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Abstract Along with the proliferation of IoT (Internet of
Things) devices, cyberattacks towards these devices are on
the rise. In this paper, we present a study on applying As-
sociation Rule Learning (ARL) to discover the regularities
of these attacks from the big stream data collected on a large
scale darknet. By exploring the regularities in IoT-related in-
dicators such as destination ports, type of service (ToS), and
TCP window sizes, we succeeded in discovering the activi-
ties of attacking hosts associated with well-known classes of
malware programs. As a case study, we report an interesting
observation of the attack campaigns before and after the first
source code release of the well-known IoT malware Mirai.
The experiments show that the proposed scheme is effective
and efficient in early detection and tracking of activities of
new malware on the Internet and hence induces a promising
approach to automate and accelerate the identification and
mitigation of new cyber threats.

Keywords cybersecurity · machine learning · IoT malware ·
association rule learning, · darknet traffic analysis

1 Introduction

Information technologies (IT) have brought drastic changes
in our life and many people have enjoyed new benefits from
the Internet. In recent years, in addition to this IT revolution,
the great progress of the Internet of Things (IoT), where var-
ious services and devices are connected to the Internet, is
about to bring us further revolution. However, along with
sophistication of IT and IoT systems, cyberattacks exploit-
ing new system vulnerabilities are becoming serious these
days. In particular, the impact of a recent IoT malware Mi-
rai was enormous. Mirai is a worm-type malware that finds

ae-mail: ozawasei@kobe-u.ac.jp, Tel/Fax.: +81-78-8036466
be-mail: bantao@nict.go.jp

an IoT device with similar vulnerability for self-replication.
IoT devices infected by Mirai can then be manipulated by
attackers to perform Distributed Denial of Service (DDoS)
attacks by seeding a large number of packets to target hosts.

In order to deal with such large-scale cyberattacks in a
timely fashion, it is necessary to devise a means that is capa-
ble of observing cyberattacks occurring on the Internet from
a global view. For this purpose, the use of the darknet, a.k.a
a network telescope, has been studied for many years [1, 2].
Darknet is an unused address space. It is considered that no
communication occurs on the darknet because it is not con-
nected to any device, nevertheless, a remarkable amount of
packets is monitored on a yearly basis. These packets are
mainly caused by scan activities or backscatter from DDoS-
attacked hosts; thus, it can be considered that most packets
observed in the darknet have close relationship with mal-
ware. Therefore, through the analysis of darknet packets, it
is possible to reveal the characterizing features of the cyber-
attacks on the Internet.

In this research, we analyze the behavior of scan attacks
from packets observed in darknet. In particular, we focus on
TCP SYN packets to characterize scan attacks, searching for
statistically reliable regularities from those packets. For this
purpose, we apply association rule learning to SYN pack-
ets and discuss the dynamic features of malware that per-
forms scan attacks. As for the destination port information,
there have been reported several prior works analyzing SYN
packets. Ban et al. [1] and some researchers [3, 4] applied
association rule learning to destination ports of SYN pack-
ets, and they discovered several association rules related to
Carna botnet and other malware. These rules are currently
used as signatures to identify the hosts that perform network
scans. In this paper, in addition to the analysis on destination
ports, we also explore the regularity on other indicators such
as the window size and type of service.
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This paper is organized as follow. Section 2 briefly ex-
plains the darknet analysis and association rule learning based
on FP-tree/FP-growth algorithms. In Section 3, we present
the rationality for mining over the IoT-related indicators. In
Section 4, the proposed analysis is applied to find useful traf-
fic patterns on a specific scanning attack from a large set
of TCP SYN packets collected before and after the Mirai
outbreak. Section 5 gives our conclusions of this paper and
future work.

2 Association Rule Learning

This section briefly explains association rule learning, a com-
monly applied technique for discovering interesting relation-
ships hidden in a database.

2.1 Frequent Pattern Mining

The problem of association rule learning was originally pro-
posed in the context of market basket data in order to find
frequent groups of items that are purchased together [5, 6].
Following the original definition in [5], the problem of asso-
ciation rule learning is defined as follows.

Let D = {T1,T2, · · · ,TN} be a set of N transactions called
the database. Let I = {i1, i2, · · · , iM} be the universal set
of M all items present in the database. Each transaction in
D has a unique transaction ID and contains a subset of the
items in I . The support supp(X) of a set of item (for short
item set) X is defined as the number/proportion of transac-
tions in the database which contain the item set.

Frequent pattern mining is to determine all patterns P ⊂
I that are present in at least a fraction S of the transactions.
The fraction S is referred to as the minimum support. It can
be expressed either as an absolute number, or as a fraction
of the total number of transactions in the database.

An association rule is defined as an implication of the
form

X → Y, for X ,Y ⊆ I, X ∩Y = /0. (1)

The item sets X and Y are called antecedent and consequent
of the rule respectively. The confidence of a rule is presented
by the conditional probability, P(Y |X), i. e.,

conf(X ⇒ Y ) = supp(X ∪Y )/supp(X). (2)

To select interesting rules from the set of all possible rules,
rules that satisfy both a minimum support threshold, S, and
a minimum confidence threshold, C, are called strong.

In general, association rule learning can be done in the
following two steps:

1. Frequent pattern mining: Each of the item sets will sat-
isfy the minimum support, i.e., occurs at least as fre-
quently as S.

2. Strong association rule generation: By definition, rules
created from frequent item sets with minimum support
must satisfy a minimum confidence constraint.

2.2 Frequent Pattern Mining Using FP-tree

The first step in association rule learning involves searching
in a power set of all possible combinations of items, whereas
the size of this set grows exponentially in the number of
items n in I . The key to an efficient search algorithm is the
so-called a priori property: All nonempty subsets of a fre-
quent item set must also be frequent. Thus for an infrequent
item set, all its supersets must also be infrequent. One of the
currently fastest and most popular algorithms for frequent
item set mining is the Frequent Pattern growth (FP-growth)
algorithm [6–8]. It is based on a prefix tree representation
of the given database. By using a prefix tree data structure
- the so-called FP-tree - FP-growth can save considerable
amounts of memory for storing the transactions. The basic
idea of the FP-growth algorithm can be described as a recur-
sive elimination scheme as follows.

1. In the first pass, derive the set of frequent items and their
support counts. Delete all items from the transactions
which do not satisfy the minimum support constraint.
All frequent items are stored in a header table in de-
scending order of their frequency.

2. In the second pass, build an FP-tree by inserting instances
into a tree with a root node labeled as ‘null’. To speed up
the processing of the FP-tree, items in each transaction
are sorted in the same order as in the header table. All
nodes referring to the same item are indexed by a list so
that all transactions containing the item can be accessed
and counted by traversing this list. The header elements
to the list are associated with the corresponding items in
the header table.

3. Recursive mining of the FP-tree can grow large item sets
directly, without generating candidate items and testing
them against the entire database. Start from the bottom
of the header table, build the conditional item base for
the length-1-pattern, which consists of a set of prefix
paths in the FP-tree co-occurring with the suffix item.
Then, a conditional FP-tree is created, with counts pro-
jected from the original tree corresponding to the set
of instances that are conditional on the attribute, with
each node getting sum of its children counts. Recursive
growth ends when no individual items conditional on the
attribute meet the minimum support threshold, and pro-
cessing continues on the remaining header items of the
original FP-tree.

4. Once the recursive process has completed, all large item
sets satisfying the minimum support constraint is found,
and association rule creation begins.
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2.3 Association Rule Generation from Frequent Item sets

Association rules can be generated based on the frequent
item sets in the following steps.

1. For each frequent item set l, generate all nonempty sub-
set of l.

2. For every nonempty subset s of l, output the rule “s →
(l − s)” if its confidence is higher than minimum confi-
dence threshold C.

Since the rules are generated from frequent item sets, all
association rules created in such a way automatically satisfy
the minimum support.

3 Methodology

Darknet monitoring provides a global overview of the attack
campaigns happened on the Internet. Meantime, by mining
and discovering behavioral regularities of the attacking hosts
(AHs), darknet monitoring complements conventional mal-
ware countermeasures in the following aspects. First, dis-
covery of prevalent attack patterns may lead to further in-
sight into their nature and hence enable appropriate coun-
termeasure against them. Second, the emergence of new at-
tack patterns may be the symptom of pandemic incidents
whose early detection and take-down could lead to preven-
tion of heavy loss. Finally, knowledge of attacks can be used
to improve the performance of monitoring systems so that
more pertinent malware information can be collected using
reduced system and network resources.

3.1 Darknet Traffic Analysis

A darknet is a routed but unused IP address space on the In-
ternet. A simple deployment of darknet could be realized by
assigning all unused IP addresses in a network to a network
interface card (NIC) on a designated server with firewall
rules specified to restrain the NIC from sending any egress
traffic to the Internet. Due to the absence of legitimate hosts
or open services on a darknet, any traffic observed on a dark-
net is considered as aberrant: it is either caused by some ma-
licious intents (e.g., probing packets from malware infected
hosts or reflection packets from DDoS attacked servers) or
by misconfiguration (e.g., packets sent from a PC to connect
to a printer with misconfigured IP address). Darknet moni-
toring consists in the fact that most kinds of self-spreading
malware engage an exploitation phase sending out scanning
packets to the Internet in the aim of searching for the next
potential victims.

Attacks towards the darknet arrives in the form of net-
work packets. See Fig. 1 for an illustration of how pack-
ets are monitored on the darknet. The majority of traffic ob-
served on the darknet is composed of three types of packets:

Fig. 1 Illustration of attacking packets towards the darknet.

TCP SYN packets, TCP SYN-ACK packets, and UDP pack-
ets (shown as blue, yellow, and read rockets in Fig. 1.) The
first two types of packets are associated with the Transmis-
sion Control Protocol (TCP), one of the main protocols of
the Internet protocol suite. TCP provides reliable, ordered,
and error-checked delivery of contents between applications
running on hosts communicating via an IP network. TCP
uses a three-way handshake to establish the connection be-
tween hosts. First, a client sends a SYN packet to the server
to initialize a connection. Second, in response to the SYN
packet from the client, the server replies with a SYN-ACK
packet. In the final step, the client sends an ACK packet
back to the server. The last type of packets are associated
with the User Datagram Protocol (UDP) where computer
applications can send messages to other hosts on an Internet
Protocol (IP) network without prior communications such as
three-way handshake dialogue like TCP. UDP is suitable for
time-sensitive applications where error checking and correc-
tion are either not necessary or are performed in the appli-
cation.

The statistics of different packets arrived at a darknet
composed of approximately 300,000 IP addresses in 2017 is
shown in Table 1. As seen in Table 1, the monthly average
number of TCP SYN packets was rapidly increased from
2016 to 2017 and it trend was kept even in 2018. TCP SYN
packets carries the most interesting information not only for
the fact that they constitute the majority of the darknet traf-
fic but also for the reason that they carry essential and reli-
able information about the malware attack campaigns. When
scanning the Internet to search for the next victim, an AH
tends to send a TCP SYN packet to a target host (TH). After
that the AH have to receive the replying SYN-ACK packet
from the TH to confirm the existence of the TH. Therefore,
it is unlikely that obfuscation techniques such as IP-address
spoofing is applied in this process.

It is worthwhile to note that to prevent designated attacks
towards itself, a darknet generally does not reply to any re-
ceived packets. Therefore, for most of the time, only com-
munication initializing packets can be observed on the dark-
net. This renders the darknet traffic more fragmented, lack-
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Table 1 The statistics of packets captured on a /16 darknet sensor from July 1st, 2016 to July 31st, 2018. The first figure in each cell corresponds
to the total of darknet packets and the second figure in a bracket corresponds to the monthly average over a year.

Period 7/1/2016-12/31/2016 1/1/2017-12/31/2017 1/1/2018-7/31/2018

TCP Total 4,886,278,355 (26,700,975) 16,172,516,882 (44,429,991) 8,798,643,714 (41,699,733)

TCP SYN 4,674,026,073 (25,541,126) 14,637,259,441 (40,212,251) 7,799,946,543 (36,966,571)

TCP SYN-ACK 183,161,569 (1,000,883) 1,409,423,383 (3,872,042) 695,719,791 (3,297,250)

TCP Others 29,090,713 (158,966) 125,834,058 (345,698) 302,977,380 (1,435,912)

UDP 350,030,217 (1,912,733) 1,503,095,713 (4,129,384) 855,714,758 (4,055,520)

ing application level information. On the other hand, when
the scale of the darknet reaches a certain size, packets sent
from a single AH towards a series of THs has a large chance
to be captured, revealing the lateral regularities of the mal-
ware. Occurrence of a remarkable number of AHs with great
similarity in lateral regularities and temporal correlation, in-
dicates an attack campaign happened on the darknet.

3.2 Association Rule Mining in Darknet Traffic

The activity of sending TCP SYN packets towards a des-
ignated IP address to confirm its existence and determine
its vulnerability is known as a network vulnerability scan
(hereafter referred as a scan). Scans monitored on the dark-
net spread along two dimensions: destination ports and des-
tination hosts. First, an AH tends to probe multiple desti-
nation ports on a TH to identify network services running
on the TH and exploit vulnerabilities therein. Then, it tends
to replicate the same exploitation towards a range of hosts
by simply changing the probed destination IP. As aforemen-
tioned, a darknet could only monitor a comparable small
portion of all the scans from an AH, however, for the sake
of highly replicated nature of scans from the same malware,
deterministic characteristics can be derived from the moni-
tored data by advance data mining tools.

The regularities in the scanning packets can be explored
at various levels. First, at packet level, scans towards a cer-
tain vulnerability confined to a specific destination port may
have different probing pattern. Second, at target host level,
an attack can be featured by a series of packets sent to the
TH in a predefined order towards a combination of destina-
tion ports. Then, at the network-level, there might be pre-
coded rules to select the next TH. Finally, at meta-level, the
strength, frequency, and rhythm of the packets may reveal
the existence of an AT. All of the above information can be
indicators to characterize the AHs and in turn reveals the
trend of emerging network attacks and status of malware
contamination.

Association rule learning can be applied to transaction
sets defined upon indicators of regularities in malware com-
munication. Among the many fields that can be found in the

IP and TCP headers of the packets, we chose three indictors
of interest to investigate: destination port, sequence number,
and window size. Then, we define a transaction set for each
indicator of interest. Each transaction in the set contains a
series of unique indicator values observed in the commu-
nication from an AH towards the darknet during a 24-hour
period. Finally, association rule learning is applied to the
transaction set to extract the most significant correlation be-
tween the indicators.

Note that due to the dynamic IP address allocation mech-
anisms using Dynamic Host Configuration Protocol (DHCP),
the packets from a single IP address in a long run may con-
tain communication of multiple AHs. On the other hand, be-
cause the scale of the darknet under discussion constitutes to
a comparatively small portion of the IPV4 space, the chance
for multiple independent hosts scanning the same darknet is
small enough to be ignored. It is reasonable to take all the
packets launched by an AH during a 24-hour period as from
a single source.

3.2.1 Destination Ports

Network ports, which provide identifying information for
open services, are the entry points to any networked de-
vice. The port number, identified by a 16-bit number, to-
gether with a host’s IP address, completes the destination
address for a communication session. Network ports on a
host, i.e., the destination port in the communication, are usu-
ally probed by malware to determine open services before
exploitation of known vulnerability on the service. Due to
the close interdependence between a service and its hosting
port, vulnerabilities listed in open vulnerability databases
[9] are often specified by a port number rather than the ser-
vice hosted on the port.

Years ago, it was more common for malware programs
to probe a range of THs on a specific port with known vul-
nerabilities. Recent analysis on the scanning activities re-
veal that more malware programs tend to probe a couple of
destination ports once at a time. This may attribute to the
fact that, nowadays there are much more types of devices
with similar vulnerabilities hosted on different ports are con-
nected to the Internet, e.g. the IoT devices. Fortunately, the
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increase in number of distinct sets of destination ports ren-
ders port combination a more deterministic identifier of the
probing malware.

3.2.2 Time of Service

Like the combination of destination ports, many other fields
in IP/TCP header could also provide hints to identify the
packet issuing application. Among these is the type of ser-
vice (ToS) field, the second byte of the IPv4 header. The
ToS facility has been a part of the IP specification since the
beginning, it has been little used in the past. The modern re-
definition of the ToS field is presented in IETF RFC 2474
[10], and the Internet host specification [11] now mandates
that hosts use the ToS facility. Additionally, routing proto-
cols [12] have been developed which can compute routes
separately for each ToS, rendering it practical for routers to
consider the requested ToS when making routing decisions.

ToS can be hard-coded in the malware which often hap-
pens as many attackers prefer hand crafting the packet bet-
ter than using normal socket Application Interfaces (APIs)
to implement spoofing. Hence ToS is one of the promising
indicators that may carries identifying information about the
malware. For the same reason, Cisco standard NetFlow ver-
sion 5 [13] records ToS as a field in its export datagram for-
mats. In practice, ToS is also used as one of the features to
detect DDoS and botnet activities [14].

3.2.3 TCP Window Size

Another indicator of interest is the window size field in TCP
header. The window size is an option to increase the receive
window size allowed in TCP communication above its for-
mer maximum value of 65,535 bytes [15]. For more efficient
use of high-bandwidth networks, a larger TCP window size
may be used. The window scale option is used only during
the TCP 3-way handshake, which particularly suits the data
analysis in darknet. Many malware programs have reported
to abuse customized window size for Internet communica-
tion [16].

4 Experiments

In this section, we carry out a darknet analysis to find mean-
ingful traffic patterns of specific scanning attacks using the
association rule learning mentioned in Section 2. First, we
explain how to make transaction sets for the FP tree algo-
rithm. Then, we study some interesting scanning behaviors
of IoT malwares such as Mirai and Hajime.

Fig. 2 The number of packets observed in the NICT /16 darknet sensor
per month from July 1st, 2016 to July 31st, 2018, and the number of
unique hosts sending such packets.

4.1 Data Preparation

To evaluate the proposed association rule learning, we use a
large set of TCP SYN packets collected from July 1st, 2016
to July 31st, 2018 (25 months) with the NICT /16 darknet
sensor. We collected 25,533,925,844 packets in total that
were sent from 101,206,481 unique hosts. Figure 2 shows
the number of TCP packets observed per month, and the
number of unique hosts sending such packets to the dark-
net sensor.

In this experiment, the association rule learning is con-
ducted day by day for all active source hosts; thus, a daily set
of darknet sensor packets is first split into subsets of packets
sent from each source IP and the association rule learning is
applied to each of the subsets to investigate malicious behav-
iors of a specific host which is supposed to get infected with
malwares. As mentioned in 3.2, we focus on destination
port, TCP sequence number, and TCP window size to dis-
cover useful association rules among all active hosts. There-
fore, we define three types of transaction sets for darknet
sensor packets. Let Dk(d) = {T k

1 (d),T
k

2 (d), · · · ,T k
N(d)} (k ∈

{destination port,TCP sequence number,TCP window size})
be the database of the kth attribute on Day d where T k

j (d) is
the kth transaction set of packets sent from the jth host on
Day d. The association rule learning is applied to each of the
three databases Dk(d) everyday from July 1st, 2016 to July
31st, 2018.

4.2 Experimental Setup

As mentioned in 2.1, there are two parameters to be preset:
a minimum support threshold, S, and a minimum confidence
threshold, C. If these parameters are set to a smaller value, a
lot of association rules will come out and it makes difficult
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for us to understand the behaviors of targeted source hosts.
Therefore, we try to find suitable values of C and S so that
only significant rules can be found. Here, we use the follow-
ing parameter values: C = 1,000 and S = 90.

According to [17], Mirai can be fingerprinted by the fol-
lowing feature:

sequence number = destination IP. (3)

This feature is used as a signature of Mirai and judge that a
host got infected with Mirai if over 90% packets sent by this
host reveal the feature in Eq. (3). On the other hand, another
type of IoT malware called Hajime can be fingerprinted by
the following feature:

TCP window size = 14,600. (4)

Thus, we use this feature to define the signature of Hajime:
a host is judged if over 90% packets sent by this host reveal
the feature in Eq. (4).

Tables 2(a)-(c) show the obtained association rules for
destination ports, sequence numbers, and TCP window sizes,
respectively. Type represents the type of malware infecting
a host. Here, M, H, and U correspond to Mirai, Hajime, and
Unknown, respectively.

As seen from Tables 2(a)-(c), for destination ports, we
found 26 association rules for 25 months, while only 9 and
2 rules were found for ToS and window sizes, respectively.
Interestingly, Tables 2(b) and (c) show that Mirai and Ha-
jime left their fingerprinting features in association rules on
ToS and window sizes as well.

In the following subsections, we discuss what kind of
features on malware activities can be known from the pro-
posed darknet analyses with association rule mining.

4.3 Study on Darknet Traffic around Mirai Outbreak

To see how the proposed rule mining method works in the
darknet analysis, let us focus on the period from July 1st,
2016 to October 30th, 2016, which was around the outbreak
of a notorious IoT malware Mirai. In this analysis, we col-
lect 2,188,183,040 packets which were sent from 9,640,067
unique hosts on average.

As seen in Fig. 2, there are 3 rules in total related to Mi-
rai during this period: 1 rule on destination ports, 1 rule on
ToS, and 1 rule on TCP window size. Figure 3 illustrates the
transitions in the number of hosts associated with these 3
rules. Interestingly, about 15,000 hosts matched with a rule
of window size, (1320, 2376) → 792, first appeared on Au-
gust 2nd, and the number reached up about 37,000 hosts, and
disappeared suddenly on September 4th, only 3 days before
the first source code of Mirai was opened in a community
forum. Then, this rule never appeared after September 4th.

On the other hand, another two rules on destination ports
and ToS came out on September 5th and 15th, respectively.

The rule on destination port reveals a steady Mirai feature
which continuously showed up until the end of our observa-
tion (see Table 2(a)). This is because this rule is related to
the scanning activity to find vulnerable IoT devices for an
intrusion purpose. On the other hand, as discussed in 3.2.2,
the ToS header information is useful to identify a malware
type (i.e., a Mirai variant). Therefore, it is considered that an
early version of Mirai adapted to IoT devices was launched
in South East Asia, mainly in Vietnam (see the country in-
formation in Table 2(b)), around September 15th, 2016, and
was stopped at the end of September, 2016.

From the above discussions, we can infer the following
story about the early stage of the Mirai pandemic. It is as-
sumed that the original Mirai code was testified from around
August 2nd to around September 4th, 2016. Then, the source
code was posted in a dark web forum with the feature on
TCP window sizes erased after which it was distributed to
attackers.

4.4 Study on Darknet Traffic after Mirai Outbreak

We continue to analyze TCP SYN packets collected with the
NICT /16 darknet sensor for one year after the Mirai out-
break. The number of collected packets is 23,345,742,804
packets in total which were sent from 91,566,414 unique
hosts.

From Table 2, we can see that there are 19 rules in total
related to Mirai after the Mirai outbreak; 16 rules on desti-
nation ports, 3 rules on ToS, and no rule on TCP window
size. On the other hand, the rules related to another type of
IoT malware called Hajime emerged after February 2017.

Figure 4 shows the time lines of association rules ex-
tracted from July 1st, 2016 to July 31st, 2018. In Fig. 4,
the red and blue arrows show the periods that the rules with
Mirai and Hajime features in Eqs. (3) and (4) emerged. The
green arrows show the periods for the rules that do not match
with the features in Eqs. (3) and (4).

In Fig. 4, soon after the Mirai outbreak (i.e., Septem-
ber 2016), we can see that various Mirai variants emerged
and they used destination ports 22 (SSH), 2222, 80, 8080
(HTTP), 5358, 6789, 19058, 23231, 37777 other than 23 and
2323 (Telnet). For example, the port scan to 22 and 2222
were observed from the late December 2016, and this was
also reported on other sources on Mirai activity (e.g., Mirai
Scanner [18]). The rules related to Hajime emerged from the
mid-February 2017 and it is well known that Hajime shuts
the access to ports 23, 7547, 5555, 5358 out. Interestingly,
we can see from Fig. 4 that Mirai rules using such destina-
tion ports disappeared after several Hajime variants got ac-
tivated from the mid February 2017 to the late July 2017.
Then, different types of Mirai using destination ports 80,
81, 8080, 8081 and other ports emerged after October 2017.
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Fig. 3 Transitions in the number of hosts sending darknet SYN packets matched with the association rules for destination ports, Type of Service
(ToS), and TCP window sizes extracted from the packets received with the NICT /16 darknet sensor between July 1st, 2016 and October 30th,
2016.

From the time lines of association rules, we can understand
the competing trends on the emergence and disappearance
of IoT malwares: Mirai vs Hajime.

5 Conclusions

In this paper, we developed a new darknet analysis using the
association rule learning. In the proposed method, not only
destination ports but also other TCP/IP header information
are used to create transaction sets for the association rule
learning. Then, the rule mining for all header information is
conducted in parallel to obtain association rules.

The proposed darknet analysis was applied to a large set
of TCP SYN packets collected from July 1st, 2016 to July
31st, 2018 with the NICT /16 darknet sensor. As a result, an
association rule on TCP window size appeared on 2nd Au-
gust and disappeared three days before the source code of
Mirai was released. Almost all hosts whose scan activities
are featured by the obtained association rules have a known
Mirai feature: sequence number = destination IP. Therefore,
we conjecture that the attackers were doing test or prepara-

tion for the actual distribution of Mirai malware about one
month before the source code was opened. We also study
on the trends of IoT malware variants of Mirai and Hajime
after the Mirai outbreak. We found that 19 association rules
on destination ports and type of service emerged in total for
Mirai and Hajime, and we can understand how Mirai and
Hajime competed each other from the time lines of gener-
ated/disappeared rules. The result of this paper is very en-
couraging for us to apply the proposed method for future
attack detection.

There remain several open problems to be solved in fu-
ture. The number of extracted association rules could be var-
ied depending on the threshold values for support and confi-
dence. If these thresholds become smaller, more association
rules could be discovered. Some of them are expected to be
useful, while meaningless rules might also increase in gen-
eral. Therefore, a sophisticated way to find more useful rules
should be further explored. In this work, we use only one /16
darknet sensor to observe attacks. However, if more darknet
sensors are available, it is expected that we could discover
more useful rules. This is also left as our future work.



8

Fig. 4 Time lines of association rules extracted from July 1st, 2016 to July 31st, 2018.

Compliance with Ethical Standards: This research was
funded by the Ministry of Education, Science, Sports and
Culture, Grant-in-Aid for Scientific Research (B) 16H02874
and the Commissioned Research of National Institute of In-
formation and Communications Technology (NICT), JAPAN.

Conflict of Interest: Seiichi Ozawa has received research
grants from Daiwa SB Investments ltd., LAPIS Semicon-
ductor Co., Ltd., Mitsubishi Heavy Industries, Ltd., and Fu-
jitsu Laboratories, Ltd. Tao Ban declares that he has no con-
flict of interest. Naoki Hashimoto declares that he has no
conflict of interest. Junji Nakazato declares that he has no
conflict of interest. Jumpei Shimamura declares that he has
no conflict of interest.

Ethical approval: This article does not contain any studies
with human participants performed by any of the authors.

References

1. T. Ban, M. Eto, S. Guo, D. Inoue, K. Nakao, R. Huang,
“A study on association rule mining of darknet big
data,” Proc. of Int. Joint Conference on Neural Net-
works, pp. 1-7, 2015.

2. T. Ban, S. Pang, M. Eto, D. Inoue, K. Nakao and R.
Huang, “Towards Early Detection of Novel Attack Pat-
terns through the Lens of a Large-Scale Darknet,” Proc.
of 2016 Intl IEEE Conferences on Ubiquitous Intelli-
gence & Computing, Advanced and Trusted Comput-
ing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart
World Congress, pp. 341-349, 2016.

3. C. Stocker, J. Horchert, “Mapping the internet: A
hacker’s secret internet census,” Spiegel Online, March
22, 2013.

4. E.L. Malecot, D. Inoue, “The Carna botnet through the
lens of a network telescope”, In: J. Danger, et al.(eds),
Foundations and Practice of Security, LNCS, vol. 8352,



9

Springer, pp. 426-441, 2014.
5. R. Agrawal, T. Imielinski, A. Swami, “Mining associ-

ation rules between sets of items in large databases,”
ACM SIGMOD Record, vol. 22, no. 2, pp. 207-216,
1993.

6. J. Han, J. Pei, Y. Yin, “Mining frequent patterns without
candidate generation,” ACM SIGMOD Record, vol. 29,
no. 2, pp. 1-12, 2000.

7. J. HanJian, P.Y. Mao, “Mining frequent patterns with-
out candidate generation: A frequent-pattern tree ap-
proach,” Data Mining and Knowledge Discovery, vol.
8, no. 1, pp. 53?87, 2004.

8. C. Borgelt, “Frequent item set mining,” Data Mining
Knowledge Discovery, vol. 2, no. 6, pp. 437-456, 2012.

9. https://nvd.nist.gov/
10. K.Nichols, S. Blake, F. Baker, D. Black, “Definition of

the Differentiated Services Field (DS Field) in the IPv4
and IPv6 Headers,” IETF RFC 2119, December 1998.

11. D. Grossman, “New Terminology and Clarifications for
Diffserv,” IETF RFC 3260, April 2002.

12. J. Babiarz, K. Chan, F. Baker, “ Configuration Guide-
lines for DiffServ Service Classes,” IETF RFC 4594,

August 2006.
13. Introduction to Cisco IOS NetFlow - A Technical

Overview, White Papers, Cisco, updated May, 2012.
14. V.L. Thing, M. Sloman, N. Dulay, “A Survey of Bots

Used for Distributed Denial of Service Attacks,” New
Approaches for Security, Privacy and Trust in Complex
Environments, Springer US, Boston, MA, pp. 229-240,
2007

15. V. Jacobson, R. Braden, D. Borman, “TCP Extensions
for High Performance,” IETF RFC 1323, May 1992.

16. ”Microsoft Windows TCP/IP Connection Exhaustion
Denial of Service Vulnerability,” Cisco Mulitivendor
Vulnerability Alerts, Alert ID: 18959, CVE-2009-1926,
September, 2009.

17. M. Antonakakis, T. April, M. Bailey, M. Bernhard, E.
Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman,
L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K,
Thomas, Y. Zhou, “Understanding the Mirai Botnet,”
Proc. of 26th USENIX Security Symposium, pp. 1093-
1110, 2017.

18. http://data.netlab.360.com/mirai-scanner/



10

Table 2 Obtained association rules for (a) destination ports, (b) Type of Service (ToS), and (c) TCP window sizes. The columns ’Country’ and
’Period’ correspond to the major countries of hosts and the periods that an association rule emerged. ’Support’ is equivalent to the number of
hosts matched with an association rule and ’Confidence’ is the conditional probability of an association rule holds. The column ’Type’ represents
the type of malwares that over 90% hosts get infected by either of Mirai (M), Hajime (H), or unknown (U). The abbreviation of each country
is followed by the IOC code: Philippine (PHI), Great Britain (GBR), China (CHN), Mexico (MEX), Brazil (BRA), Korea (KOR), Thai (THA),
Vietnam (VIE), Pakistan (PAK), Chinese Taipei (TPE), India (IND)

(a) Destination Ports

Association Rules Country Period Support Conf. [%] Type

666 → 23 PHI 7/26 - 8/23/2016 2,176 93.8 U
53413 → 23 - 8/1/2016 2,343 94.7 U
2323 → 23 - 9/6/2016 - > 3.7×106 91.7 M
8080 → 80 - 11/2 - 11/21/2016 29,006 94.3 M
(2323, 7547) → 23 - 11/26 - 4/27/2017 42,620 96.5 M
5555 → 7547 GBR 12/4/2016 29,425 92.3 M
(2323, 23231) → 23 - 12/10/2016 70,376 98.8 M

- 2/14/2017
(2323, 37777) → 23 - 12/11 - 12/28/2016 7,319 96.8 M
(2323, 6789) → 23 - 12/18/2016 45,628 94.8 M

- 3/31/2017
(23, 2222, 2323) → 22 - 12/23 - 7/30/2017 160,444 99.1 M
(2323, 5358) → 23 - 1/26 - 3/28/2017 71,931 98.1 M
(2323, 19058) → 23 - 2/3 - 2/9/2017 67,036 98.6 M
(32, 2323) → 23 - 2/7 - 2/9/2017 27,699 98.9 M
(6380, 6389, 7379) → 6379 CHN 2/25 - 9/29/2017 8287 99.7 H
(81, 88, 8000, 8080) → 80 - 3/7 - 3/29/2017 107,901 96.8 M
(81, 5358) → 23 MEX, BRA 5/17 - 5/27/2017 100,706 98.9 H
(81, 7547) → 23 - 6/2 - 7/7/2017 381,981 91.1 H
9000 → 23 - 6/2 - 7/8/2017 82,888 94.4 H
9000 → 23 - 9/2/2017 - 166,745 94.6 U
(14340, 20480, 20736, 20992, 22528, 36895, 37151) → 16671 - 10/1 - 10/29/2017 24,425 100 M
(23, 2323, 9527) → 8080 KOR 1/10 - 3/8/2018 39,170 99.6 M
(80, 81, 37215) → 8080 - 1/29 - 2/22/2018 16,140 100 M
(80, 81, 8081) → 8080 CHN 3/30/2018 6,177 93.7 U
(443, 8080, 8443) → 80 CHN 4/13/2018 5,317 92.7 U
(81, 443, 8080) → 80 CHN 4/26/2018 4,811 92.6 U
(80, 81, 82, 83, 84, 85, 88, 2323, 8000, 8001, 8080, 8081) → 8888 - 5/19 - 7/31/2018 31,361 99.4 M

(b) Type of Service (ToS)

Association Rules Country Period Support Conf. [%] Type

(208, 212, 216) → 204 THA 8/2-9/1/2016 11,167 95.3 U
(24, 184) → 0 VIE 9/7-10/2/2016 16,302 99.2 M
(8, 104) → 40 PAK 2/27-3/7/2017 11,739 99.1 H
224 → 0 TPE 2/28-3/31/2017 4,642 95.5 H
(0, 40) → 8 IND 4/16-4/27/2017 24,257 91.0 M
(104, 184) → 0 CHN 8/31/2017 - 1,054 95.0 M
(4, 184) → 0 CHN 9/1/2017 - 1,323 93.8 M
(4, 184) → 0 CHN 7/11-7/23/2018 2,020 99.5 U
44 → 0 CHN 7/11-7/23/2018 4,020 99.5 U

(c) TCP Window Sizes

Association Rules Country Period Support Conf. [%] Type

(1320,2376) → 792 - 8/2-9/4/2016 27,188 94.6 M
14100 → 1024 CHN 1/5, 30, 2/2/2018 12,595 92.1 U

ozawasei
ハイライト表示




