Abstract
Projection-based model order reduction of dynamical systems usually introduces an error between the high-fidelity model and its counterpart of lower dimension. This unknown error can be bounded by residual-based methods, which are typically known to be highly pessimistic in the sense of largely overestimating the true error. This work applies two improved error bounding techniques, namely (a) a hierarchical error bound and (b) an error bound based on an auxiliary linear problem, to the case of port-Hamiltonian systems. The approaches rely on a secondary approximation of (a) the dynamical system and (b) the error system. In this paper, these methods are adapted to port-Hamiltonian systems. The mathematical relationship between the two methods is discussed both theoretically and numerically. The effectiveness of the described methods is demonstrated using a challenging three-dimensional port-Hamiltonian model of a classical guitar with fluid–structure interaction.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
Availability of data and materials
The port-Hamiltonian system matrices are available at [57].
References
Mehrmann, V., Unger, B.: Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numer 32, 395–515 (2023). https://doi.org/10.1017/S0962492922000083
Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H.: Modeling and control of complex physical systems - the port-Hamiltonian approach., 1st edn. Springer, Berlin Heidelberg (2009). https://doi.org/10.1007/978-3-642-03196-0
Rettberg, J., Wittwar, D., Buchfink, P., Brauchler, A., Ziegler, P., Fehr, J., Haasdonk, B.: Port-Hamiltonian fluid-structure interaction modeling and structure-preserving model order reduction of a classical guitar. Math. Comput. Model. Dyn. Syst. (2023). https://doi.org/10.1080/13873954.2023.2173238
Haasdonk, B., Ohlberger, M.: Space-adaptive reduced basis simulation for time-dependent problems. In: MATHMOD, 6th Vienna International Conference on Mathematical Modelling, Vienna, Austria, pp. 718–723 (2009). https://www.argesim.org/fileadmin/user_upload_argesim/ARGESIM_Publications_OA/MATHMOD_Publications_OA/MATHMOD_2009_AR34_35/full_papers/184.pdf
Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler, F., Wenzel, T.: A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs. SIAM J. Sci. Comput. 45(3), 1039–1065 (2023). https://doi.org/10.1137/22M1493318
Haasdonk, B., Ohlberger, M.: Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. MCMDS 17(2), 145–161 (2011). https://doi.org/10.1080/13873954.2010.514703
Hain, S., Ohlberger, M., Radic, M., Urban, K.: A hierarchical a posteriori error estimator for the reduced basis method. Adv. Comput. Math. 45(5), 2191–2214 (2019). https://doi.org/10.1007/s10444-019-09675-z
Schmidt, A., Wittwar, D., Haasdonk, B.: Rigorous and effective a-posteriori error bounds for nonlinear problems-application to RB methods. Adv. Comput. Math. 46(2), 32 (2020). https://doi.org/10.1007/s10444-020-09741-x
Mehl, C., Mehrmann, V., Wojtylak, M.: Linear algebra properties of dissipative Hamiltonian descriptor systems. SIAM J. Matrix Anal. Appl. 39(3), 1489–1519 (2018). https://doi.org/10.1137/18M1164275
Willems, J.C.: Dissipative dynamical systems part i: General theory. Arch. Ration. Mech. Anal. 45(5), 321–351 (1972). https://doi.org/10.1007/BF00276493
Cherifi, K., Gernandt, H., Hinsen, D.: The difference between port-Hamiltonian, passive and positive real descriptor systems. Mathematics of Control, Signals, and Systems (2023). https://doi.org/10.1007/s00498-023-00373-2
Beattie, C.A., Mehrmann, V., Van Dooren, P.: Robust port-Hamiltonian representations of passive systems. Automatica 100, 182–186 (2019). https://doi.org/10.1016/j.automatica.2018.11.013
Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I. Springer, Berlin Heidelberg (2005). https://doi.org/10.1007/b137541
van der Schaft, A., Jeltsema, D.: Port-Hamiltonian systems theory: an introductory overview. Fndn Trends in Syst Contr 1(2–3), 173–378 (2014). https://doi.org/10.1561/2600000002
Gillis, N., Sharma, P.: Finding the nearest positive-real system. SIAM J. Numer. Anal. 56(2), 1022–1047 (2018). https://doi.org/10.1137/17M1137176
Rashad, R., Califano, F., van der Schaft, A., Stramigioli, S.: Twenty years of distributed port-Hamiltonian systems: a literature review. IMA J. Math. Control. Inf. 37(4), 1400–1422 (2020). https://doi.org/10.1093/imamci/dnaa018
Goyal, P., Pontes Duff, I., Benner, P.: Guaranteed stable quadratic models and their applications in SINDy and operator inference. arXiv Preprint (2023). https://doi.org/10.48550/arXiv.2308.13819
Gillis, N., Sharma, P.: On computing the distance to stability for matrices using linear dissipative Hamiltonian systems. Automatica 85, 113–121 (2017). https://doi.org/10.1016/j.automatica.2017.07.047
Gillis, N., Mehrmann, V., Sharma, P.: Computing the nearest stable matrix pairs. Numerical Linear Algebra with Applications 25(5), 2153 (2018). https://doi.org/10.1002/nla.2153.e2153nla.2153
Mehl, C., Mehrmann, V., Sharma, P.: Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations. SIAM J. Matrix Anal. Appl. 37(4), 1625–1654 (2016). https://doi.org/10.1137/16M1067330
Mehl, C., Mehrmann, V., Sharma, P.: Stability radii for real linear Hamiltonian systems with perturbed dissipation. BIT Numer. Math. 57(3), 811–843 (2017). https://doi.org/10.1007/s10543-017-0654-0
Liljegren-Sailer, B.: On port-Hamiltonian modeling and structure-preserving model reduction. Doctoral thesis, Universität Trier (2020). https://nbn-resolving.org/urn:nbn:de:hbz:385-1-14498
Beattie, C., Gugercin, S., Mehrmann, V.: Structured Dynamical Systems. In: Beattie, C., Benner, P., Embree, M., Gugercin, S., Lefteriu, S. (eds.) Structure-preserving interpolatory model reduction for port-Hamiltonian differential-algebraic systems, pp. 235–254. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95157-3_13
Gugercin, S., Polyuga, R.V., Beattie, C., van der Schaft, A.: Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48(9), 1963–1974 (2012). https://doi.org/10.1016/j.automatica.2012.05.052
Breiten, T., Unger, B.: Passivity preserving model reduction via spectral factorization. Automatica 142, 110368 (2022). https://doi.org/10.1016/j.automatica.2022.110368
Polyuga, R.V., van der Schaft, A.: Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46(4), 665–672 (2010). https://doi.org/10.1016/j.automatica.2010.01.018
Ionescu, T.C., Astolfi, A.: Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica 49(8), 2424–2434 (2013). https://doi.org/10.1016/j.automatica.2013.05.006
Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N., Mehrmann, V.: On structure-preserving model reduction for damped wave propagation in transport networks. SIAM J. Sci. Comput. 40(1), 331–365 (2018). https://doi.org/10.1137/17M1125303
Moser, T., Lohmann, B.: A new Riemannian framework for efficient H2-optimal model reduction of port-Hamiltonian systems. In: 2020 59th IEEE Conference on Decision and Control (CDC), pp. 5043–5049 (2020). https://doi.org/10.1109/CDC42340.2020.9304134
Schwerdtner, P., Voigt, M.: SOBMOR: structured optimization-based model order reduction. SIAM J. Sci. Comput. 45(2), 502–529 (2023). https://doi.org/10.1137/20M1380235
Polyuga, R.V., van der Schaft, A.J.: Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Syst. Contr. Lett. 61(3), 412–421 (2012). https://doi.org/10.1016/j.sysconle.2011.12.008
Hauschild, S.-A., Marheineke, N., Mehrmann, V.: Model reduction techniques for linear constant coefficient port-Hamiltonian differential-algebraic systems. Control and Cybernetics 48, 125–152 (2019). https://doi.org/10.48550/arXiv.1901.10242
Guiver, C., Opmeer, M.R.: Error bounds in the gap metric for dissipative balanced approximations. Linear Algebra Appl. 439(12), 3659–3698 (2013). https://doi.org/10.1016/j.laa.2013.09.032
Breiten, T., Morandin, R., Schulze, P.: Error bounds for port-Hamiltonian model and controller reduction based on system balancing. Comp. Math. Appl. 116, 100–115 (2022). https://doi.org/10.1016/j.camwa.2021.07.022
Borja, P., Scherpen, J.M.A., Fujimoto, K.: Extended balancing of continuous LTI systems: a structure-preserving approach. IEEE Trans. Autom. Control 68(1), 257–271 (2023). https://doi.org/10.1109/TAC.2021.3138645
Schulze, P., Unger, B.: Model reduction for linear systems with low-rank switching. SIAM J. Control. Optim. 56(6), 4365–4384 (2018). https://doi.org/10.1137/18M1167887
Schulze, P.: Energy-based model reduction of transport-dominated phenomena. Doctoral thesis, Technische Universität Berlin (2023). https://doi.org/10.14279/depositonce-17843
Beattie, C., Gugercin, S.: Structure-preserving model reduction for nonlinear port-Hamiltonian systems. Proceed. IEEE Conf. Decision. Contr. 6564–6569 (2011). https://doi.org/10.1109/CDC.2011.6161504
Chaturantabut, S., Beattie, C., Gugercin, S.: Structure-preserving model reduction for nonlinear port-Hamiltonian systems. SIAM J. Sci. Comput. 38(5), 837–865 (2016). https://doi.org/10.1137/15M1055085
Wolf, T., Lohmann, B., Eid, R., Kotyczka, P.: Passivity and structure preserving order reduction of linear port-Hamiltonian systems using Krylov subspaces. Eur. J. Control. 16(4), 401–406 (2010). https://doi.org/10.3166/EJC.16.401-406
Nguyen, N.-C., Veroy, K., Patera, A.T.: Certified real-time solution of parametrized partial differential equations. In: Yip, S. (ed.) Handbook of Materials Modeling, pp. 1529–1564. Springer, Dordrecht (2005). https://doi.org/10.1007/978-1-4020-3286-8_76
Veroy, K., Patera, A.T.: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47(8–9), 773–788 (2005). https://doi.org/10.1002/fld.867
Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39(1), 157–181 (2005). https://doi.org/10.1051/m2an:2005006
Knezevic, D.J., Nguyen, N.-C., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations. Math. Models Methods Appl. Sci. 21(07), 1415–1442 (2011). https://doi.org/10.1142/S0218202511005441
Grepl, M.A., Maday, Y., Nguyen, N.-C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: M2AN 41(3), 575–605 (2007). https://doi.org/10.1051/m2an:2007031
Grunert, D., Fehr, J., Haasdonk, B.: Well-scaled, a-posteriori error estimation for model order reduction of large second-order mechanical systems. ZAMM - J. Appl. Math. Mech. 100(8), 201900186 (2020). https://doi.org/10.1002/zamm.201900186
Glas, S., Patera, A.T., Urban, K.: A reduced basis method for the wave equation. Int. J. Comput. Fluid Dyn. 34(2), 139–146 (2020). https://doi.org/10.1080/10618562.2019.1686486
Stahl, N., Liljegren-Sailer, B., Marheineke, N.: Certified reduced basis method for the damped wave equations on networks. IFAC-PapersOnLine 55(20), 289–294 (2022). https://doi.org/10.1016/j.ifacol.2022.09.110
Antoulas, A.C., Benner, P., Feng, L.: Model reduction by iterative error system approximation. MCMDS 24(2), 103–118 (2018). https://doi.org/10.1080/13873954.2018.1427116
Feng, L., Lombardi, L., Antonini, G., Benner, P.: Multi-fidelity error estimation accelerates greedy model reduction of complex dynamical systems. Int. J. Numer. Meth. Eng. 124(23), 5312–5333 (2023). https://doi.org/10.1002/nme.7348
Güttel, S., Nakatsukasa, Y.: Scaled and squared subdiagonal Padé approximation for the matrix exponential. SIAM J. Matrix Anal. Appl. 37(1), 145–170 (2016). https://doi.org/10.1137/15M1027553
Söderlind, G.: The logarithmic norm. history and modern theory. BIT Numerical Mathematics 46(3), 631–652 (2006). https://doi.org/10.1007/s10543-006-0069-9
Desoer, C.A., Vidyasagar, M.: Feedback Systems. Society for Industrial and Applied Mathematics, Philadelphia (2009). https://doi.org/10.1137/1.9780898719055
Wittwar, D.: Approximation with matrix-valued kernels and highly effective error estimators for reduced basis approximations. Dissertation. University library Stuttgart, Stuttgart (2022). https://doi.org/10.18419/opus-12526
Hackbusch, W.: Hierarchical matrices: algorithms and analysis. Springer, Berlin Heidelberg (2015). https://doi.org/10.1007/978-3-662-47324-5
Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004). https://doi.org/10.1080/00207170410001713448
Rettberg, J., Wittwar, D., Buchfink, P., Brauchler, A., Ziegler, P., Fehr, J., Haasdonk, B.: Replication data for: port-Hamiltonian fluid-structure interaction modeling and structure-preserving model order reduction of a classical guitar. DaRUS (2023). https://doi.org/10.18419/darus-3248
Rettberg, J., Wittwar, D., Herkert, R.: Softwarepackage CCMOR2. DaRUS (2023). https://doi.org/10.18419/darus-3839
Peng, L., Mohseni, K.: Symplectic model reduction of Hamiltonian systems. SIAM J. Sci. Comput. 38(1), 1–27 (2016). https://doi.org/10.1137/140978922
Buchfink, P., Bhatt, A., Haasdonk, B.: Symplectic model order reduction with non-orthonormal bases. Math. Comput. Appl. 24(2) (2019). https://doi.org/10.3390/mca24020043
Chellappa, S., Feng, L., de la Rubia, V., Benner, P.: Inf-sup-constant-free state error estimator for model order reduction of parametric systems in electromagnetics. IEEE Trans. Microw. Theory Tech. 71(11), 4762–4777 (2023). https://doi.org/10.1109/TMTT.2023.3288642
Buchfink, P., Haasdonk, B., Rave, S.: PSD-Greedy basis generation for structure-preserving model order reduction of Hamiltonian systems. In: Frolkovič, P., Mikula, K., Ševčovič, D. (eds.) Proceedings of the Conference Algoritmy 2020, pp. 151–160. Vydavateľstvo SPEKTRUM, Vysoke Tatry, Podbanske (2020). http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
Acknowledgements
The authors thank the anonymous reviewers for their insightful comments that helped to improve the paper.
Funding
Open Access funding enabled and organized by Projekt DEAL. This work is supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project No. 314733389, and under Germany’s Excellence Strategy - EXC 2075 - 390740016. We acknowledge the support by the Stuttgart Center for Simulation Science (SimTech).
Author information
Authors and Affiliations
Contributions
Conceptualization: J. Rettberg, D. Wittwar, P. Buchfink, J. Fehr, B. Haasdonk. Methodology: J. Rettberg, D. Wittwar, P. Buchfink, J. Fehr, B. Haasdonk. Formal analysis and investigation: J. Rettberg, D. Wittwar, P. Buchfink, R. Herkert, J. Fehr, B. Haasdonk. Software: J. Rettberg, D. Wittwar. Writing—original draft preparation: J. Rettberg, D. Wittwar. Writing—review and editing: J. Rettberg, D. Wittwar, P. Buchfink, R. Herkert, J. Fehr, B. Haasdonk. Funding acquisition: J. Fehr, B. Haasdonk, P. Buchfink.
Corresponding author
Ethics declarations
Ethics approval
The research does not involve human participants or animals.
Conflict of interest
The authors declare no competing interests.
Additional information
Communicated by: Tobias Breiten
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Rettberg, J., Wittwar, D., Buchfink, P. et al. Improved a posteriori error bounds for reduced port-Hamiltonian systems. Adv Comput Math 50, 100 (2024). https://doi.org/10.1007/s10444-024-10195-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-024-10195-8
Keywords
- Structure-preserving model order reduction
- A posteriori error control
- Port-Hamiltonian system
- Fluid–structure interaction