · · · , βt} was processed, i is increased and Line
3 detects that i > t. Suppose C to have more than

four tiles. Recall that β0 is the leftmost tile of the top

row of C, C has no end tile, and β(C) is the generic

boundary chain. Hence β(C) moves down from β0 to

β1, and βt lies on the right of β0. If βt was the last tile

inspected, it presents a convex turn, then βt−1 lies be-

32 Petra Wiederhold

low βt. Otherwise, Algorithm 6 ignored βt because β(C)
passes straight through it, there may be more collinear
tiles βt, βt−1, βt−2, · · · between β0 and βt−r which fi-

nally presents a convex turn, for some r ≥ 1. In any

case, β(C) returns to βt coming from the right, or from

below. This makes evident that, if Algorithm 6 would
continue inspecting now β0, β1, · · · , it would find the

convex candidate yt = y0 as next polygon vertex, but
y0 = m1 was the first vertex found. This confirms the

correct ending of Algorithm 6.

(6) Now let mn be any polygon vertex determined by
Algorithm 6. Suppose that mn is an MPP vertex. De-

note by a the next MPP vertex after mn for counter-
clockwise tracing of the MPP frontier. We will prove

that then, a coincides with the next polygon vertex

mn+1 found by Algorithm 6. Recall that the MPP fron-

tier curve is the shortest curve which circumscribes

core(C) and does not leave |C|, it is polygonal and weakly
simple.

(6a) The vertex mn is a candidate provided by a tile

βz. When the new cone is initialized for some i ≥ z+1,

the condition of Line 9 is trivially satisfied for k = i

(Line 8), then k is stepwise augmented (Line 12) and
the conditions in Lines 13,14,9, serve to decide whether

the current cone continues to pass through the tiles
under inspection, or not. The cone is eventually up-
dated during this process, until for some k > i, Al-

gorithm 6 reaches Line 9 and the while condition is
not satisfied, then the next polygon vertex mn+1 is

found. The candidate mn+1 is provided by a tile βj

with z+1 ≤ i ≤ j < k. All βz+1, βz+2, · · · , βj , · · · , βk−1

satisfy the condition of Line 9, but βk does not. By con-
struction, the current cone rooted at mn goes through

all tiles βk, βz+1, βz+2, · · · , βj , · · · , βk−1.

(6b) Let mn be situated at the plane origin. Assume

first that the current cone rooted at mn is not a ray

lying on some coordinate axis. Then, by Lemma 5, the
cone belongs to exactly one quadrant. We will treat the

first quadrant, the discussion would be similar for the
other quadrants.

The prove of Lemma 5(4) showed that within the

first quadrant, any movement from βl up, or, to the

right, to βl+1, causes that mn, xl, yl form a left turn,

or, are collinear (well-defined l-th cone), whereas for
any movement down, or to the left, (mn, xl, yl) presents

a right turn which makes not satisfied the condition of
Line 9 for βl. Since βz+1, · · · , βj , · · · , βk−1 satisfy the

condition of Line 9, for all s = i, i+1, · · · , j, · · · , k− 1,

the s-th cone is well-defined, hence the movement from

βs to βs+1 may be only up, or, to the right. Therefore,

mn+1 is positioned as in Figure 34.

Fig. 34 For a last found polygon vertex mn and a cur-
rent cone in the first quadrant, (a): Algorithm 6 detects at
βk a boundary movement to the left which makes it find
mn+1 = yj as the next (convex) polygon vertex, (b): a
boundary movement to the right detected at βk makes find
mn+1 = xj as the next (concave) polygon vertex.

(6b-a) If mn+1 is convex, see Figure 34(a), a boundary

movement to the left is detected at βk. Thenmn+1 = yj
is the last point which restricts or confirms the left cone

border, among all end points ys of edges es = βs∩βs+1,

s = i, i+1, · · · , j, · · · , k−1. Hence yj+1, yj+2, · · · , yk−1

all lie strictly on the left of −−→myj . The current right

cone border is determined by xj , or, lies on the left

of −−→mxj . Since βi+1, · · · , βk−1 satisfy the condition of
Line 9, xj+1, xj+2, · · · , xk−1 lie on the right of, or on,

the left border −−→myj .

The next tile βj+2 may lie on the left, on top, or, on

the right of βj+1, see Figure 35 where in (a), the (j+1)−
th cone is not well-defined which means that k = j+1.

The MPP frontier part starting at mn goes through

βi, βi+1, · · · , βj , βj+1, βj+2, βj+3, · · · , in that order, it

needs the core vertex yj as convex vertex, because there

is no straight way from mn to reach βk+3. But mnyj ⊂
βi ∪ · · · ∪ βj−1 ∪ βj , which implies a = yj .

In Figure 35(c), k = j + 1 since both xk+1, yk+1

lie outside the cone on the left. The MPP frontier part

from mn until any point of βk+2, passes through yj as

vertex. This implies a = yj since mnyj ⊂ βi ∪ · · · ∪ βj .

In Figure 35(b)(d), xj+1 defines the right border,

or, lies outside the cone on the right, whereas yj+1 is

ignored by Algorithm 6. So, k ≥ j + 2, the algorithm
continues to search for βk. Note that in (b), βk+1 could

not be such that yj+1 lies inside the cone, this would

contradict the supposition that yj is the last point defin-

ing the left cone border.

Now we assume k ≥ j + 2. To find mn+1 as convex,

from βk, β(C) must move up, or, to the left, to βk+1.
If it goes from βk up to βk+1 in such a way that both

xk, yk are outside the cone on the left, mn+1 = yj is

found. A movement from βk to the left to βk+1 needs

that βk−1 lies below βk, by Lemma 5, then yk lies on

the left cone border and xk outside the cone on the left.

In any such situation, there is no straight line from mn

to reach βk+2. The MPP frontier part from mn to βk+2

Minimal perimeter polygon in rectangular mosaics 33

Fig. 35 Special cases for Figure 34(a), discussed in (6b-a) of the proof of Theorem 1. The notation j within a tile means βj .
(a) shows both possible continuations to βj+3 if βj+2 lies on the left of βj+1, in each case, there is no straight way from mn

to reach the tile βk+3. (b): βj+2 lies on the right of βj+1, Algorithm 6 ignores yj+1 and continues. (c)(d): if βj+2 lies on top
of βj+1, it depends on the size of βk+1 whether xj+1 lies outside or inside the cone.

Fig. 36 Special cases for Figure 34(b), discussed in (6b-b) of
the proof of Theorem 1. The notation j within a tile means
βj+1. (a)(c): Algorithm 6 ignores xj+1 and continues. (b):
k = j + 1, there is no straight way from mn to reach βk+2.

needs a convex vertex, that is, a convex candidate. Tak-
ing into account that the MPP frontier is the shortest
curve going through β(C), and myj is contained in the

boundary, a must be a convex candidate provided by

a tile βt with t ≥ j. Nevertheless, yj+1, yj+2, · · · , yk−1

lie strictly on the left of −−→myj , making myt to leave the
boundary for t = j+1, j+2, · · · . In consequence, a = yj .

(6b-b) Let mn+1 be a concave candidate, see Figure

34(b), a boundary movement to the right is detected
at βk. Now mn+1 = xj is the last point which restricts

or confirms the right cone border, among all end points
xs of es = βs ∩ βs+1, s = i, i + 1, · · · , j, · · · , k − 1.

Hence xj+1, xj+2, · · · , xk−1 lie strictly on the right of
−−→mxj . The current left cone border is determined by yj ,

or, lies on the right of −−→myj . Since βi+1, · · · , βk−1 satisfy

the condition of Line 9, yj+1, yj+2, · · · , yk−1 lie on the
left of, or on, the right border −−→mxj .

The next tile βj+2 may lie on top, or, on the right

of βj+1, see Figure 36. Note that βj+2 could not lie

below βj+1 since xj ∈ fr(|C|) could not be completely

surrounded by complex tiles.

In Figure 36(a)(c), yj+1 defines the left border, or,
lies outside the cone on the left, whereas xj+1 is ignored

by Algorithm 6. Then k ≥ j + 2, the algorithm conti-

nues. Note that in Figure 36(a), βk+1 could not make

xj+1 lying inside the cone, this would contradict the

supposition that xj is the last point defining the right

cone border.

In Figure 36(b), k = j + 1 since both xk+1, yk+1

lie outside the cone on the right. The MPP frontier

part from mn until reaching βk+2, passes through xj as
vertex. This implies a = xj becausemnxj ⊂ βi∪· · ·∪βj .

Now we assume k ≥ j+2. To find mn+1 as concave,

from βk, β(C) must move down, or, to the left, to βk+1.

If it moves down in such a way that both xk, yk result

outside the cone on the right, mn+1 = xj is found. A

movement from βk to the left to βk+1 needs that βk−1

lies below βk. By Lemma 5, then xk lies on the right

cone border, and yk lies outside the cone on the right.

In any such situation, there is no straight line from mn

reaching βk+2. The MPP frontier part from mn until
βk+2 needs a concave vertex, which is a concave can-

didate. Therefore, a must be a concave candidate pro-
vided by some βt with t ≥ j. But xj+1, xj+2, · · · , xk−1

lie strictly on the right of −−→mxj , hence mxt leaves the

boundary for t = j+1, j+2, · · · . In consequence, a = xj .

(6c) Now assume mn as situated at the plane origin,

and the current cone rooted at mn being a ray −→c lying

on some coordinate axis. We consider the positive part

of the x-axis, the discussion would be similar for other

cases. The ray −→c is the result of eventual updatings
from an initial cone which already contained −→c as a

border. Since −→c is touched by all βz, · · · , βi, · · · , βj−1,

βj , βj+1, · · · , βj+2, βk in a rectangular mosaic, each of

these tiles shares its top or bottom side with −→c .
If mn+1 is convex, see Figure 37(a), mn+1 = yj is

the last point which restricts or confirms the left cone

border, among all left end points ys of βs ∩ βs+1, s =

i, i+ 1, · · · , j, · · · , k − 1. Hence all yj+1, yj+2, · · · , yk−1

lie strictly on the left of −−→myj . This is only possible if all

tiles βj+1, βj+2, · · · , βk−1, βk share their bottom sides
with −→c . The boundary movement to the left is per-

formed at βk: βk+1 lies on top of βk, both xk, yk are

located strictly to the left of −→c . There is no straight

path from mn to reach βk+1, but the shortest path has

yj as unique vertex, hence yj is the next MPP vertex.

Figure 37(b) shows the case that mn+1 is concave,

then mn+1 = xj is the last point which restricts or con-

firms the right cone border, among all right end points

34 Petra Wiederhold

Fig. 37 A current cone rooted at mn lies on the positive
part of the x-axis. The notation k inside a tile means βk. (a):
Algorithm 6 detects at βk a boundary movement to the left
and finds yj as next (convex) polygon vertex, (b): a boundary
movement to the right detected at βk makes find xj as next
(concave) polygon vertex.

xs of βs ∩ βs+1, s = i, i + 1, · · · , j, · · · , k − 1. Hence

all xj+1, xj+2, · · · , xk−1 lie strictly on the right of −−→mxj

which only is possible if βj+1, βj+2, · · · , βk−1, βk share

their top sides with −→c . The boundary movement to the

right is performed at βk: βk+1 lies below βk, both xk, yk
result as strictly to the right of −→c . There is no straight

path from mn to reach βk+1, but the shortest path has
xj as unique vertex, hence xj is the next MPP vertex.

(7) As consequence of (6) and (5), since Algorithm 6

first finds the MPP vertex m = m1, and for any found
polygon vertex mn, if it is an MPP vertex, the next

MPP vertex coincides with the next found polygon ver-

tex mn+1, Algorithm 6 generates a sequence of polygon

vertices which coincides with the sequence of MPP ver-

tices for the complex C.
⊓⊔

The supposition of a generic boundary chain as in-

put data for Algorithm 6, is important. For arbitrary

(even regular) boundary chains, neither Algorithm 6

guarantees to determine the MPP vertices, nor Lem-

mas 3 and 4 are ensured. To see this, consider the fol-

lowing example: whereas the MPP is correctly obtained
from the generic boundary chain in Figure 38, Figure 39
shows the incorrect result for another boundary chain of

the same regular complex a square tiles. It is clear that

all previous algorithms analysed in the present paper,

in general, also would face this same problem, which is

never mentioned in the related previous articles.

Example 13: For the complex in Figure 39, Algorithm

6 uses the points xi, yi, where the boundary chain per-
forms a right or left turn. The algorithm is not able to

realize whether that points really are convex vertices

of the core or concave vertices of fr(|C|), or whether

the boundary chain circumscribes the complex “always

in the same orientation”, since it relies on local anal-

ysis. Each yi is interpreted as convex vertex candidate

which may define the left cone border, and each xi as

concave vertex candidate to define the right border. Fig-

ures 39(b)(c) show that this interpretation causes con-
fusion when the candidate list corresponds to a curve
which transversally crosses itself. For instance, x12, x14,

x16, x18 are found as “concave MPP vertices” but they

are convex vertices of the core. Starting with the MPP
vertex y0, x3 = x4 defines a right border, y3 a left bor-

der which is restricted by y4, the cone became a line.
Then y6 pretends to give a left border but lies outside

the cone on the right, hence x4 is the next “MPP ver-

tex”. From x4, we get the borders −−→x4y6 (left) and −−→x4x6

(right), y8 lying on the left outside the cone is ignored,

but x8 lying on the left outside the cone determines
the next MPP vertex y6. From y6, the cone given by

(y6, x8, y8) already is a line, y11 is ignored (outside on
the left), x11 lying outside on the left determines the

next MPP vertex y8. From y8, x9 gives a right border

later restricted by x11, y9 a left border restricted by

y11. Then x12 = x11 confirms the right border, y12 is
ignored as well as x14 (outside), y14 confirms (lying on

the border), x16 is ignored but y19 (outside on the right)

determines the next “MPP vertex” x12. Later on, from

x18, y19 gives a left border restricted by y21, x19 a right

border restricted by x21. Then x22 is ignored, y22 = y21
confirms the cone, and the input list is finished (β23,

β24, β25 are ignored), hence the algorithms ends, x18y0
is the last MPP side found. Only by continuation to

trace the cyclic input list, the last vertices x18, y22, and
y0, again, may be found. In any case, the result is a

curve describing a polygon which is not weakly simple,

and, it is not the MPP of the complex.

8.4 Adaptation of Algorithm 6 to correct the

Sklansky-Chazin-Hansen algorithm

Let C be a regular complex in a rectangular mosaic,

β(C) = (β0, β1, · · · , βt) its generic boundary chain, bi
the centre point of βi, γ = b0b1 ∪ b1b2 ∪ · · · ∪ bt−1bt ∪
btb0, ui, wi the sets from Definition 3 used in Algorithm

2, and xi, yi the end points of ei = βi ∩ βi+1 used in

Algorithm 6. Then clearly, wi = xi = xi−1 for each
concave vertex bi of γ, and ui = yi = yi−1 for each

convex vertex bi of γ, see Figure 25.

Although the new Algorithms 6,7 may be applied

with success to any generic boundary chain of a reg-
ular complex, the Sklansky-Chazin-Hansen algorithm
could not. There is one more detail which may cause

the sets of Definition 3 to be not well-defined. Recall

that β0 = T0 is the leftmost tile in the top row of

C. Evidently, the authors of [20] have no doubt that

w0 = β0 ∩ fr(|C|) is the union of the top and the left
sides of the rectangle T0. But a regular complex is not

Minimal perimeter polygon in rectangular mosaics 35

Fig. 38 A complex C (shaded grey) with core drawn orange and red, convex core vertices as red points, concave vertices of
fr(|C|) as green points, the generic boundary chain by black arrows. The MPP frontier obtained by Algorithm 6 is shown blue.

Fig. 39 Another regular boundary chain of the complex from Figure 38, discussed in Example 13, depicted by black arrows
and indicated by the tile numbers. Algorithm 6 detects the points xi, yi and a polygonal curve drawn by blue arrows, which
is not weakly simple, it crosses transversally to itself. That curve does not define the MPP, and, it has the concave vertex x4

which is not a concave vertex of fr(|C|).

Fig. 40 A regular complex (shaded grey) having a thin part
around β0 = T0. Its MPP (drawn by blue broken lines) is
a degenerated polygon determined by the cyclic vertex se-
quence (x, y, x, z), x is a convex and a concave vertex, y and z

are convex. Applying Definition 3, w0 is the disconnected set
drawn pink which contains the point x, u0 results as empty.
Then, w1 is the disconnected set of two opposite sides (drawn
blue in the right figure) of the next boundary tile, u1 is empty.
These results are not expected, they make impossible to cal-
culate the angles h1, H1 and to continue Algorithm 2 from
the first MPP vertex m1 = x.

forbidden to have a thin part containing T0, such as

the complex in Figure 40 which does not satisfy the ex-

pectations for the sets wi, ui, w0 is disconnected, hence

so is the set w1 of points which can be connected in

fr(|C|) to (the components of) w0. As result, u0, u1 are
empty. This generates a situation useless for detecting

the first convex MPP vertex x. In the present article,

we simply will forbid such situation for T0, supposing

that the rectangular block of four tiles, whose top left

tile is T0, always belongs to the complex. Under these

assumptions, finally, all concepts from Definition 3 are

well-defined:

Lemma 7 Let C be any regular complex in a rectan-

gular mosaic M with generic boundary chain β(C) =
(β0 = T0, β1, · · · , βt) where T0 is the leftmost tile of the

top row of C. Moreover, assume that the rectangular
block of four tiles, whose top left tile is T0, belongs to

C. For 0 ≤ i ≤ t, let wi, ui be the sets due to Definition

3, and denote by bi the centre point of the tile βi. Then

β(C) satisfies the following for each i ∈ {0, 1, · · · , t}:
(1) wi is a non-empty subset of the Jordan curve fr(|C|).
That curve coincides with w0∪w1∪· · ·∪wt and is traced

in counterclockwise sense when visiting w0, w1, · · · , wt

in this order.

(2) ui is a non-empty set.

(3) βi corresponds exactly to one of the cases (a),(b),(c)

for Definition 3. If bi is a concave vertex of γ (case (a))

then the point wi is a concave vertex of fr(|C|).
(4) If the chain β(C) is non-repeating then ui ⊂ core(C),
and ui is a convex vertex of core(C) (in generalized
sense) in case that bi is a convex vertex of γ.

Proof Due to Lemma 2, visiting all boundary tiles due

to their order in β(C) corresponds to counterclockwise

tracing the Jordan curve fr(|C|), where fr(|C|) leaves

|C| on its left side and (R2 \ |C|) strictly on the right.

36 Petra Wiederhold

So, the weakly simple polygonal curve γ =
−−→
b0b1∪

−−→
b1b2∪

· · · ∪ −−−→
bt−1bt ∪

−−→
btb0 is traced in counterclockwise sense.

Under the suppositions, w0 is the union of the top

and left sides of the tile T0, hence u0 is the lower right

corner point of T0. As proved in [20], u0 is a convex

vertex of (the frontier of) core(C). Clearly b0 is a convex
vertex of γ. By Lemma 2, the regularity of C and the

special position of β0 = T0, β1 lies below β0 as shown
in Figure 41. The point b1 may be a concave, convex, or

linear point of γ. If b1 is concave (right turn), β1 satisfies

Case (a) for Definition 3, then w1 is a single point and

concave vertex of fr(|C|), and u1 is the union of the two

sides of β1 which are opposite to w1. By Lemma 2(3),
b2 cannot be concave, hence the side w′

2 of β2 marked

by a broken pink line in Figure 41 is a subset of w2. If b1
is convex (left turn), β1 satisfies Case (b) for Definition

3, then w1 is the union of two sides of β1 drawn pink in

Figure 41, and u1 is the opposite single point, Figures

41(d-f) show possible continuations for β2. If b1 is a
linear point of γ, β1 satisfies Case (c), then w1 and u1

are opposite sides of β1. In both latter cases, the point
w′

2 drawn as black in Figure 41, belongs to w2, w
′

2 = w2

if b2 is a concave vertex of γ. In all situations, the non-

empty set w0∪w1 is a connected part of fr(|C|), whereas
u0 is an isolated point, or an end point of a thin part,

and hence a convex vertex of core(C).
The construction of the sets wi and ui is contin-

ued while travelling through β(C). By the suppositions,

w0, w1 are well-defined subsets of fr(|C|), hence so are

w2, w3, · · · , and fr(|C|) = w0 ∪w1 ∪ · · · ∪wt. This com-

pletes to prove (1) and (2).

(3) and (4) are consequences of Lemmas 2 and 4,

see Figure 42. If bi is concave, βi satisfies Case (a) for

Definition 3, then wi is a single point and concave vertex

of fr(|C|), and ui is the union of the two sides of βi

opposite to wi, see also Figure 25(b). By Lemma 2,

bi−1 and bi+1 cannot be concave, hence the sides w′

i−1

and w′

i+1 of βi−1 and βi+1, resp., drawn by pink broken

lines in Figure 42, are subsets of wi−1 and wi+1. If bi
is convex, βi performs a left turn and satisfies Case
(b), then wi is the union of two sides of βi, and ui

is the opposite single point. If bi is a linear point of
γ, βi satisfies Case (c) of Definition 3, wi and ui are

opposite sides of βi. In both latter cases, the points w′

i−1

of βi−1 and w′

i+1 of βi+1 marked as black in Figure 42

are subsets of wi−1 and wi+1, resp.. In any case, wi and

ui are not empty, wi may be connected in fr(|C|) via
a path to wi−1 and a path to wi+1 implying that the

union of all wi, 0 ≤ i ≤ t gives the whole curve fr(|C|).
Part (4) follows from Lemma 4 since in that case, ui

coincides with the point yi used in Algorithm 6.

⊓⊔

Algorithm 8 presents an intuitive formulation of a

corrected version of the Sklansky-Chazin-Hansen algo-
rithm. From the analysis in Section 5.5 and the de-
velopment in Section 8, it is clear that Algorithm 8 is

equivalent to the new Algorithm 6, but the new one

would always be preferred since it is much simpler and

more efficient.

Algorithm 8 Corrected version of the Skansky-

Chazin-Hansen algorithm to determine the MPP of a

regular complex C in a rectangular mosaic.

Input: Generic boundary chain β(C) = (β0, β1, · · · , βt)
(counterclockwise tracing), β0 is the leftmost tile of the
top row of C, cyclic sequence (b0, b1, · · · , bt) of centre
points of all βi. It is assumed that the rectangular block
of four tiles, whose top left tile is β0, belongs to C.

Output: Lists MPP (MPP vertices) and L (candidates).

1: Determine a convex MPP vertex m = m1 as the lower
right corner of β0.

2: Add m1 to the list MPP and to the list L.
3: i := 0 , n := 1 .
4: if i > t then STOP endif
5: Determine the sets wi and ui of βi, the point ai of ui that

lies furthest to the right, and the point ci of wi which lies
furthest to the left.

6: p := ci (concave, initial right cone border −→mp)
7: q := ai (convex, initial left cone border −→mq)
8: k := i

9: while (m,ak, ck form a right turn or are collinear,
and ck, ak are not both on the same side
strictly outside the cone) do

10: Update last concave candidate and right border:
if (m, p, ck form a left turn or are collinear) then
(p := ck and zp := k and add p to list L) endif

11: Update last convex candidate and left border:
if (m, q, ak form a right turn or are collinear) then
(q := ak and zq := k and add q to list L) endif

12: k := k + 1 (continue with the same cone)
13: if k > t then STOP, endif
14: Determine the sets wk and uk of βk, the point ak of

uk which lies furthest to the right, and the point ck of
wk that lies furthest to the left.

15: end while
16: (A new MPP vertex is found:)
17: if (m, p, ck) forms a right turn, or, they are collinear then

(m := p and z := zp) endif
18: if (m, p, ck) forms a left turn then

(m := q and z := zq) endif
19: n := n+ 1, add the point mn = m to the list MPP.
20: i := z + 1 (continue searching with βz+1)
21: Go to Line 4.

9 Conclusions

This article studies three MPP algorithms for com-

plexes which are sets of tiles in rectangular mosaics,

two classical algorithms from [20,21] (1972, 1976), and

an adaptation of them to approximate digital simple

Minimal perimeter polygon in rectangular mosaics 37

Fig. 41 Starting situations for the boundary chain β(C). (a) b1 concave, (b) b1 convex, (c) b1 linear, (d)-(f) possible cases of
β2 for convex b1.

Fig. 42 Possible situations for a boundary tile βi in the
cyclic sequence β(C): bi concave (left image), bi convex (mid-
dle image), bi linear (right image).

4-contours which is presented and recommended in the

modern textbooks [4,6] (2018, 2020) on digital image

analysis, and was also presented in similar form in the

book [12] (2004). The classical algorithms from [20,
21] are well-known and many cited in the literature,
and never have been reported as failing. This paper
shows that all these algorithms are erroneous, and that

the original articles contain errors in the mathematical

foundation, for example, in the definition of concepts,

using failing arguments in correctness proofs, and, pre-

senting propositions which are false.

Based on our detailed analysis, we develop a new

MPP algorithm for regular complexes in rectangular

mosaics, using the correct ideas from the previous al-

gorithms but avoiding their errors. Our algorithm uses

the uniquely determined generic boundary chain of the
complex as input data. This chain is obtained by a
boundary tracing method, also presented in this arti-
cle, which in a straightforward manner generalizes the

boundary tracing of 4-contours well-known from digital

image analysis. We illustrate the new MPP algorithm

by examples, and, we present its correctness proof. The

new algorithm corrects that from [21], we also show how
it can be adapted to correct the algorithm from [20].

Our new MPP Algorithm 6 may also be applied to

correct the MPP algorithm from the textbooks [4,6,
12] for simple 4-contours in (cZ)2. This will be studied,

together with a generalization to complexes which not
necessarily are regular, in a forthcoming article.

Acknowledgements

Conflict of interest

The authors declare to have no conflict of interest.

References

1. Chang, H.C., Erickson, J., Xu, C.: Detecting weakly
simple polygons. In: P. Indyk (ed.) Proceedings of
26th Annual ACM-SIAM Symposium on Discrete Al-
gorithms SODA 2015 (USA, 2015), vol. 3, pp. 1657–
1672. SIAM (ISBN 978-1-61197-374-7) (2015). DOI
10.1137/1.9781611973730.110

2. Coeurjolly, D., Klette, R.: Comparative evaluation of
length estimators of digital curves. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence 26(2), 252–258
(2004). DOI 10.1109/TPAMI.2004.1262194

3. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd
edn. Pearson Education International, USA (2007)

4. Gonzalez, R., Woods, R.: Digital Image Processing
(Global Edition), 4rd edn. Pearson Education Limited,
USA (2018)

5. Gonzalez, R., Woods, R., Eddins, S.: Digital Image Pro-
cessing using Matlab, 2nd edn. Gatesmark Publishing
LLC, USA (2009)

6. Gonzalez, R., Woods, R., Eddins, S.: Digital Image Pro-
cessing using Matlab, 3rd edn. Gatesmark Publishing
LLC, USA (2020)

7. Gonzalez, R., Woods, R., Eddins, S.: Digital Image Pro-
cessing using Matlab, 2nd edn. McGraw-Hill Education
(India) Private Limited, USA ((20th reprint 2019))

8. Grünbaum, B., Shephard, G.: Tilings and Patterns. W.H.
Freeman and Company, USA (1978)

9. Kim, C., Sklansky, J.: Digital and cellular convexity. Pat-
tern Recognition 15 No.5, 359–367 (1982)

10. Klette, R.: Multigrid convergence of geometric features.
In: G. Bertrand, A. Imiya, R. Klette (eds.) Digital and
Image Geometry, pp. 318–338. Springer, LNCS 2243, Hei-
delberg (2002). DOI 10.1007/3-540-45576-0-19

11. Klette, R., Kovalevsky, V., Yip, B.: On the length estima-
tion of digital curves. In: L. Latecki, R. Melter, D. Mount,
A. Wu (eds.) SPIE Proc. of Vision Geometry VIII, pp.
117–129. SPIE Proc. Series, USA (1999)

12. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric
Methods for Digital Picture Analysis. Morgan Kaufmann
Publisher, USA (2004)

38 Petra Wiederhold

13. Klette, R., Yip, B.: The length of digital curves. Machine
Graphics and Vision 9(3), 673–703 (2000)

14. Kovalevsky, V.: Finite topology as applied to image anal-
ysis. Computer Vision, Graphics, and Image Processing
46, 141–161 (1989)

15. Li, F., Klette, R.: Euclidean Shortest Paths, Exact or
Approximate Algorithms. Springer, London (2011). DOI
10.1007/978-1-4471-2256-2

16. Provencal, X., Lachaud, J.: Two linear-time algorithms
for computing the minimum length polygon of a digi-
tal contour. In: S. Brlek, C. Reutenauer, X. Provencal
(eds.) Proc. of DGCI - Int. Conf. on Discrete Geome-
try for Computer Imagery, pp. 104–117. Springer, LNCS
5810, Berlin Heidelberg (2009). DOI 10.1007/978-3-642-
04397-0-10

17. Schulte, E.: Tilings. In: P. Gruber, J. Wills (eds.)
Handbook of Convex Geometry (Vol. B), pp. 899–932.
Springer, LNCS 2059, Amsterdam (1993)

18. Sklansky, J.: Recognition of convex blobs. Pattern Recog-
nition 2, 3–10 (1970). DOI 10.1016/0031-3203(70)90037-
3

19. Sklansky, J.: Measuring cavity on a rectangular mo-
saic. IEEE Trans. on Computing C-21(12), 1355—-1364
(1972)

20. Sklansky, J., Chazin, R., Hansen, B.: Minimum perime-
ter polygons of digitized silhouettes. IEEE Trans.
on Computers 21(3), 260––268 (1972). DOI
10.1109/TC.1972.5008948

21. Sklansky, J., Kibler, D.: A theory of nonuniformly
digitized binary pictures. IEEE Trans. on Systems,
Man, and Cybernetics 6(9), 637––647 (1976). DOI
10.1109/TSMC.1976.4309569

22. Sloboda, F., Stoer, J.: On piecewise linear approxima-
tion of planar jordan curves. Journal of Computational
and Applied Mathematics 55, 369—-383 (1994). DOI
doi:10.1016/0377-0427(94)90040-X

23. Sloboda, F., Zatco, B., Klette, R.: Topology of grid con-
tinua. In: Proc. of SPIE Conf. Vision Geometry VII,
pp. 52–63. SPIE Proc. Series vol. 3454 (1998). DOI
10.1117/12.323274

24. Sloboda, F., Zatco, B., Stoer, J.: On approximation of
planar one-dimensional continua. In: R. Klette, A. Rosen-
feld, F. Sloboda (eds.) Advances in Digital and Compu-
tational Geometry, pp. 113—-160. Springer, Singapore
(1998)

25. Tajine, M., Daurat, A.: On local definitions of length of
digital curves. In: N. et al. (ed.) Proc. of DGCI - Int.
Conf. on Discrete Geometry for Computer Imagery, pp.
114–123. Springer, LNCS 2886, Berlin Heidelberg (2003).
DOI 10.1007/978-3-540-39966-7-10

26. Toussaint, G.: Computing geodesic properties inside a
simple polygon. Revue d’Intelligence Artificielle 3(2),
265–278 (1989)

27. de Vieilleville, F., Lachaud, J.: Digital deformable model
simulating active contours. In: S. Brlek et al. (ed.) Proc.
of DGCI - Int. Conf. on Discrete Geometry for Computer
Imagery, pp. 203–216. Springer LNCS 5810, Berlin Hei-
delberg (2009)

28. Wiederhold, P., Villafuerte, M.: A polygonal approxima-
tion for general 4-contours corresponding to weakly sim-
ple curves. Journal of Mathematical Imaging and Vision
64(2), 161–193 (2022). DOI 10.1007/s10851-021-01060-0

29. Wiederhold, P., Wilson, R.: The Alexandroff dimension
of digital quotients of Euclidean spaces. Discrete and
Computational Geometry 27, 273––286 (2002). DOI
10.1007=s00454-001-0065-4

