
A local C2 Hermite interpolation scheme with PH
quintic splines for 3D data streams

Carlotta Giannelli, Lorenzo Sacco, Alessandra Sestini
Dipartimento di Matematica e Informatica “U. Dini,”

Università degli Studi di Firenze, Viale Morgagni 67/A, I–50134 Firenze, Italy

Abstract

The construction of smooth spatial paths with Pythagorean-hodograph (PH) quin-
tic spline biarcs is proposed. To facilitate real-time computations of C2 PH quintic
splines, an efficient local data stream interpolation algorithm is introduced. Each spline
segment interpolates second and first order Hermite data at the initial and final end-
point, respectively. In the spline extension of the scheme a C2 smooth connection
between successive spline segments is obtained by taking the locally required second-
order derivative information from the previous segment. Consequently, the data stream
spline interpolant is globally C2 continuous and can be constructed for arbitrary C1

Hermite data configurations. A simple and effective selection of the free parameters
that arise in the interpolation problem is proposed. The developed theoretical analysis
proves the fourth approximation order of the local scheme while a selection of numerical
examples confirms the same accuracy of its spline extension. In addition, the perfor-
mances of the algorithm are also validated by considering its application to point stream
interpolation with automatically generated first-order derivative information.

Keywords: Pythagorean-hodograph curves; Biarcs; Data stream interpolation;
Hermite interpolation; Quaternions

e–mail: carlotta.giannelli@unifi.it,
lorenzo.sacco@unifi.it, alessandra.sestini@unifi.it

ar
X

iv
:2

10
8.

12
94

8v
1 

 [
m

at
h.

N
A

] 
 3

0 
A

ug
 2

02
1



1 Introduction
Planar and spatial polynomial Pythagorean-hodograph (PH) curves are characterized by a
polynomial parametric speed, and can be effectively represented in terms of complex and
quaternion algebra, respectively [4]. We refer to [7] for a comprehensive recent introduction
to PH curves, as well as to related constructions and applications. The spline extension of
PH structures offers many advantages in the context of path generation, as for examples the
possibility of easily constructing flexible fair shapes, and a piecewise polynomial arc length,
a distinctive feature for motion control on a given path, see e.g., [8] and references therein.

The focus of this paper is on the construction of a local interpolation scheme based
on spatial PH quintic splines for given C1 Hermite (positions and first-order derivatives)
data streams. The availability of input Hermite data is usually assumed when higher shape
control for suitable path identification should be enabled. More specifically, each spline
segment interpolates second and first order Hermite data at the initial and final end-point,
respectively. In the spline extension of the scheme a C2 smooth connection between successive
spline segments is obtained by taking the locally required second-order derivative information
from the previous segment. Consequently, the data stream spline interpolant is globally C2

continuous and can be constructed for arbitrary C1 Hermite data configurations.
Interpolation of spatial Hermite data by PH splines is a challenging problem involving a

family of solutions whose shape is strongly influenced by the choice of certain free parameters.
While general C1 Hermite data can always be interpolated by cubic polynomial splines, the
PH condition reduces the available degrees of freedom and PH cubic interpolants with C1 or
G1 continuity not always exist [9, 10, 11]. To avoid this problem the PH spline degree can be
raised to 5 [5, 6, 13] or the cubic spline segment can be subdivided in two (or more) segments
[1, 12]. In a similar way, spatial C2 PH spline interpolants can be (always) obtained either
with PH curves of higher (nine) degree [14] or with low-degree PH spline arcs of different
kind. For example, the interpolation scheme proposed in [2] relies on PH quintic triarcs,
since PH quintic biarcs are not flexible enough for addressing the symmetric second-order
Hermite interpolation problem.

An increasingly range of applications nowadays requires a real-time processing of input
data streams, usually consisting of position information with or without first and second
order Hermite data. The access to the whole data set is then not originally available and
the streaming algorithm should be completely local and suitably exploit first (and second)
derivative estimates to properly compute smooth paths with different order of continuity. As
a consequence, symmetric interpolation algorithms which generate the same geometric path
when the order of the whole data sequence is reverted (a desirable feature when the data are
all simultaneously available) are not strictly needed in this context, see for example [3].

Our method relies on PH quintic biarcs, since they ensure enough flexibility for address-
ing the considered interpolation problem, while preserving the practicality of PH quintics.
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Between any pair of successive Hermite data the corresponding path segment is defined as
a spatial PH quintic biarc, which also requires a second derivative information at one of the
two extrema. However, in the spline implementation of the scheme for Hermite data streams,
this information is not required as additional input data since it is directly obtained by eval-
uating the second derivative of the previous biarc at the joint point to guarantee curvature
continuity at this point. A single PH quintic arc interpolating only first-order Hermite data
is considered at the beginning to completely avoid the need of second-order derivative infor-
mation. A simple and effective selection of the free parameters that arise in the interpolation
problem is proposed by relying on the results for the C1 PH quintic spline interpolants pro-
posed in [6]. The theoretical analysis proves the fourth approximation order of the local
scheme when exact first order Hermite data and a second order error on the C2 condition
are considered. A selection of numerical examples confirms the same approximation for
the spline extension of the scheme. In addition, the performance of the algorithm are also
validated by considering an application-oriented point stream with automatically generated
first-order derivative information.

The plan for this paper is as follows. The data stream interpolation algorithm based
on polynomial Pythagorean-hodograph biarcs of degree five is presented in Section 2. An
effective strategy for the selection of the free parameters is proposed in Section 3. The
approximation order of the local scheme is studied in Section 4, while Section 5 presents a
selection of computed examples. Finally, Section 6 summarizes the key results of this paper.

2 The interpolation scheme
In this section we introduce the local interpolation problem addressed in the paper, referring
to the Appendix for a short introduction to the quaternion algebra. We aim to construct
a parametric PH quintic spline curve x(u), u ∈ [ui , uf ] interpolating two assigned points
pi , pf ∈ IE3 at the end parameter values and such that{

x′(ui) = vi , x′(uf ) = vf ,
x′′(ui) = wi ,

(1)

where vi,vf and wi are assigned vectors1 in IR3 and the ′ symbol denotes derivatives with
respect to the global parameter u. In particular, we consider a PH quintic biarc, a spline
curve composed by two PH quintic polynomial segments xi, xf joining at the inner parameter
value um, ui < um < uf ,

x(u) =

{
xi(u) for u ∈ [ui , um],
xf (u) for u ∈ [um , uf ].

1Note that in the spline interpolation of an Hermite data stream, the vector wi , is not an additional
input information since it is simply taken from the previous spline segment of the path.
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Let t = (u − ui)/(uf − ui) be the local parameter varying in [0 , 1] associated to the whole
biarc, and t̂ = (um−ui)/(uf−ui) be the parameter value where the two PH quintic segments
of the biarc join, i.e.

t̂ :=
hi

hi + hf
,

with hi := um − ui and hf := uf − um. In addition, let τ and η denote the local parameter
values both varying in [0 , 1] associated with xi and xf , respectively,

τ :=
u− ui
hi

=
t

t̂
, η :=

u− um
hf

=
t− t̂
1− t̂

.

In order to consider PH quintic biarcs, we set

dxi
dτ

(τ) := A(τ) iA∗(τ) ,
dxf
dη

(η) := B(η) iB∗(η) , (2)

where

A(τ) :=
2∑
j=0

AjB2
j (τ) , B(η) :=

2∑
j=0

BjB2
j (η) , (3)

are quadratic quaternion polynomials which define the pre-image of xi and xf , in the Bern-
stein basis, with B2

0(ξ) := (1− ξ)2, B2
1(ξ) := 2ξ(1− ξ) and B2

2(ξ) := ξ2 and Aj ,Bj, j = 0, 1, 2
denoting quaternion coefficients belonging to H. As well known, the two quintic arcs xi and
xf can be written as Bezier curves as follows,

xi(τ) =
5∑
j=0

qjiB
5
j (τ) , xf (η) =

5∑
j=0

qjfB
5
j (η) , (4)

where q0i = pi, q5f = pf , and

q1i = q0i + 1
5
A0 iA∗0,

q2i = q1i + 1
10

(A0 iA∗1 +A1 iA
∗
0) ,

q3i = q2i + 1
30

(A0 iA∗2 + 4A1 iA∗1 +A2 iA∗0) ,
q4i = q3i + 1

10
(A1 iA∗2 +A2 iA∗1) ,

q5i = q4i + 1
5
A2 iA∗2 ,

(5)

and
q4f = q5f − 1

5
B2 iB∗2,

q3f = q4f − 1
10

(B1 iB∗2 + B2 iB∗1) ,
q2f = q3f − 1

30
(B0 iB∗2 + 4B1 iB∗1 + B2 iB∗0) ,

q1f = q2f − 1
10

(B0 iB∗1 + B1 iB∗0) ,
q0f = q1f − 1

5
B0 iB∗0 .

(6)
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Since the position interpolation conditions are ensured by the assumption q0i = pi and
q5f = pf , it is clear that we need to define the six quaternion coefficients Aj, Bj, j = 0, 1, 2
in order to satisfy the conditions in (1). Note that the scalar degrees of freedom available for
compute the solution are just 23 (and not 6·4 = 24) since a spatial PH curve does not change
if any quaternion coefficient of its pre-image is right multiplied by a common complex unit
factor of the form cos θ+i sin θ. Being the considered smoothness and interpolation conditions
just 6 · 3 = 18 (two vector conditions on first and second derivatives at the left end point,
one vector condition on first derivative at the right end point and three vector conditions
to ensure the C2 joint at um of the biarc), there are necessarily some free parameters in
the scheme. Additional conditions to identify a suitable C2 interpolating biarc between the
family of formal solutions should then be considered. This has allowed us a preliminary
removal of two free parameters by requiring that the scheme produces just one PH quintic
instead of a biarc, whenever possible. We then impose a C1 joint between the quaternion
pre-images of the two polynomial segments of the biarc. This also ensures C1 smoothness at
the same point to the Euler–Rodrigues frame associate to the PH biarc, see for example [7]
and references therein. If, for simplicity, um is chosen at the midpoint between ui and uf ,
this condition corresponds to assign B0 and B1 as follows,

B0 = A2 , B1 = 2A2 −A1 . (7)

The derivative interpolation requirements assigned at the end points are the following,

dxi
du

(ui) = vi ,
dxf
du

(uf ) = vf ,
d2xi
du2

(ui) = wi. (8)

Now, considering t̂ = 0.5 , that is hi = hf = h := (uf − ui)/2 , the following two derivative
chain rules can be easily obtained,

dxi
du

=
1

2h

dxi
dt

=
1

h

dxi
dτ

,
dxf
du

=
1

2h

dxf
dt

=
1

h

dxf
dη

,

d2xi
du2

=
1

4h2
d2xi
dt2

=
1

h2
d2xi
dτ 2

,
d2xf
du2

=
1

4h2
d2xf
dt2

=
1

h2
d2xf
dη2

.

Consequently, using the derivative formula for polynomials in Bernstein form, the conditions
in (8) correspond to the following vector conditions in the quaternion algebra,

A0 iA∗0 = hvi ,
B2 iB∗2 = hvf ,
2 ((A1 −A0) iA∗0 + A0 i (A1 −A0)

∗) = h2wi

(9)

where, taking into account the first two equations, the last one reduces to

2(A1 iA∗0 +A0 iA∗1) = h2iwi + 4hivi . (10)
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From the general quaternion solution of a quadratic equation [5], we derive the expressions

A0 =
√
hi|vi| U0 , B2 =

√
hf |vf | U2 , (11)

for A0 and B2 which satisfy the first two conditions in (9), with the unit quaternions

U0 := ui(cosα0 + i sinα0) , U2 := uf (cos β2 + i sin β2) , (12)

depending on the two free angular parameters α0 and β2, and the unit vector quaternions

ui :=
δi + i

|δi + i|
, uf :=

δf + i

|δf + i|
,

written in terms of δi := vi/|vi| and δf := vf/|vf | . By setting

di :=
hi
4

(hiwi + 4vi) , (13)

the vector condition in (10) is fulfilled if

A1 = −(a1 + di)A0i

|A0|2
, (14)

where a1 ∈ IR is a scalar free parameter. Now, considering (7), in order to ensure a C2

connection at the joint point between the two polynomial segments of the biarc we need only
to require q0f = q5i, that is

pi +
1

5
hvi +

1

20

(
h2wi + 4hvi

)
+

1

30
(A0 iA∗2 + 4A1 iA∗1 +A2 iA

∗
0) +

1

10
(A1 iA∗2 +A2 iA

∗
1)

+
1

5
A2 iA∗2 = pf −

1

5
hvf −

1

10
(B1 iB∗2 + B2 iB∗1)− 1

30
(B0 iB∗2 + 4B1 iB∗1 + B2 iB∗0)

− 1

10
(B0 iB∗1 + B1 iB∗0)− 1

5
B0 iB∗0 .

(15)

After replacing the expressions for B0 and B1 given in (7), moving on the left hand side
all the terms containing A2 and on the right all the others, this equation can be properly
simplified to

A2 iA∗2 +
1

40
(G iA∗2 +A2 iG∗) =

15

20
c− 2

10
A1 iA∗1 +

3

40
(A1 iB∗2 + B2 iA∗1) , (16)

where
G := A0 − 8A1 + 7B2 (17)

5



and
c := (pf − pi)−

1

5
h(vf + vi)−

1

20

(
h2wi + 4hvi

)
This last vector equation can also be further algebraically manipulated to arrive at the
following final form, (

A2 +
1

40
G
)
i

(
A2 +

1

40
G
)∗

= b , (18)

where
b :=

15

20
c− 2

10
A1 iA∗1 +

3

40
(A1 iB∗2 + B2 iA∗1) +

1

1600
G iG∗ .

Thus, considering again the general solution of a quadratic quaternion equation of type
V iV∗ = r, from (18) we get

A2 = − 1

40
G + q (cosα2 + i sinα2) , (19)

where α2 is another free angular parameter and for brevity we have set,

q :=
√
|b|

i + b
|b|∣∣∣i + b
|b|

∣∣∣ . (20)

Summarizing, the scheme has four free parameters: the three angles α0, β2, and α2, together
with the real coefficient a1. However, the next proposition proves that the real shape angular
parameters are just two: α2 − α0 and β2 − α0,

Proposition 1. For any θ ∈ [0 , 2π) the replacement of α0, α2 and β2 in our scheme with
α0 + θ, α2 + θ and β2 + θ, respectively, produces the same PH quintic biarc.

Proof : We need to prove that adding θ to the free angular parameters α0, α2 and β2 implies
that all the quaternion coefficients Aj, Bj, j = 0, 1, 2 are right multiplied by the complex
unit quaternion ei θ = cos θ+ i sin θ. For A0 and B2, this can be verified using equations (11)
and (12) together with trigonometric sum formulas. As for A1, considering that we have
already proved that A0 is right multiplied for ei θ, recalling that ei θi = i ei θ, formula (14)
implies the result. As a consequence, formula (17) implies that also the quaternion G is right
multiplied by this factor. Consequently, formulas (19) and (7) imply that this is also true
for A2 and B0,B1, respectively.
As usual with PH curves, the shape parameters highly influence the resulting interpolant,
as shown in Figure 1. Reasonable and effective criteria for their choice are necessary. More
precisely, since the scheme has to be used for defining a spline curve, it is fundamental
that just one PH biarc is locally identified. This means that we need to properly fix our
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(a) a1 = −2.0,−1.5, . . . , 2.0, 2.5. (b) α2 = 0, π5 , . . . ,
8π
5 ,

9π
5 .

Figure 1: Influence of the parameters a1 and α2 on the shape of the biarc. The value of the
other parameters is fixed to the one resulting from the algorithm that will be presented below.
The Hermite conditions are: pi = (0, 0, 0)T , pf = (1, 1, 1)T , vi = (1, 0, 1)T , vf = (0, 1, 1)T ,
wi = (−0.1, 0.5,−1.5)T .

three shape parameters, α2 − α0, β2 − α0 and a1. In addition, since we are interested in
defining an interpolation scheme suitable for real-time applications, it is also necessary that
these criteria have an easy implementation. In the next section we introduce a simple and
effective selection strategy driven by a reference PH quintic curve introduced in [6] to solve
the C1 Hermite interpolation problem. Successively, in Section 3, we show that this strategy
is reasonable from the approximation point of view, since it ensures fourth approximation
order to our scheme. This is the same approximation order characterizing the C1 PH spline
quintic Hermite scheme used as a reference for the free parameter selection.

3 Selection of free parameters
As already mentioned in the previous section, the free angular parameters α2−α0, β2−α0 and
the real parameter a1 of our approach can highly affect the shape of the interpolating biarc.
In this section we introduce our data-dependent selection strategy based on a reference PH
curve easy to be constructed. This curve is defined as a PH quintic interpolating the given
zero and first order data at the extrema but not the assigned second order information at the
left end point (this would not be possible in the general case, since a PH quintic is not flexible
enough for ensuring this additional condition). Now, as shown in [6], the determination of
an Hermite PH quintic interpolant is affected by two free shape parameters (all of angular
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type) and four data-dependent different criteria for their selection were there introduced and
compared. Here we rely on the so called CC criterion2 whose implementation is very easy.
Besides having a very good behavior for general non asymptotic data, in [13] it has also been
proved that this criterion ensures fourth approximation order when the scheme is applied to
the reconstruction of a given analytic smooth curve.

3.1 The reference PH quintic

Let us denote with

VH(t) =
2∑
j=0

VHj B2
j (t) , t ∈ [0 , 1] ,

the pre-image expressed in the local parameter t of the CC PH quintic polynomial segment
xH(t) verifying the assigned end Hermite conditions,

xH(0) = pi ,
dxi
dt

(0) = 2hvi , xH(1) = pf ,
dxf
dt

(1) = 2hvf .

Concerning the algorithm for its construction, we recall some basic points, referring to [6]
for the details. First we observe that, dealing with PH curves, one of the two end point
interpolation conditions come for free by taking into account the integral definition of a
PH curve from its hodograph. Consequently, only three of the four Hermite conditions are
available for the characterization of the three quaternion coefficients VHj , j = 0, 1, 2 and a
free angular parameter is associated to each of them. On the other hand, only two of these
three free angles are real shape parameters, since the interpolating PH quintic does not
change if all the quaternion coefficients are multiplied by a trigonometric factor of the form
cos θ + i sin θ. For all the criteria proposed in [6], the angular free parameter associated to
VH1 was chosen equal to zero and the other two were selected according to the considered
criterion. We refer to [6] for the details on the CC criterion by simply outlining that it allows
degree reduction of the pre-image and, consequently, the definition of a PH cubic Hermite
interpolant, whenever possible.

Since we use the CC PH quintic Hermite interpolant as a reference curve to construct our
PH quintic biarc, it is useful to represent it as a biarc with joint parameter at t = t̂ = 0.5.
We then set

xH(t) =

{
xHi (t) for t ∈ [0 , t̂],
xHf (t) for t ∈ [t̂ , 1].

(21)

2The CC label is the acronym for Cubic-Cubic, since the selection strategy of both the angular shape
parameters affecting an Hermite PH quintic interpolant is done in this case using the standard cubic Hermite
interpolant as a reference curve.
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Using again on the left the local parameter τ ∈ [0 , 1] and on the right η ∈ [0 , 1] we observe
that

dxHi
dτ

= AH(τ) iAH∗(τ) ,
dxHf
dη

= BH(η) iBH∗(η) ,

where

AH(τ) =
2∑
j=0

AHj B2
j (τ) , BH(η) =

2∑
j=0

BHj B2
j (η) ,

with

AH0 :=
1√
2
VH0 , AH1 :=

1

2
√

2
(VH0 + VH1 ) , BH1 :=

1

2
√

2
(VH1 + VH2 ) , BH2 :=

1√
2
VH2 ,

AH2 = BH0 :=
1

4
√

2
(VH0 + 2VH1 + VH2 ) . (22)

3.2 The parameter selection strategy for the biarc

The quaternion coefficients AHj , BHj , j = 0, 1, 2 introduced in (22) to express the hodograph
of the reference CC PH quintic Hermite interpolant in biarc form are directly used in our
strategy to drive the selection of the free parameters. We observe that, even if only the
differences α2 − α0 and β2 − α0 are real angular shape parameters, in the algorithm we
specify all the three angles α0, β2, α2, since we refer to a specific pre-image of the reference
PH curve for their selection. Note also that first α0 and β2 are selected referring to AH0
and BH2 , respectively. Subsequently, the real parameter a1 involved in the definition of A1

is determined through an explicit formula which only involves A0 and AH1 . Finally, the
remaining free angle α2 is determined with an explicit formula depending on all the previous
choices, as well as on the reference quaternion coefficient AH2 .

The choice of the two extreme angular free parameters α0 and β2 is very easy, since we
just set

A0 = AH0 , B2 = BH2 .

We then determine the free parameter a1 in order to minimize the following scalar quantity,

|A1 −AH1 |2 = A1A∗1 −
(
A1AH∗1 +AH1 A∗1

)
+AH1 AH∗1 .

Recalling that A1 = (a1 + di)U0/|A0| , with U0 = −(A0i)/|A0|, we get

|A1 −AH1 |2 =
a21
|A0|2

− a1
|A0|

(
U0AH∗1 +AH1 U∗0

)
+K

9



where

K :=
|di|2

|A0|
−
(
diU0AH∗1 −AH1 U∗0di

)
|A0|

+AH1 AH∗1 .

Thus the minimum is obtained by setting

a1 =
1

2
|A0|

(
U0AH∗1 +AH1 U∗0

)
=

1

2

(
A0AH∗1 +AH1 A∗0

)
. (23)

Finally, we determine the last free parameter α2 by minimizing the following quantity,

|A2 −AH2 |2 = A2A∗2 −
(
A2AH∗2 +AH2 A∗2

)
+AH2 AH∗2 . (24)

Since A2 depends on α2 and, in particular,

A2 = − 1

4(10 + b21)
G + qeiα2 ,

we have

A2A∗2 =

(
− 1

4(10 + b21)
G + q eiα2

)(
− 1

4(10 + b21)
G∗ − e−iα2q

)
=

1

16(10 + b21)
2
GG∗ − q2 +

1

4(10 + b21)

(
Ge−iα2q− qeiα2G∗

)
and (

A2AH∗2 +AH2 A∗2
)

= − 1

4(10 + b21)

(
GAH∗2 +AH2 G∗

)
+
(
qeiα2AH∗2 −AH2 e−iα2q

)
This implies that

|A2 −AH2 |2 = f1 cosα2 + f2 sinα2 + g ,

with
g :=

1

16(10 + b21)
2
GG∗ − q2 +

1

4(10 + b21)

(
GAH∗2 +AH2 G∗

)
+AH2 AH∗2

and

f1 :=
1

4(10 + b21)
(Gq− qG∗)−

(
qAH∗2 − AH2 q

)
,

f2 := − 1

4(10 + b21)
(Giq + qiG∗)−

(
qiAH∗2 +AH2 iq

)
. (25)

Thus we minimize (24) if
α2 = π + atan2(f2, f1). (26)

In Figure 2 the biarc resulting from this particular choice of the parameters is plotted
together with the same set of variation of Figure 1.
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(a) a1 variation plot. (b) α2 variation plot.

Figure 2: Influence of a1 and α2 parameters on the shape of the biarc. The curve obtained
with our selection strategy is shown in bold.

4 Approximation Order
This section presents the asymptotic analysis to prove that the C2 PH quintic Hermite
interpolation scheme here introduced has fourth approximation order. This is the same ap-
proximation order characterizing the C1 first order PH quintic Hermite interpolation scheme
introduced in [6], provided that the CC criterion is used to fix its two free angular param-
eters. This theoretical result was proved in [13] developing a local asymptotic analysis, i.e.
just for one spline segment. The symmetric end-point first order Hermite data were there
taken from an infinitesimal portion of a given smooth curve r(s) to be approximated, where s
is the arc-length parameter varying from 0 to ∆s. Note that in [13] the fourth approximation
order can be trivially extended to the spline formulation of the scheme, since it computes
each segment of the PH quintic spline independently from the others with the same local
approach.

We here present an analogous asymptotic analysis for our new C2 forward scheme, relying
on a MAPLE symbolic implementation of the local scheme. However, the situation in the
spline formulation is now different: to obtain a C2 interpolant, the biarc segments have to
be computed in sequential order by using the additional second order information at the
first end point of a segment from the previous one. In the local symbolic implementation
of the scheme it is then reasonable to assume that this information can be affected by an
error with an O(∆s2) expansion. Under this assumption we are able to prove that locally
also the new scheme has fourth approximation order. A theoretical proof of the convergence
order of the spline formulation of the scheme would require in this case also the analysis
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of the error propagation on the second derivative information at the joint points between
successive biarcs. Even if this point was not formally addressed in virtue of the difficulties
strictly connected to the non linear nature of any PH interpolation scheme, all the numerical
experiments confirm the fourth approximation also to the spline formulation of the scheme.

Let us consider the portion of a given smooth curve r(s) restricted to [0 , ∆s], and the
symbolic computation of the PH biarc defined in Sections 2 and 3 using the following input
data:

pi = r(0), pf = r(∆s),

vi =
dr

ds
(0), vf =

dr

ds
(∆s), (27)

wi =
d2r

ds2
(0) +O(∆s2).

The following proposition is based on symbolic computations performed in the MAPLE
computing environment (the MAPLE worksheet is available from the authors upon request).

Proposition 2. Let us consider an arc-length parametrized curve r(s) with s ∈ [0,∆s] and
C10 continuity and let x be the PH quintic biarc fulfilling the vector interpolation conditions
in (27). We have

‖x(t)− r(t∆s)‖2 = O(∆s4), ∀t ∈ [0, 1] and ‖d
2x

ds2
(∆s)− d2r

ds2
(∆s)‖2 = O(∆s2).

Proof : Denoting for brevity the Euclidean norm ‖·‖2 just with ‖·‖ and using the triangular
inequality, it is possible to write

‖x(t)− r(t∆s)‖ ≤ ‖x(t)− xH(t)‖+ ‖xH(t)− r(t∆s)‖

where xH is the CC PH quintic interpolant introduced in [6]. Now, under the same hy-
potheses here assumed, in [13] it has been proved that xH provides a fourth order accurate
approximation of r. We can then study the first term of the previous inequality. Considering
the biarc representation of xH introduced in (21), we can write

‖x(t)− xH(t)‖ =

{
‖xi(t)− xHi (t)‖ for t ∈ [0 , 0.5],
‖xf (t)− xHf (t)‖ for t ∈ [0.5 , 1].

Since Bernstein polynomials are nonnegative in [0 , 1] and sum up to 1, we can derive the
following inequalities

‖xi(t)− xHi (t)‖ ≤ max
k=0,...,5

‖qik − qHik‖ , ‖xf (t)− xHf (t)‖ ≤ max
k=0,...,5

‖qfk − qHfk‖ ,
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where qik ,qfk and qHik ,q
H
fk, k = 0, . . . , 5 are the Bèzier control points of the first and second

segment of the biarc x and of the biarc representation of xH , respectively. Since both x and
xH interpolate first order Hermite data at the end points, we have

qi0 = qHi0 , qi1 = qHi1 , qf5 = qHf5 , qf4 = qHf4 .

On the other hand, since we already know that xH approximates r with fourth order, its
second derivative at t = 0 approximates r′′(0) at least with second order. Thus, considering
the expression of the second derivative in Bernstein form, this implies that it is at least
‖qi2−qHi2‖ = O(∆s4). Considering these preliminary points and also that both biarcs x and
xH have C2 smoothness at t = 0.5, we can just focus on the expansions for

‖qik − qHik‖, k = 3, 4, 5 , ‖qfk − qHfk‖, k = 3. (28)

In order to simplify the MAPLE expansions, without loss of generality, we assume that dr
ds

(0)

and d2r
ds2

(0) are aligned with the x and y axis, respectively, with d2r
ds2

(0) = by j, and by ∈ IR.
Furthermore, by taking into account the arc-length parameterization for r, we set dr

ds
(0) = i

and d3r
ds3

(0) = −b2y i+cy j+cz k, with cy, cz ∈ IR. The expressions of the zero and first derivative
of r at s = ∆s are then symbolically defined by using Taylor expansions at s = 0.

Now ,the expansions for the norms in (28) clearly depend on those of the free real param-
eter a1, fixed using formula (23), and on those of the cosine and sine of α2, defined through
formulas (26) and (25). Considering for brevity the case by 6= 0, the symbolic implementation
of the scheme produces the following formulas

a1 = − cz
16by

∆s2 +O(∆s3) , cosα2 = 1− c2z
512b2y

∆s2 +O(∆s3), sinα2 =
cz

16by
∆s+O(∆s2) .

This implies that all the free parameters asymptotically tend to zero, in line with other PH
interpolation schemes. After the preliminary symbolic computation of the control points
qHik,q

H
fk, k = 0, . . . , 5 defining xH in biarc form, the symbolic computation of all the quater-

nion coefficients Ai,Bi, i = 0, 1, 2 defining the pre-image of x allows also the symbolic evalu-
ation of qik,qfk, k = 0, . . . , 5 through formulas (5) and (6). The following expansions of the
norms in (28) are then obtained,

‖qi3 − qHi3‖ =
7

(11520|by|)
σs4 +O(∆s5) , ‖qi4 − qHi4‖ =

1

(1152|by|)
σs4 +O(∆s5) ,

‖qi5 − qHi5‖ =
1

(1152|by|)
σs4 +O(∆s5) , ‖qf3 − qHf3‖ =

1

(3840|by|)
σs4 +O(∆s5) ,
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Figure 3: Reconstruction of an helix (dashed line) using the proposed algorithm, with 3
(left), 5 (center) and 9 (right) sampled points (red dots) and Hermite data. The black dots
represent the joint point of two biarc segments.

with

σ =
(
b8y + (24dy + 288εy)b

5
y + (36c2y + 18c2z)b

4
y − 576b3ycyεx

+ (16d2y + 384dyεy + 16d2z + 384dzεz + 2304ε2x + 2304ε2y + 2304ε2z)b
2
y

−48cz((−
dy
2
− 6εy)cz + cy(dz + 12εz))by + 36c2yc

2
z + 9c4z

) 1
2

,

where dy and dz are coefficients of the Taylor expansion of d4r
ds4

(0) while εx , εy and εz are the
error on the second derivative, i.e. wi = d2r

ds2
(0) + (εx, εy, εz)

T s2.
We conclude the proof reporting the asymptotic expansion of ‖d2x

ds2
(∆s)− d2r

ds2
(∆s)‖,

‖d
2x

ds2
(∆s)− d2r

ds2
(∆s)‖ =

√
(ε2x + ε2y + ε2z)s

2 +O(∆s3).

It is interesting to note that the term proportional to s2 depends only on the error ε
on the second derivative. This means that in case of exact information, the final second
derivative has a super-convergence, with ‖d2x

ds2
(∆s)− d2r

ds2
(∆s)‖2 = O(∆s3).

Figure 3 shows a first example of an helix approximation with the proposed approach.
The parametric representation of the considered circular helix is given in formula (29) of the
next section.
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5 Numerical results
This section presents a selection of numerical tests. Their goal is twofold. On one side, they
consolidate the theoretical results obtained in the previous section concerning the approxi-
mation order of scheme. On the other side, they show its possible application to real data
stream interpolation.

5.1 Numerical approximation order

The general procedure performed for the numerical estimation of the approximation order
is now presented. We consider a generic parametric curve C(u), with u ∈ [0, U ], to sample
a set of Hermite data using the uniform parametric grid:

uj = u
(k)
j = j

U

N
, with N = 2k, j = 0, . . . , N, k = 0, . . . , 9.

By denoting with X(k)(u) the spline generated with the C2 biarc algorithm so that

X(k)(u) = x
(k)
j (u) for u ∈ [u

(k)
j , u

(k)
j+1], j = 0, . . . , N − 1,

the interpolation problem related to each path segment x(k)
j (u) is:

p
(k)
i = C

(
u
(k)
j

)
, p

(k)
f = C

(
u
(k)
j+1

)
, v

(k)
i = C′

(
u
(k)
j

)
, v

(k)
f = C′

(
u
(k)
j+1

)
with

w
(k)
i = C′′

(
u
(k)
j

)
for j = 0 and w

(k)
i = x

′′(k)
j−1

(
u
(k)
j

)
for j = 1, . . . , N.

We remind that the ′ symbol denotes derivatives with respect to the global parameter u. For
this test the first and second order Hermite data are obtained from certain analitic curves.
We will show in the next example how to deal with point data stream. The four analitic
curves considered in the numerical study are now presented.

In the first test (curve #1) we consider data from a circular arc-length parametrized helix

C(u) =


10 sin

(
u
uh

)
10 cos

(
u
uh

)
−2 u

uh

 with uh =
√

104, u ∈ [0 , 3.6πuh] (29)
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of total length L = 115.34. In the second test (curve #2) the data are sampled from a curve
on a torus with equations

C(u) =

 (20 + 10 cos(3u)) cos(0.75u)
(20 + 10 cos(3u)) sin(0.75u)
10 sin(3u)

 , u ∈ [0, 2π], (30)

and total length L = 212.85. The Lissajous curve of the form

C(u) =

 cos(3(u− ul))
sin(2(u− ul))
sin(7(u− ul))

 , with ul =
π

4
, u ∈

[
0,
π

2

]
, (31)

and total length L = 81.36 is considered for the third test (curve #3). Finally, we consider
a curve with a zero curvature point (curve #4) and equations

C(u) =

 1 + uz + u4z − u6z + u8z
−4 + 2uz + u5z − u7z + u9z
2− 3uz + u3z − u10z

 , with uz =
u− 10

10
, u ∈ [0, 10]. (32)

The zero curvature point corresponds to the parameter value u = 10 and the total curve
length is equal to L = 4.23. . Table 1 shows the approximation error

ek = max
u∈[0,U ]

‖C(u)−X(k)(u)‖, k = 0, . . . , 9

and the numerical approximation order

pk = log2

(
Ek−1
Ek

)
, k = 1, . . . , 9,

for the four test curves. The parameter u has been sampled at (212 + 1) uniformly spaced
values in the interval [0, U ] to compute the numerical values of Ek. The numerical results
confirm the fourth approximation order of the interpolation scheme. Fig. 3 in the previous
section shows the behavior of approximations to the circular helix (curve #1) using 2, 4,
and 8 PH quintic biarc interpolants. Fig. 4–6 confirm that the proposed selection strategy is
appropriate also for the asymptotic convergence of the other test cases (curve #2, #3, and
#4).

5.2 Application to 3D point stream interpolation

We now present a test for the application of the C2 PH biarc interpolation algorithm to
3D data stream interpolation by considering a sequence of points pj for j = 0, . . . , N . As
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curve #1 curve #2 curve #3 curve #4
k ek pk ek pk ek pk ek pk

2 1.6891e-01 5.00 1.1459e+01 3.76 2.7103e+00 2.78 3.1454e-03 3.61
3 1.2229e-02 3.79 2.1602e-01 2.77 3.9744e-01 5.73 1.6078e-04 4.29
4 1.0656e-03 3.52 2.3278e-02 3.32 3.9717e-02 3.21 1.1994e-05 3.74
5 8.0828e-05 3.72 2.6217e-03 4.42 1.8504e-03 3.15 8.3209e-07 3.85
6 5.5547e-06 3.86 2.1238e-04 3.01 2.3004e-04 3.63 5.5015e-08 3.92
7 3.6361e-07 3.93 1.4952e-05 3.78 1.6709e-05 3.83 3.5399e-09 3.96
8 2.3249e-08 3.97 9.8900e-07 3.94 1.0883e-06 3.92 2.9747e-10 3.57
9 1.4695e-09 3.98 6.3543e-08 3.98 6.8957e-08 3.96 1.8632e-11 4.00

Table 1: Approximation error ek and related numerical approximation order pk for the four
curves described by equations (29), (30), (31) and (32).

Figure 4: C2 PH quintic spline biarcs (solid lines) interpolating curve #1 (dotted lines).
The number of approximating PH quintic biarc segments is 4 on the left (k = 2) and 8 on
the right (k = 3). The black dots represent the joint point of two biarc segments.

first step, it is necessary to set a specific global parameterization. The test is based on the
chord-length parametization, that allows to choose the parameter value associated to each
point as

uj = uj−1 − ‖pj − pj−1‖
with u0 = 0. By considering only input point streams, local rules for derivative approx-
imations has to be coupled with the inteprolation scheme. We rely on the local formulas
called MinAJ2 introduced in [3] for data stream application. They enable the construction of
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Figure 5: C2 PH quintic spline biarcs (solid lines) interpolating curve #2 (dotted lines).
The number of approximating PH quintic biarc segments is 4 on the left (k = 2) and 8 on
the right (k = 3). The black dots represent the joint point of two biarc segments.

Figure 6: C2 PH quintic spline biarcs (solid lines) interpolating curve #2 (dotted lines).
The number of approximating PH quintic biarc segments is 2 on the left (k = 1) and 4 on
the right (k = 2). The black dots represent the joint point of two biarc segments.

suitable PH spline interpolants with fair shapes, as already mentioned by the author in the
context of standard splines. These formulas have also a simple implementation since during
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the stream elaboration the tangent direction is available at the left point, while the right one
is simply defined as the first derivative of a standard local C2 cubic spline. When construct-
ing an inner spline section, the local cubic spline is obtained by requiring the interpolation
of the two biarc end-points, together with the left tangent and the successive stream point,
suitably combined with the minimization of a suitable fairness functional. The Hermite data
are then computed with a short delay, equivalent to the time necessary for one point stream
acquisition. More precisely, the right derivative vj is chosen as

vj =
Apj−1 +B vj−1 + C pj +D pj+1

E
, j = 1, . . . , N − 1,

where 
A = −(uj+1 − uj)2(2u2j+1 + 2ujuj+1 − u2j),
B = −uju2j+1(uj+1 − uj)2,
C = uj+1(2u

3
j+1 − 2uju

2
j+1 − 3u2juj+1 + u3j),

D = u3j(2uj+1 − uj),
E = −ujuj+1(uj+1 − uj)(2u2j+1 + 2ujuj+1 − u2j),

The first and the last derivative are computed as

v0 =
(p1 − p0)(u2 − u0)2 + (p1 − p2)(u1 − u0)2

(u1 − u0)(u2 − u0)(u2 − u1)

and
vN = −(vN−1(uN − uN−1)− 2pN + 2pN−1)

(uN − uN−1)
,

respectively. We refer to [3] for further details. Finally, in order to avoid the choice of an
arbitrary value for w0, the first segment of the spline is computed with the CC PH algorithm
presented in [6].

The 3D data stream used in the test is the following:

p0 = (0, 0, 0)T , p0 = (−5, 5, 2)T , p0 = (0, 10,−2)T ,
p0 = (8, 12, 5)T , p0 = (15, 2, 3)T , p0 = (2, 0, 7)T .

Figure 7 shows the C2 PH quintic spline interpolant obtained with the biarc construction
here proposed and its curvature plot, together with the comparison with the C1 PH quintic
spline obtained by considering the CC selection strategy. It is clear that our new PH spline
construction preserves very nice smoothness property, while simultaneously ensuring the
appealing feature of C2 continuity.
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Figure 7: C2 PH quintic spline biarcs (solid lines, left) and C1 CC PH quintic spline
(dashed lines, left) interpolating a point sequqnce (red dots, left). The black dots represent
the joint point of two biarc segments. The curvature plots of the two spline paths are also
shown (right).

6 Closure
Quintic Pythagorean-hodograph biarcs are here proposed to construct spatial C2 spline in-
terpolants. The locality of the scheme is suitable for real time interpolation of Hermite data
streams. A robust and effective data-dependent strategy to fix the three free parameters
associated to each spline segment is proposed. This strategy endows the scheme with fourth
approximation order, have an easy implementation, and produce paths with suitable fair
shape when non asymptotic data are considered. An application to point stream (without
derivative information) interpolation is also presented by properly combining the proposed
scheme with simple local formulas for derivative approximation.

Appendix
In this appendix we recall the basic rules of the non commutative quaternion algebra H,
used in the paper. Each quaternion Q ∈ H can be defined as (q0, q1, q2, q3)

T , with qi ∈ IR,
and with q0 and q := (q1, q2, q3)

T respectively referred to as scalar and vector part of the
quaternion Q. With this notation a short scalar/vector representation can also be adopted
for Q,

Q = q0 + q ,

where, if q0 = 0 ,Q is said a pure vector quaternion and can be shortly denoted just as
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q. Conversely, when q vanishes, Q is a pure scalar quaternion and can just be denoted as
any real number. The quaternion sum in H is the standard sum in IR4 but the quaternion
product has a specific non commutative definition that can be compactly defined as

AB = (a0 + a)(b0 + b) = (a0b0 − a · b) + (a0b + b0a + a× b) ,

where standard notation to denote scalar and cross vector products is used. The conjugate
of a quaternion Q is denoted as Q∗ and defined as Q∗ := q0 − q. This implies that QQ∗ =
Q∗Q = q20 +qTq is just a pure scalar quaternion. We also observe that, for any vector v and
quaternion Q, the quaternion product of the form QvQ∗ defines a pure vector quaternion.
The module |Q| of a quaternion is defined as |Q| :=

√
QQ∗ and Q is a unit quaternion if

|Q| = 1. Unit quaternions allow a compact representation of spatial rotations. For any pure
vector quaternion v and unit quaternion Q = cos(θ/2) + w sin(θ/2), the product QvQ∗ ,
always defines a pure vector quaternion, that corresponds to a rotation of v through angle
θ about the axis defined by w.
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