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Abstract We present an optimal gradient method for smooth strongly convex optimization. The method is
optimal in the sense that its worst-case bound on the distance to an optimal point exactly matches the lower
bound on the oracle complexity for the class of problems, meaning that no black-box first-order method can
have a better worst-case guarantee without further assumptions on the class of problems at hand. In addition,
we provide a constructive recipe for obtaining the algorithmic parameters of the method and illustrate that
it can be used for deriving methods for other optimality criteria as well.

1 Introduction

Consider the unconstrained minimization problem

min
x∈Rd

f(x), (1)

where f is a smooth strongly convex function. For solving such problems, one can rely on black-box first-order
methods, which iteratively acquire information about f by evaluating its gradient at a sequence of iterates.
In this context, the question of designing first-order methods with good worst-case guarantees occupies an
important place.

In this work, we provide a black-box first-order method, the Information-Theoretic Exact Method
(ITEM), designed for minimizing smooth strongly convex functions. This method attains the lower bound
on the oracle complexity, sometimes referred to as information-theoretic complexity [Nemirovskii, 1992], of
smooth strongly convex minimization when optimality is measured by the distance of the method’s output
to an optimal solution.

Given an L-smooth µ-strongly convex function f with 0 < µ < L, the method can be concisely written
as

yk = (1− βk)zk + βk

(

yk−1 −
1

L
∇f(yk−1)

)

zk+1 = (1− qδk)zk + qδk

(

yk −
1

µ
∇f(yk)

)

,

(2)
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where q = µ/L denotes the inverse condition number (note that as µ → 0 the alternate formulation below
should be preferred for obvious numerical reasons). Both sequences {βk} and {δk} are parametrized by a
sequence Ak, incorporating the dependency on the current iteration number, as follows

βk =
Ak

(1− q)Ak+1
, and δk =

1

2

(1− q)2Ak+1 − (1 + q)Ak

1 + q + qAk
,

with A0 = 0 and

Ak+1 =
(1 + q)Ak + 2

(

1 +
√

(1 +Ak)(1 + qAk)
)

(1− q)2 , k ≥ 0.

As shown in the following, this sequence allows to describe the worst-case performance of (2) as

‖zN − x⋆‖2 ≤
1

1 + qAN
‖z0 − x⋆‖2,

which is the exact lower bound for smooth strongly convex minimization, as obtained in [Drori and Taylor,
2022]. Therefore, no black-box first-order method can further improve this guarantee, and ITEM achieves the
lower bound on the oracle (or information-theoretic) complexity for smooth strongly convex minimization.
In addition, as AN ≥ (1−√q)−2N , this bound provides a guarantee that zk strictly improves over z0 with

a worst-case convergence rate (1−√q)2.
ITEM is also closely related to other methods. In particular, when µ > 0 and as k → ∞, the method’s

parameters βk and δk tends to those of the Triple Momentum Method (TMM) by Van Scoy et al. [2018],
and in the case µ = 0 the parameters correspond to those of the Optimized Gradient Method (OGM)
of Kim and Fessler [2016], which exactly achieves a lower complexity bound for minimizing function values
as established in Drori [2017]. Details on those relationships are provided in Section 2.2.

1.1 Related works

Lower bounds and accelerated methods. The method presented in this work is closely related to the celebrated
fast gradient methods (FGMs) by Nesterov [1983, 2004]. Lyapunov and potential function-based analyses
of FGMs were presented in many works, including in the original [Nesterov, 1983]. The analyses are usu-
ally tailored for the smooth convex minimization setting [Nesterov, 1983, Beck and Teboulle, 2009], for the
smooth strongly convex one [Wilson et al., 2021, Bansal and Gupta, 2019], and sometimes deal with both
simultaneously [Nesterov, 2004, Gasnikov and Nesterov, 2018]. In the large-scale quadratic smooth (possibly
strongly) convex minimization setting, optimal worst-case accuracies are achieved by Chebyshev and conju-
gate gradient methods [Nemirovskii, 1992, Nemirovski, 1999]. Fast first-order methods for large-scale convex
minimization are surveyed in the recent monograph [d’Aspremont et al., 2021].

Performance estimation problems. The idea of computing worst-case accuracy of a given method through
semidefinite programming dates back to Drori and Teboulle [2014]. It was refined using the concept of convex
interpolation in [Taylor et al., 2017b], which allows guaranteeing that worst-case accuracies provided by the
semidefinite programs are tight (i.e., the worst-case guarantee corresponds to a matching example in the
problem class). The approach was taken further in different directions for analyzing and designing numerical
methods in different contexts. A very related line of works, initiated by [Lessard et al., 2016], presents
such analyses from a control theoretic perspective, and corresponds to the problem of looking for Lyapunov
functions. Those works hence rather target asymptotic properties of time-invariant numerical methods, which
allows using smaller sized SDPs.
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Optimized gradient methods. The method presented in this work was first obtained as a solution to a con-
vex optimization problem, through an approach closely related to that taken by Drori and Teboulle [2014]
and Kim and Fessler [2016] for obtaining the Optimized Gradient Method (OGM). The OGM for smooth
convex minimization (µ = 0), obtained by Kim and Fessler [2016], was obtained by explicitly choosing the
step sizes of a method for minimizing an upper bound on the worst-case inaccuracy criterion. The resulting
method was later proved to achieve the lower bound in [Drori, 2017]. When µ = 0, optimal methods for
optimizing function value accuracy f(xN )− f⋆ include the OGM [Kim and Fessler, 2016, Drori, 2017], and
the conjugate gradient method [Drori and Taylor, 2020]. It is also worth mentioning that optimized methods
can be developed for other criteria as well. In particular, optimized methods for gradient norms ‖∇f(xN)‖2
are studied by Kim and Fessler [2020], in the smooth convex setting.

The Triple Momentum Method (TMM) [Van Scoy et al., 2018] was designed as an optimized gradient
method through Lyapunov arguments, using an idea similar to that of the OGM, but for time-independent
methods (i.e., whose coefficients do not depend on the iteration counter), for when µ > 0. The method
was originally obtained using the integral quadratic framework by Lessard et al. [2016]; see [Van Scoy et al.,
2018] and [Lessard and Seiler, 2020]. The problem of devising optimized methods for smooth strongly convex
minimization (with µ > 0) is also addressed in [Zhou et al., 2020, Gramlich et al., 2020], which also recovers
the TMM as a particular case in their analyses.

So far, it remained unclear how to conciliate both optimal methods, as the OGM is clearly not opti-
mal anymore when µ > 0 (its worst-case guarantees remain unchanged in the presence of strong convex-
ity [Kim and Fessler, 2017]), and as the TTM is not defined when µ = 0.

1.2 Organization

A worst-case analysis of the Information-Theoretic Exact Method is provided in Section 2. In Section 3, we
describe a constructive approach that leads to the method and illustrate that it can be used for developing
optimized methods for other performance criteria. We draw some conclusions in Section 4.

1.3 Preliminaries and notations

We use the standard notation 〈 · ; · 〉 : R
d × R

d → R to denote the Euclidean inner product, and the
corresponding induced Euclidean norm ‖ · ‖. Furthermore, we denote by x⋆ some optimal solution to (1)
(which is unique if µ > 0), and by f⋆ its optimal value. The class of L-smooth µ-strongly convex functions
is standard and can be defined as follows.

Definition 1 Let f : Rd → R be a proper, closed, and convex function, and consider two constants 0 ≤ µ <
L <∞. We say that f is L-smooth and µ-strongly convex, denoted f ∈ Fµ,L(R

d), if

– (L-smooth) for all x, y ∈ R
d, it holds that f(x) ≤ f(y) + 〈∇f(y);x− y〉+ L

2 ‖x− y‖
2,

– (µ-strongly convex) for all x, y ∈ R
d, it holds that f(x) ≥ f(y) + 〈∇f(y);x− y〉+ µ

2 ‖x− y‖
2.

We simply denote f ∈ Fµ,L when the dimension is either clear from the context or unspecified. In addition,
we use q := µ/L the (inverse) condition number of the class (hence 0 ≤ q < 1), and do not explicitly treat
the trivial cases L = µ for readability purposes.

Smooth strongly convex functions satisfy many inequalities, see e.g., [Nesterov, 2004, Theorem 2.1.5]. For
the developments below, we need only one specific inequality characterizing functions in Fµ,L.

Theorem 1 Let f ∈ Fµ,L(R
d). For all x, y ∈ R

d, it holds that

f(y) ≥ f(x)+〈∇f(x);y − x〉+ 1

2L
‖∇f(x)−∇f(y)‖2 + µ

2(1− µ/L)‖x− y −
1
L(∇f(x)−∇f(y))‖

2.

This inequality turns out to be key in proving worst-case guarantees for first-order methods applied on
smooth strongly convex problems, due to the following result [Taylor et al., 2017b, Theorem 4].
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Theorem 2 (Fµ,L-interpolation) Let I be an index set and S = {(xi, gi, fi)}i∈I ⊆ R
d × R

d × R be a set
of triplets. There exists f ∈ Fµ,L satisfying f(xi) = fi and gi ∈ ∂f(xi) for all i ∈ I if and only if

fi ≥ fj+〈gj ;xi − xj〉+
1

2L
‖gi − gj‖2 +

µ

2(1− µ/L)‖xi − xj −
1
L (gi − gj)‖2

holds for all i, j ∈ I.

2 An optimal gradient method

For our purposes, probably the most convenient formulation of ITEM, allowing a unified treatment for the
case µ = 0, is as presented in Algorithm 1.

Algorithm 1 Information-Theoretic Exact Method (ITEM)

Input: f ∈ Fµ,L with 0 ≤ µ < L <∞, initial guess x0 ∈ Rd

Initialization: y−1 = z0 = x0, A0 = 0, q = µ/L
For k = 0, 1, . . .

Set Ak+1 =
(1 + q)Ak + 2

(

1 +
√

(1 + Ak)(1 + qAk)
)

(1− q)2

βk =
Ak

(1 − q)Ak+1
, and δk =

1

2

(1 − q)2Ak+1 − (1 + q)Ak

1 + q + qAk

yk = (1 − βk)zk + βkxk

xk+1 = yk −
1

L
∇f(yk)

zk+1 = (1 − qδk)zk + qδkyk −
δk

L
∇f(yk).

(3)

The following theorem states the main results concerning Algorithm 1: firstly, a bound on ‖zN − x⋆‖2,
and secondly, a bound involving function values, which is more relevant as µ→ 0. A proof for this theorem
is provided in the next section.

Theorem 3 Let f ∈ Fµ,L and denote q = µ/L. For any x0 = z0 ∈ R
d and N ∈ N with N ≥ 1, the iterates

of (3) satisfy

‖zN − x⋆‖2 ≤
1

1 + qAN
‖z0 − x⋆‖2 ≤ (1−√

q)2N

(1−√
q)2N+q

‖z0 − x⋆‖2,

ψN ≤
L

(1− q)AN+1
‖z0 − x⋆‖2 ≤ min

{

(1−√q)2(N+1),
1

(N + 1)2

}

L

(1− q)‖z0 − x⋆‖
2,

with ψN = f(yN )− f⋆ − 1
2L‖∇f(yN)‖2 − µ

2(1−µ/L)‖yN − 1
L∇f(yN )− x⋆‖2 ≥ 0.

The quantity ψN defined above is related to a potential (or Lyapunov) function that turns out to be key to
the analysis of the method as provided in the next section. Although ψN might appear as slightly unnatural,
it should be interpreted in light of Theorem 1 with x = x⋆ and y = yN , which ensures that ψN ≥ 0.
In the special case of µ = 0, ψN corresponds to f(yN ) − f⋆ − 1

2L‖∇f(yN)‖2, thus applying the standard

descent lemma stating that f(xN+1) ≤ f(yN )− 1
2L‖∇f(yN)‖2, we end up with a classical guarantee of type

f(xN+1)− f⋆ ≤ ψN ≤ L
(N+1)2 ‖z0 − x⋆‖

2.
Note that as a result of Theorem 3, the three sequences generated by Algorithm 1 are all valid approx-

imations of x⋆ in the following senses: (i) zN converges to the optimal solution in terms of distance to the
solution, (ii) yN has a guarantee of having a small corresponding ψN , and (iii) xN is obtained from a gradient
step from yN−1, corresponds to having a guarantee on f(xN )− f⋆ when µ = 0.
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2.1 Worst-case analysis

For performing the analysis, we use a potential function argument (see e.g., the nice review by Bansal and Gupta
[2019]) similar to those used for standard accelerated methods [Nesterov, 1983, Beck and Teboulle, 2009].
We show that for all yk−1, zk ∈ R

d and Ak ≥ 0, the function

φk =(1− q)Akψk−1 + (L+ µAk)‖zk − x⋆‖2

=(1− q)Ak

[

f(yk−1)− f⋆ − 1
2L‖∇f(yk−1)‖2 − µ

2(1−µ/L)‖yk−1 − 1
L∇f(yk−1)− x⋆‖2

]

+ (L+ µAk) ‖zk − x⋆‖2
(4)

satisfies φk+1 ≤ φk when zk+1, yk and Ak+1 are generated according to (3).

Lemma 1 Let f ∈ Fµ,L and k ≥ 0. For any yk−1, zk ∈ R
d and Ak ≥ 0, two consecutive iterations of (3)

satisfy

φk+1 ≤ φk

with Ak+1 being defined as in (3).

Proof We perform a weighted sum of two inequalities due to Theorem 1:

– smoothness and strong convexity of f between x⋆ and yk with weight λ1 = (1− q)(Ak+1 −Ak)

f⋆ ≥f(yk) + 〈∇f(yk);x⋆ − yk〉+ 1
2L‖∇f(yk)‖

2 + µ
2(1−q)‖yk − x⋆ − 1

L∇f(yk)‖
2,

– smoothness and strong convexity between yk−1 and yk with weight λ2 = (1− q)Ak

f(yk−1) ≥f(yk) + 〈∇f(yk); yk−1 − yk〉+ 1
2L‖∇f(yk)−∇f(yk−1)‖2

+ µ
2(1−q)‖yk − yk−1 − 1

L (∇f(yk)−∇f(yk−1))‖2.

Summing up and reorganizing those two inequalities (without substituting Ak+1 by its definition for now),
we arrive to the following inequality

0 ≥ λ1
[

f(yk)− f⋆ + 〈∇f(yk);x⋆ − yk〉+ 1
2L‖∇f(yk)‖

2 + µ
2(1−q)‖yk − x⋆ − 1

L∇f(yk)‖
2

]

+λ2

[

f(yk)−f(yk−1) + 〈∇f(yk); yk−1 − yk〉+ 1
2L‖∇f(yk)−∇f(yk−1)‖2

+ µ
2(1−q)‖yk − yk−1 − 1

L (∇f(yk)−∇f(yk−1))‖2
]

.

Substituting

yk = (1− βk)zk + βk

(

yk−1 −
1

L
∇f(yk−1)

)

zk+1 = (1− qδk)zk + qδkyk −
δk
L
∇f(yk),

(note that this substitution is also valid when k = 0 as βk = 0 in this case, and hence y0 = z0) the weighted
sum can be reformulated exactly as (this can be verified by expanding both expressions and matching them
on a term by term basis1):

φk+1 ≤φk − LK1P (Ak+1, Ak)‖zk − x⋆‖2

+ 1
4LK2P (Ak+1, Ak)‖(1− q)Ak+1∇f(yk)− µAk

(

yk−1 − x⋆ − 1
L∇f(yk−1)

)

+K3µ(zk − x⋆)‖2

1 The puzzled reader can verify this using basic symbolic computations. We provide a notebook for verifying the equivalence
of the expressions in Section 4.
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with three constants (well defined given that 0 ≤ µ < L <∞ and Ak, Ak+1 ≥ 0)

K1 =
q2

(1 + q)2 + (1− q)2qAk+1

K2 =
(1 + q)2 + (1− q)2qAk+1

(1− q)2 (1 + q + qAk)
2A2

k+1

K3 = (1 + q)
(1 + q)Ak − (1− q)(2 + qAk)Ak+1

(1 + q)2 + (1− q)2qAk+1
,

as well as
P (x, y) = (y − (1− q)x)2 − 4x(1 + qy).

For obtaining the desired potential inequality, it remains to remark that Ak+1 corresponds to the largest
solution of P (x,Ak) = 0. That is, the weighted sum can be reorganized exactly as φk+1 ≤ φk, reaching the
desired claim. ⊓⊔

We are now equipped for proving our main result, presented in Theorem 3.

Proof (Theorem 3) From Lemma 1, we get

φN ≤ φN−1 ≤ . . . ≤ φ0 = L‖z0 − x⋆‖2.

From Theorem 1 (evaluated at x← x⋆, and y ← yk−1), we have that (L+ µAN )‖zN − x⋆‖2 ≤ φN , reaching

‖zN − x⋆‖2 ≤
φ0

(L+ µAN )
=

1

1 + qAN
‖z0 − x⋆‖2.

Similarly, we have that (1− q)AN+1ψN ≤ φN+1 ≤ φN and hence

ψN ≤
φ0

(1− q)AN+1
=

L

(1− q)AN+1
‖z0 − x⋆‖2.

For reaching the claims, it is therefore sufficient to characterize the growth rate of {Ak}. Because finding
a closed-form expression for {Ak} appears to be out of reach, we consider the classical two scenarios for
bounding its growth rate. First, when µ = 0,

Ak+1 = 2 +Ak + 2
√

1 +Ak ≥ 2 +Ak + 2
√

Ak ≥ (1 +
√

Ak)
2,

reaching
√

Ak+1 ≥ 1 +
√
Ak and hence

√
Ak ≥ k and Ak ≥ k2. Second, when µ > 0, one also has

Ak+1 =
(1 + q)Ak + 2

(

1 +
√

(1 +Ak)(1 + qAk)
)

(1− q)2 ≥ (1 + q)Ak + 2
√

qA2
k

(1− q)2 =
Ak

(1−√q)2 .

This last bound, together with A1 = 4
(1−q)2 = 4

(1+
√
q)2(1−√

q)2 ≥ (1 − √q)−2, allows reaching the target

AN ≥ (1−√q)−2N , thereby concluding the proof. ⊓⊔

2.2 Limit cases

In this section, we inspect two limit cases of ITEM. First, when µ = 0, ITEM can be compared to the
Optimized Gradient Method of Kim and Fessler [2016]. In their notations, we denote by θ2k =

Ak+1

4 , a

sequence that can alternatively be defined recursively as θ0 = 1 and θk+1 =
1+
√

4θ2
k
+1

2 . In this setting, the

parameters correspond to βk = Ak

Ak+1
, and δk =

Ak+1−Ak

2 , and we recover, using Kim and Fessler [2016]’s

notations (using the identity θ2k = θ2k−1 + θk)

yk = θk−1
θk

xk + 1
θk
zk

xk+1 = yk − 1
L∇f(yk)

zk+1 = zk − 2
Lθk∇f(yk).
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Note though that Kim and Fessler [2016] uses a “last iteration adjustment” by setting θN =
1+
√

8θ2
N−1

+1

2 .
This adjustment is not needed for the purpose of obtaining the optimal bound on ‖zN − x⋆‖, and a detailed
treatment can be found in [d’Aspremont et al., 2021, Section 4.3.1].

Second, when µ > 0 and k →∞, one can explicitly compute the limits of the algorithmic parameters

lim
k→∞

Ak

Ak+1
= lim

Ak→∞
(1− q)2Ak

(1 + q)Ak + 2 + 2
√

1 + (1 + q)Ak + qA2
k

=
(1− q)2
(1 +

√
q)2

= (1−√q)2

lim
k→∞

βk = lim
k→∞

Ak

(1− q)Ak+1
=

1−√q
1 +
√
q

lim
k→∞

δk = lim
k→∞

1

2

(1− q)2Ak+1 − (1 + q)Ak

1 + q + qAk
=

1

2

(1− q)2 − (1 + q)(1−√q)2
q(1−√q)2 =

√

1

q
,

reaching

yk =
1−√q
1 +
√
q

(

yk−1 − 1
L∇f(yk−1)

)

+

(

1− 1−√q
1 +
√
q

)

zk

zk+1 =
√
q
(

yk − 1
µ∇f(yk)

)

+ (1−√q)zk,

which is the Triple Momentum Method [Van Scoy et al., 2018] and its convergence rate (1−√q)2.
For those two limit cases, the analysis from Section 2.1 can be simplified accordingly. For the OGM, this

leads to the same potential as that provided in e.g., [Taylor and Bach, 2019, Theorem 11]), or [Park et al.,
2021, Section 2]. For the TMM, this allows recovering the known Lyapunov function from e.g., [Cyrus et al.,
2018, Inequality (10)].

2.3 Lower bound and matching examples

In this section, we show the correspondence with the lower bound from [Drori and Taylor, 2022] and provide
two very simple one-dimensional examples on which the method achieves its worst-case.

First, the lower bound from [Drori and Taylor, 2022, Corollary 4] states that for any black-box first-order,
there exists f ∈ Fµ,L such that

‖xN − x⋆‖2 ≥
λ2N
q
‖x0 − x⋆‖2,

where x⋆ = argminxf(x), xN is the output of the black-box first-order method under consideration, and
where the sequence {λi} is defined recursively as λ0 =

√
q and

λk+1 =
1−

√

q − (1− q)λ2k
1 + λ2k

λk.

Let us show that it matches the upper bound provided by Theorem 3. One can verify the identity

λ2k =
q

1 + qAk
,

by observing that it holds for k = 0 with A0 = 0 then using an inductive argument. That is, assuming

λk =
√

q
1+qAk

, it is relatively simple to establish that

λk+1 =

1−
√

q − (1− q)
(

q
1+qAk

)

1 +
(

q
1+qAk

)

√

q

1 + qAk
=

√

q

1 + qAk+1
.

Because the lower bound from [Drori and Taylor, 2022] and the upper bound from Theorem 3 match, it
is clear that the worst-case guarantee of ITEM cannot be improved.

The lower bound proof from [Drori and Taylor, 2022] is constructive in the sense that it exhibits a “worst
function in the world” on which any first-order method cannot attain a worst-case guarantee better than the
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one stated above. Clearly, such a function would naturally attain the worst-case behavior of ITEM, however,
this function is rather complex and it is the purpose of the following paragraphs to show that the worst-case
behavior of ITEM is also attained on very simple functions. In particular, the worst-case is achieved on the
two base quadratic functions

fL(x) =
L

2
|x|2, fµ(x) =

µ

2
|x|2,

i.e., the guarantee ‖zN − x⋆‖2 ≤ ‖x0−x⋆‖2

1+qAN
holds with equality on both fL(·) and fµ(·).

Lemma 2 Let 0 < µ < L <∞, and fL, fµ ∈ Fµ,L(R) with fµ(x) =
µ
2x

2 and fL(x) =
L
2 x

2. The iterates of
ITEM (3) satisfy

z2k =
z20

1 + qAk

when applied to either fµ or fL.

Proof We proceed by recurrence. It is clear that z20 =
z2
0

1+qA0
(recall A0 = 0), which establishes the base

recurrence case.
(i) Let us start with fL. It is clear from explicit computations that for all yk ∈ R, xk+1 = yk− 1

L∇fL(yk) =
x⋆ = 0. Therefore, we have yk = 1

L∇fL(yk) along with

yk = (1− βk)zk

(this also trivially holds for k = 0, as in this case βk = 0 and y0 = z0 = x0), and therefore

zk+1 = zk + qδk(yk − zk)− δkyk = ((1− q)βkδk − δk + 1)zk.

Substituting the expressions of βk, δk, Ak+1, and z
2
k =

z2

0

1+qAk
in this equality (squared) leads to

z2k+1 =

(

1 + qAk − q
√

(1 +Ak)(1 + qAk)
)2

(1 + qAk)(1 + q + qAk)2
z20 =

z20
1 + qAk+1

,

where the last equality can be verified by basic algebra.
(ii) We proceed with fµ. In this case, for all yk ∈ R we have yk − 1

µ∇fµ(yk) = x⋆ = 0. Therefore,

zk+1 = (1− qδk)zk.

Substituting the expression of δk and the recurrence hypothesis z2k =
z2
0

1+qAk
we arrive to the same expression

as before

z2k+1 =

(

1 + qAk − q
√

(1 +Ak)(1 + qAk)
)2

(1 + qAk)(1 + q + qAk)2
z20 =

z20
1 + qAk+1

,

reaching the desired claim. ⊓⊔

3 A constructive approach to ITEM

The intent of this section is to provide a constructive procedure for obtaining the Information-Theoretic
Exact Method, as well as other similar methods designed based on alternate optimality criteria.

The construction is based on the performance estimation methodology introduced in [Drori and Teboulle,
2014, Taylor et al., 2017b], where the main idea is to cast the theoretical worst-case performance of a generic
first-order method as an optimization program over all possible problem instances. Once such a program has
been devised, it can then be manipulated using standard techniques, and in particular, this allows us to state
the problem of finding the “best” first-order method as a minimax problem. Although this minimax problem
appears at first to be hard, we show that a tractable relaxation of it can be devised, and that ITEM can be
obtained as an analytical solution to that problem. We would like to emphasize that although ITEM was
discovered using the technique described below, its proof, as provided above, is independent of the following.
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As a starting point, consider the class of black-box first-order methods gathering information about the
objective function f only by evaluating an oracle Of (x) = (f(x),∇f(x)). We describe such a black-box
method M as a set of rules {M1,M2, . . . ,MN} for forming its iterates, which we denote by wk for avoiding
confusions with any of the sequences defined by ITEM, as

w1 =M1(w0,Of (w0))

w2 =M2(w0,Of (w0),Of (w1))

...

wN =MN (w0,Of (w0),Of (w1), . . . ,Of (wN−1)),

and we denote by MN the set of black-box first-order methods that perform N gradient evaluations. Fur-
thermore, we call the efficiency estimate of a method M the following quantity

Wµ,L(M) = sup
f∈Fµ,L

{

‖wN − w⋆‖2
‖w0 − w⋆‖2

: for any sequence w1, . . . , wN generated by M on f,

initiated at some w0, and w⋆ ∈ argminwf(w)

}

,

(5)

which correspond to the worst-case performance of M on the class Fµ,L for the criterion ‖wN−w⋆‖2

‖w0−w⋆‖2 . A direct
consequence of Theorem 3 and the lower complexity bound discussed in Section 2.3 is that ITEM belong
to the class of black-box first-order methods with optimal performances with respect to Wµ,L(M) with
M ∈ MN . ITEM is therefore a solution to

min
M∈MN

Wµ,L(M). (6)

Although this minimax problem appears to be hard to solve directly, we illustrate below that it can be
approached using semidefinite programming.

In a nutshell, we consider two simplified upper bounds to this minimax problem. First, we consider a
subclass of black-box first-order methods, referred to as fixed-step first-order methods. Those are first-order
methods that are described by a set of fixed coefficients {hi,j}, and whose formal description is provided
below. Second, given a fixed-step first-order method M , the idea is to develop a tractable upper bound on
the efficiency estimate of M , written UBµ,L(M) and such that UBµ,L(M) ≥ Wµ,L(M). After that, we show
that minimizing this upper bound over M is also tractable. That is, we can solve min{hi,j} UBµ,L(M) to
obtain the Information-Theoretic Exact Method as a solution.

As a comparison, let us mention that the Optimized Gradient Method [Drori and Teboulle, 2014, Kim and Fessler,
2016] was obtained through similar steps for the objective (f(wN )− f⋆)/‖w0 − w⋆‖2 when µ = 0. Note, how-
ever, that a straightforwardapplication of the technique presented in [Drori and Teboulle, 2014, Kim and Fessler,
2016] does not yield tractable problems in the strongly convex case.

More precisely, we proceed as follows:

– In Section 3.1, we describe the class of fixed-step first-order methods. This class of methods is somewhat
natural and contains classical numerical methods such as gradient, heavy-ball, and accelerated gradient
methods, but excludes adaptive methods. For this class of methods, it is known that Wµ,L(M) can be
formulated as a convex semidefinite program (see e.g., [Taylor et al., 2017b, Theorem 6]). However, when
it comes to optimizing over step size parameters, this formulation leads to a bilinear/quadratic problem
which we do not know how to solve directly.

– In Section 3.3 and 3.4, we provide an equivalent reparametrization of the class of fixed-step first-order
methods, allowing to reach an alternate semidefinite formulation for Wµ,L(M) with simpler structure.
We further detail a tractable upper bound UBµ,L(M) which is more convenient for optimizing over the
method’s parameters.

– In Section 3.5, we show how to render min{hi,j} UBµ,L(M) tractable, yielding the Information-Theoretic
Exact Method as a solution.

We complement those developments by numerically designing first-order methods for alternate design
criterion that include (f(wN )− f⋆)/‖w0−w⋆‖2. For doing that, the developments of this section have to be
slightly adapted (see Appendix D). The numerical results are provided in Appendix E, and source code for
reproducing the results is provided in Section 4.
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3.1 Fixed-step first-order methods

In this section, we introduce a subclass of black-box first-order methods described by a set of fixed coefficients.
This parametric subset of MN allows for more convenient formulations of optimization problems over the
class of methods, such as the minimax problem (6).

We start with the following “natural” description of the class of methods of interest, then introduce an
alternate parametrization which is more convenient for the step size optimization procedure of the following
sections.

Definition 2 A black box first-order method is called a fixed-step first-order method if there exists a set
{hi,j} ⊂ R such that the method admits the following description

w1 = w0 − h1,0

L ∇f(w0)

w2 = w1 − h2,0

L ∇f(w0)− h2,1

L ∇f(w1)

...

wN = wN−1 −
N−1
∑

i=0

hN,i

L ∇f(wi),

(7)

for any function f .

For fixed-step first-order methods M described by a set of normalized coefficients {hi,j}, it is shown
in [Taylor et al., 2017b, Theorem 6] thatWµ,L(M) can be formulated as a convex semidefinite program (SDP).
Given such an SDP formulation, our goal is to solve

min
{hi,j}

Wµ,L(M),

which is a bilinear/quadratic problem, due to the structure of the SDP formulation ofWµ,L(M) in [Taylor et al.,
2017b, Theorem 6]. Such problems are nonconvex and NP-hard in general [Toker and Ozbay, 1995], nev-
ertheless, by performing reparametrization followed by relaxation and linearization steps, as shown in the
following sections, it is possible to attain a tractable relaxation of the problem.

3.2 A reparametrization of fixed-step first-order methods

In what follows, we restrict ourselves to these fixed-step first-order methods, which we will reparameterize
in a slightly different, but equivalent, fashion. Informally, the alternate parameterization allows formulating
the maximization problem arising in the efficiency estimate Wµ,L(M) (see (5)) in a more convenient way
than that of [Taylor et al., 2017b, Theorem 6] for our purposes. Indeed, the new formulation presented in
the next sections allows obtaining a problem that is “only” bilinear in terms of the method parameters and
of some multipliers λi,j ’s. Those problems are still NP-hard in general [Toker and Ozbay, 1995], however,
in this case this simplification will enable us to optimize over the method parameters, a simplification that
appears to be hard to reach with previous formulations.

In order to proceed, we express first-order methods for minimizing f as acting instead on a function f̃ ,
using

f̃(x) := f(x)− µ
2 ‖x− w⋆‖2,

where w⋆ is a minimizer of both f and f̃ . It is known (see e.g. [Nesterov, 2004]) that f ∈ Fµ,L if and only
if f̃ ∈ F0,L−µ. Then, one can express (7) in terms of evaluations of the gradient of f̃ , instead of that of f .
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Concretely, we reformulate (7) in terms of some coefficients {αi,j} as follows

w1 − w⋆ = (w0 − w⋆)(1− µ
Lα1,0)− α1,0

L ∇f̃(w0)

w2 − w⋆ = (w0 − w⋆)(1− µ
L (α2,0 + α2,1))− α2,0

L ∇f̃(w0)− α2,1

L ∇f̃(w1)

...

wN − w⋆ = (w0 − w⋆)

(

1− µ
L

N−1
∑

i=0

αN,i

)

−
N−1
∑

i=0

αN,i

L ∇f̃(wi).

(8)

One can show that there is a bijection between representations (7) and (8). Therefore, the problem of
designing an optimal method in the form (7) is equivalent to that of devising an optimal method in the
form (8). This is formalized by the following lemma.

Lemma 3 Let N ∈ N and a first-order method M ∈MN . The following statements are equivalent.

– There exists a set {hi,j}i=1,...,N;j=0,...,i−1 such that for any f ∈ Fµ,L and w0 ∈ R
d the sequence

{wk}k=0,...,N ⊂ R
d generated by M satisfies (7) (i.e., M is a fixed-step first-order method).

– There exists a set {αi,j}i=1,...,N;j=0,...,i−1 such that for any f ∈ Fµ,L and w0 ∈ R
d the sequence

{wk}k=0,...,N ⊂ R
d generated by M satisfies (8).

Proof The proof follows from a short recurrence argument (provided in Appendix A) for showing that the
two representations are isomorphic, and that they are linked through the following triangular system of
equations

αk+1,i =

{

hk+1,k if i = k

hk+1,i + αk,i − µ
L

∑k
j=i+1 hk+1,jαj,i if 0 ≤ i < k.

(9)

Therefore, although we use (8) in the following sections, any method formulated in terms of {αi,j} can be
converted to the more natural {hi,j} notation, and reciprocally. ⊓⊔

In the next section, we develop an upper bound on Wµ,L(M) of a form similar to that of [Taylor et al.,
2017b, Theorem 6], but which is linear in {αi,j}, instead of quadratic in {hi,j}.

3.3 A performance estimation problem and its relaxation

The goal of this section is to construct an upper bound on (5) that can be computed efficiently. The
reformulation and relaxation techniques used for obtaining the upper bound are not new and rely on the
same steps as those taken in [Taylor et al., 2017b] (so readers familiar with such procedures can safely fly
over the section). We provide details which allows optimizing over the step sizes afterwards. Let us start by
rephrasing (5) as

Wµ,L(M) = sup
f̃ ,d∈N

{wi}i∈I⊂R
d

‖wN − w⋆‖2
‖w0 − w⋆‖2

s.t. wk generated by (8) applied on f̃ , and initiated at w0,

f̃ ∈ F0,L−µ(R
d),

w⋆ ∈ argminwf̃(w),

where we used an index set I = {⋆, 0, . . . , N}. Note the maximization over d, which aims at obtaining
dimension-independent guarantees. For such problems, it is known that the supremum is attained (see
e.g., [Taylor et al., 2017b, Proposition 1]), and we therefore use “max” instead of “sup” in what follows.

As a first step towards an “efficient” upper bound, we reformulate (5) using an extension (or interpolation)
argument. That is, the previous maximization problem can be restated using an existence argument for
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replacing the function by a finite set of samples. In other words, we optimize over the oracle’s responses
while keeping the responses consistent with assumptions on f

max
{(wi,gi,fi)}i∈I⊂R

d×R
d×R

d∈N

‖wN − w⋆‖2
‖w0 − w⋆‖2

s.t. wk generated by (8) for k = 1, . . . , N,

∃f̃ ∈ F0,L−µ(R
d) : gi ∈ ∂f̃(wi), fi = f̃(wi) ∀i ∈ I,

g⋆ = 0.

Using an homogeneity argument, one can reformulate this problem without the fractional objective. More
precisely, for any feasible point S = {(wi, gi, fi)}i∈I and any α > 0, the point S′ = {(αwi, αgi, α

2fi)}i∈I is
also feasible while reaching the same objective value (this can be verified using the definition of Fµ,L). We
can therefore arbitrarily fix the scale of the problem to ‖w0 −w⋆‖ = 1, reaching the following problem with
the same optimal value

max
{(wi,gi,fi)}i∈I⊂R

d×R
d×R

d∈N

‖wN − w⋆‖2

s.t. ‖w0 − w⋆‖2 = 1,

wk generated by (8) for k = 1, . . . , N,

∃f̃ ∈ F0,L−µ(R
d) : gi ∈ ∂f̃(wi), fi = f̃(wi) ∀i ∈ I,

g⋆ = 0.

It follows from Theorem 2 that the previous problem can be reformulated exactly as

max
{(wi,gi,fi)}i∈I⊂R

d×R
d×R

d∈N

‖wN − w⋆‖2

s.t. ‖w0 − w⋆‖2 = 1,

wk generated by (8) for k = 1, . . . , N,

fi ≥ fj + 〈gj ;xi − xj〉+ 1
2(L−µ)‖gi − gj‖

2 ∀i, j ∈ I,
g⋆ = 0.

(10)

Whereas equivalence between the two previous problems might be regarded as technical, the fact (10)
produces upper bounds on (5) is quite direct. Indeed, any f̃ ∈ F0,L−µ satisfies the above inequalities, and
hence any feasible point to (5) can be converted to a feasible point to (10) by sampling f̃ .

In what follows, we use the following relaxation of (10), by incorporating only a specific subset of the
previous quadratic inequalities, therefore forming an upper bound on the original problem. Many inequalities
were removed because they introduce undesirable nonlinearities in the steps taken in the next sections.
Perhaps luckily, this relaxation will turn out to be tight for evaluating Wµ,L(M) of ITEM.

max
{(wi,gi,fi)}i∈I⊂R

d×R
d×R

d∈N

‖wN − w⋆‖2

s.t. ‖w0 − w⋆‖2 = 1, g⋆ = 0, (R)

wk generated by (8) for k = 1, . . . , N,

fi ≥ fi+1 + 〈gi+1;wi − wi+1〉+ 1
2(L−µ)‖gi − gi+1‖2 for i = 0, . . . , N − 2,

f⋆ ≥ fi + 〈gi, w⋆ − wi〉+ 1
2(L−µ)‖gi‖

2 for i = 0, . . . , N − 1,

fN−1 ≥ f⋆ + 1
2(L−µ)‖gN−1‖2.

As shown in the next section, this problem is semidefinite-representable and we can thus use standard
packages for approximating its solution numerically. Looking at the structure of these numerical solutions
helped us to choose this particular relaxation.
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The following lemma summarizes what we have obtained so far, that is,Wµ,L(M) ≤ val(R), where val(R)
denotes the optimal value of (R).

Lemma 4 Let N ∈ N, 0 ≤ µ < L < ∞, and M ∈ MN be a fixed-step first-order method (8) performing
N gradient evaluations and described by a set of coefficients {αi,j}i,j. For any d ∈ N, f ∈ Fµ,L(R

d),
w⋆ ∈ argminwf(w), initial guess w0 ∈ R

d, and wN =M(w0, f), it holds that

‖wN − w⋆‖2 ≤ val(R) ‖w0 − w⋆‖2,

where val(R) denotes the optimal value of (R).

3.4 Tractable upper bounds using semidefinite programming (SDP)

We now show how to reach a standard SDP formulation for (R). One can reformulate the maximization
problem (R) in terms of the variables (G,F ) (after substituting wk’s by their expressions) defined by

G =















‖w0 − w⋆‖2 〈g0;w0 − w⋆〉 〈g1;w0 − w⋆〉 . . . 〈gN−1;w0 − w⋆〉
〈g0;w0 − w⋆〉 ‖g0‖2 〈g1; g0〉 . . . 〈gN−1; g0〉
〈g1;w0 − w⋆〉 〈g1; g0〉 ‖g1‖2 . . . 〈gN−1; g1〉

...
...

...
. . .

...
〈gN−1;w0 − w⋆〉 〈gN−1; g0〉 〈gN−1; g1〉 . . . ‖gN−1‖2















� 0,

F =











f0 − f⋆
f1 − f⋆

...
fN−1 − f⋆











,

(11)

Formally, let us introduce the following notations for picking elements in G and F and conveniently formu-
lating the SDPs

w0 = e1 ∈ R
N+1, gi = ei+2 ∈ R

N+1, fi = ei+1 ∈ R
N ,

with i = 0, . . . , N − 1 and ei being the unit vector whose ith component is equal to 1. In addition, we also
denote by

wk = w0

(

1− µ
L

k−1
∑

i=0

αk,i

)

−
k−1
∑

i=0

αk,i

L gi,

for i = 0, . . . , N (note that wk is therefore linearly parameterized by {αk,i}). Those notations allow to
express the objective and constraints of (R) directly in terms of G and F using the following identities

fi − f⋆ = F fi i = 0, 1, . . . , N − 1,

‖gi‖2 = g⊤
i Ggi i = 0, 1, . . . , N − 1,

‖wi − w⋆‖2 = w⊤
i Gwi i = 0, 1, . . . , N,

〈gi;wj − w⋆〉 = g⊤
i Gwj i = 0, 1, . . . , N − 1, j = 0, 1, . . . , N.

Using those notations, any feasible point to (R) can be transformed to a feasible point to the follow-
ing (SDP-R), using the Gram matrix representation. Hence, the optimal value to the following problem
is an upper bound on that of (R). Note that an argument along the lines of [Taylor et al., 2017b, Theorem 5]
can be used to establish that the optimal value to this problem is actually equal to that of (R), however, as
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we only exploit the upper bound below we will omit the proof for this property.

max
G∈S

N+1

F∈R
N

d∈N

w⊤
NGwN

s.t. G � 0, (SDP-R)

w⊤
0 Gw0 = 1,

0 ≥ (fi+1 − fi)
⊤F + g⊤

i+1G(wi −wi+1) +
1

2(L−µ) (gi − gi+1)
⊤G(gi − gi+1) for i = 0, . . . , N − 2,

0 ≥ f⊤i F − g⊤
i Gwi +

1
2(L−µ)g

⊤
i Ggi for i = 0, . . . , N − 1,

0 ≥ −f⊤N−1F + 1
2(L−µ)g

⊤
N−1GgN−1,

rank(G) ≤ d.

After getting rid of the variable d and the rank constraint (which is void due to maximization over d), this
problem is a linear SDP, parametrized by L > µ ≥ 0, and {αi,j}.

For transforming the minimax problem to a bilinear minimization problem, the next key step in our
procedure is to express the Lagrangian dual of (SDP-R), substituting the inner maximization problem by a
minimization, hence replacing the minimax by a minimization problem. Note that we do not assume strong
duality, as weak duality suffices for obtaining an upper bound on the original problem. That is, we perform
the following primal-dual associations

‖w0 − w⋆‖2 = 1 : τ,

fi ≥ fi+1 + 〈gi+1;wi − wi+1〉+ 1
2(L−µ)‖gi − gi+1‖2 for i = 0, . . . , N − 2 : λi,i+1,

f⋆ ≥ fi + 〈gi, w⋆ − wi〉+ 1
2(L−µ)‖gi‖

2 for i = 0, . . . , N − 1 : λ⋆,i,

fN−1 ≥ f⋆ + 1
2(L−µ)‖gN−1‖2 : λN−1,⋆,

and arrive to the following dual formulation of (SDP-R), whose optimal value is denoted by UBµ,L(M)

UBµ,L({αi,j}) := min
τ,λi,j≥0

τ,

s.t.S(τ, {λi,j}, {αi,j}) � 0, (dual-SDP-R)

N−2
∑

i=0

λi,i+1(fi+1 − fi) +

N−1
∑

i=0

λ⋆,ifi − λN−1,⋆fN−1 = 0,

with (note the dependence on {αi,j} via wi’s)

S(τ,{λi,j}, {αi,j}) =τ w0w
⊤
0 −wNw⊤

N +
λN−1,⋆

2(L− µ)gN−1g
⊤
N−1 +

N−1
∑

i=0

λ⋆,i
2

(

−giw
⊤
i −wig

⊤
i + 1

L−µgig
⊤
i

)

+

N−2
∑

i=0

λi,i+1

2

(

gi+1(wi −wi+1)
⊤ + (wi −wi+1)g

⊤
i+1 +

1
L−µ (gi − gi+1)(gi − gi+1)

⊤
)

.

Note that in the case N > 1, the equality constraint in (dual-SDP-R) can be written as

λ⋆,0 − λ0,1 = 0,

λi−1,i + λ⋆,i − λi,i+1 = 0 for i = 1, . . . , N − 2,

λN−2,N−1 + λ⋆,N−1 − λN−1,⋆ = 0.

(12)

When N = 1, it reduces to λ⋆,0 − λ0,⋆ = 0. The following lemma recaps the current situation.
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Lemma 5 Let N ∈ N, 0 ≤ µ < L <∞, and M ∈ MN be a black-box first-order method (8) performing N
gradient evaluations and described by a set of coefficients {αi,j}i,j. For any d ∈ N, w0 ∈ R

d, f ∈ Fµ,L(R
d),

w⋆ ∈ argminwf(w), and wN =M(w0, f), it holds that

‖wN − w⋆‖2 ≤ UBµ,L({αi,j}) ‖w0 − w⋆‖2.
Proof The result follows Lemma 4. More precisely, any feasible point to (R) can be translated to a feasible
point to (SDP-R) using the Gram matrix representation (11), hence val(R) ≤ val(SDP-R). Furthermore,
weak duality implies val(SDP-R) ≤ val(dual-SDP-R) = UBµ,L({αi,j}). Therefore

val(R) ≤ val(SDP-R) ≤ UBµ,L({αi,j}),
and it follows that

‖wN − w⋆‖2 ≤ val(R)‖w0 − w⋆‖2 ≤ UBµ,L({αi,j}) ‖w0 − w⋆‖2,
where the first inequality is due to Lemma 4. ⊓⊔

The last remaining difficulty is that S(·) appearing in (dual-SDP-R) is bilinear in terms of the algorithmic
parameters {αi,j} (the vectors wi depend linearly on those parameters) and the dual variables {λi,j}.
Therefore, it might be unclear how to efficiently solve

min
{αi,j}

UBµ,L({αi,j}) ≡ min
{αi,j}

min
τ,{λi,j}≥0

τ,

s.t.S(τ, {λi,j}, {αi,j}) � 0,

N−2
∑

i=0

λi,i+1(fi+1 − fi) +

N−1
∑

i=0

λ⋆,ifi − λN−1,⋆fN−1 = 0,

as problems involving such bilinear matrix inequalities are NP-hard in general. In the next section, we employ
a linearization trick which allows tackling this specific problem.

3.5 An approximate minimax and its semidefinite representation

In this section, we proceed with the last stage of our construction, by showing how to solve

min
{αi,j}

UBµ,L({αi,j}), (13)

which is a minimization problem jointly on τ , αi,j ’s and λi,j ’s. As it is, the problem features a bilinear matrix
inequality. A few algebraic manipulations on the matrix S allows rewriting the bilinear matrix inequality
in terms of a matrix S′, in a slightly more explicit and convenient way (those manipulations are provided
in Appendix B, where S′ is defined). This structure reveals that the following change of variables allows
linearizing the bilinear matrix inequality (for all 0 ≤ j < i = 1, . . . , N)

βi,j =







λi,i+1αi,j if 0 < i < N − 1,
λN−1,⋆αN−1,j if i = N − 1,
αN,j if i = N.

(14)

As provided in Lemma 6 below, this change of variables is invertible for the problem under consideration.
In other words, for any N > 1 and 0 ≤ µ < L, one can solve (13) via its reformulation (intermediate
computations, involving a matrix S′ are provided in Appendix B; the important thing to see about those
formulation is how variables {αi,j} and {λi,j} interact with each others), as

min
τ,{λi,j}≥0

{βi,j}

τ

s.t.

(

S′′(τ, {λi,j}, {βi,j}) wN

w⊤
N 1

)

� 0,

N−2
∑

i=0

λi,i+1(fi+1 − fi) +

N−1
∑

i=0

λ⋆,ifi − λN−1,⋆fN−1 = 0,

(Minimax-R)
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which is a standard linear semidefinite program, with the following definitions (note the linear dependencies
in all parameters τ, {λi,j}, {βi,j})

S′′(τ, {λi,j},{βi,j})

= 1
2(L−µ)

(

λN−1,⋆ gN−1g
⊤
N−1 +

N−1
∑

i=0

λ⋆,igig
⊤
i +

N−2
∑

i=0

λi,i+1(gi − gi+1)(gi − gi+1)
⊤
)

− 1
2λ⋆,0(g0w

⊤
0 +w0g

⊤
0 )−

N−2
∑

i=1



λi,i+1 − µ
L

i−1
∑

j=0

βi,j





1
2(giw

⊤
0 +w0g

⊤
i )

+

N−2
∑

i=1

i−1
∑

j=0

βi,j

L
1
2 (gig

⊤
j + gjg

⊤
i )−



λN−1,⋆ − µ
L

N−2
∑

j=0

βN−1,j





1
2 (gN−1w

⊤
0 +w0g

⊤
N−1)

+

N−2
∑

j=0

βN−1,j

L
1
2 (gN−1g

⊤
j + gjg

⊤
N−1) +

N−2
∑

i=0



λi,i+1 − µ
L

i−1
∑

j=0

βi,j





1
2(gi+1w

⊤
0 +w0g

⊤
i+1)

−
N−2
∑

i=0

i−1
∑

j=0

βi,j

L
1
2 (gi+1g

⊤
j + gjg

⊤
i+1) + τw0w

⊤
0 ,

and wN = w0

(

1− µ
L

∑N−1
i=0 αN,i

)

−
∑N−1

i=0
αN,i

L gi. From the solution to (Minimax-R), one can recover a

fixed-step first-order method whose worst-case performance satisfies

‖xN − x⋆‖2 ≤ val(Minimax-R) ‖x0 − x⋆‖2,
as formalized by the next lemma.

Lemma 6 Let N ∈ N with N > 1, and 0 ≤ µ < L < ∞. Furthermore, let (τ, {βi,j}, {λi,j}) be a solution
to (Minimax-R). The following statements hold.

(i) If λk,k+1 = 0 for some k ∈ {1, . . . , N − 2}, then βk,j = 0 for all j = 0, . . . , k − 1.
(ii) If λN−1,⋆ = 0, then βN−1,j = 0 for all j = 0, . . . , N − 2.
(iii) Let {αi,j} be defined as

αi,j =















0 if βi,j = 0,
βi,j/λi,i+1 if 0<i < N − 1 and 0 ≤ j < i,
βN−1,j/λN−1,⋆ if i = N − 1 and 0 ≤ j < i,
βN,j if i = N and 0 ≤ j < i.

(15)

The output of the corresponding method of the form (8) satisfies

‖wN − w⋆‖2 ≤ τ‖w0 − w⋆‖2

for any d ∈ N, w0 ∈ R
d, and f ∈ Fµ,L(R

d).

Proof (i) assume λk,k+1 = 0 for some k > 0; it follows from λi,j ≥ 0 and (12) that λ⋆,i = 0 (for all
0 ≤ i ≤ k) and λi−1,i = 0 (for all 1 ≤ i ≤ k). From the expression of S′′, it means that there are no diagonal
entries corresponding to the entries e2e

⊤
2 , ..., ek+2e

⊤
k+2 (corresponding to g0g

⊤
0 , ..., gkg

⊤
k ). Therefore, the

constraint S′′ � 0 imposes the corresponding off-diagonal elements to be equal to zero as well (i.e., all
entries corresponding to w0g

⊤
0 , . . . ,w0g

⊤
k and gig

⊤
j for j = 0, . . . , k and i = 0, . . . , N − 1). It follows

from a short recurrence argument that βi,0, . . . , βi,i−1 = 0 for all 1 ≤ i ≤ k and hence in particular that
βk,0, . . . , βk,k−1 = 0.

(ii) Using a similar argument: it follows from λN−1,⋆ = 0 that λN−2,N−1 = λ⋆,N−1 = 0. There is
therefore no diagonal element corresponding to the entry gN−1g

⊤
N−1 in S′′, and the corresponding off-

diagonal elements should be zero as well due to the constraint S′′ � 0. Hence, together with (i), the last
argument allows to conclude that βN−1,0, . . . , βN−1,N−2 = 0.

(iii) Using (i) and (ii), and for {αi,j} (which is well defined due to (i) and (ii)), the couple (τ, {λi,j}) is
feasible for (dual-SDP-R) by construction, following the reformulation steps of S in Appendix B. It follows
that UBµ,L({αi,j}) ≤ τ and Lemma 5 allows reaching the desired claim. ⊓⊔
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It is relatively straightforward to establish that ITEM is a solution to (14), given that (i) ITEM achieves the
lower complexity bound (see Section 2.3), that (ii) ITEM is a fixed-step first-order method, and that (iii) all
the inequalities involved in the proof of Theorem 1 and Theorem 3 are used in the relaxation procedure (R).
We conclude this section by the corresponding formal statement.

Theorem 4 Let N ∈ N, and 0 ≤ µ < L <∞. Algorithm (3) is a solution to (Minimax-R).

Proof We exhibit a solution to (Minimax-R) and show that it corresponds to ITEM in Appendix C. ⊓⊔

Numerical examples of the design procedure are provided in Appendix E, including optimized methods
for different objectives, like function values, for which we provide the slightly adapted design strategy in
Appendix D. Code for reproducing the results are provided in Section 4.

Remark 1 (From numerical values of the step sizes to an analytical algorithm) Before concluding, let us
informally mention a few details on how we obtained the analytical formulation for Algorithm 1 (ITEM)
from the numerical values of the step sizes.

The main observations that helped are the following: (i) the step size policy appeared not to depend
on the horizon N , (ii) the numerics suggested that the optimal values of the step sizes could be “factored”
in an efficient form not requiring to store all previous gradients (see, e.g., discussions in [Drori and Taylor,
2020, Section 5]), and (iii) only a few inequalities were active at the optimal point. Those three observations
suggested the existence of a potential/Lyapunov-based proof structure for the optimized method. Perhaps
luckily, this allowed us to engineer a method matching the coefficients and worst-case bounds obtained from
the numerical step size optimization procedure, as well as the results from the analytical lower complexity
bound (see [Drori and Taylor, 2022, Corollary 4]).

4 Conclusion

In this work, we provided the Information-Theoretic Exact Method (ITEM), a first-order method whose
worst-case guarantee exactly matches the lower bound for minimizing smooth strongly convex functions. Fur-
thermore, we showed how to develop such methods constructively, through performance estimation problems
and semidefinite programming.

We believe that obtaining accelerated first-order methods as solutions to minimax problems certainly
brings perspectives and a systematic approach to accelerated methods in first-order convex optimization,
similar to the design procedure for obtaining Chebyshev methods for quadratic minimization (see e.g., the
survey of [d’Aspremont et al., 2021]). In addition, we think that the conceptual simplicity of the shapes
and proofs of such optimized methods render them attractive as textbook examples for illustrating the
acceleration phenomenon. In particular, it appeared as very surprising to us that both sequences {yk} and
{zk} now have relatively clear interpretations: zk’s are optimal for optimizing the distance to an optimal
solution, whereas yk’s are essentially optimal for optimizing function values (see [Kim and Fessler, 2016]).

Those methods might as well serve as an inspiration for further developments on this topic, for designing
accelerated methods in other settings, and for alternate performance criterion, as showcased numerically in
Appendix E.

Finally, let us mention that extending methods such as the Optimized Gradient Method, the Triple
Momentum Method, and the Information-Theoretic Exact Method to more general situations, possibly
involving constraints, for instance, seems less straightforward compared to other acceleration schemes. We
leave this question for future works.

Software Source code for helping in reproducing the slightly algebraic passage in §2 can be found in

https://github.com/AdrienTaylor/Optimal-Gradient-Method

together with implementations in the Performance Estimation Toolbox [Taylor et al., 2017a] for validating
the potential from Lemma 1, bounds from Theorem 3, and the constructive procedure of Lemma 6.

https://github.com/AdrienTaylor/Optimal-Gradient-Method
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A Alternate parametrization for first-order methods

In this section, we show that any method (7) can be reparametrized as (8) (and vice-versa), using the identity (9). First
note that the equivalence is clear for k = 1, as

w1 − x⋆ = w0 − x⋆ − h1,0

L
(∇f̃(w0) + µ(w0 − x⋆))

= (w0 − x⋆)(1 − µ
L
h1,0)− h1,0

L
∇f̃(w0),

and hence the equivalence holds for k = 1. Now, assuming the equivalence holds at iteration k, let us check that it holds at

iteration k + 1, that is assume wi − x⋆ = (w0 − x⋆)
(

1− µ
L

∑i−1
j=0 αi,j

)

− 1
L

∑i−1
j=0 αi,j∇f̃(wj) for 0 ≤ i ≤ k and compute

wk+1 − x⋆ =wk − x⋆ − 1
L

k
∑

i=0

hk+1,i(∇f̃(wi) + µ(wi − x⋆))

=(w0 − x⋆)



1− µ
L

k−1
∑

i=0

αk,i − µ
L

k
∑

i=0

hk+1,i +
µ2

L2

k
∑

i=0

k−1
∑

j=0

hk+1,iαi,j





− 1
L

k−1
∑

i=0

αk,i∇f̃(wi)− 1
L

k
∑

i=0

hk+1,i∇f̃(wi) +
µ
L2

k
∑

i=0

k−1
∑

j=0

hk+1,iαi,j∇f̃(wj)
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by reverting the ordering of the double sums, renaming the indices, and reordering, we get

wk+1 − x⋆ =(w0 − x⋆)



1− µ
L

k−1
∑

i=0

αk,i − µ
L

k
∑

i=0

hk+1,i +
µ2

L2

k−1
∑

j=0

k
∑

i=j+1

hk+1,iαi,j





− 1
L

k−1
∑

i=0

αk,i∇f̃(wi) − 1
L

k
∑

i=0

hk+1,i∇f̃(wi) +
µ
L2

k−1
∑

j=0

k
∑

i=j+1

hk+1,iαi,j∇f̃(wj)

=(w0 − x⋆)



1− µ
L

k−1
∑

i=0

αk,i − µ
L

k
∑

i=0

hk+1,i +
µ2

L2

k−1
∑

i=0

k
∑

j=i+1

hk+1,jαj,i





− 1
L

k−1
∑

i=0

αk,i∇f̃(wi) − 1
L

k
∑

i=0

hk+1,i∇f̃(wi) +
µ
L2

k−1
∑

i=0

k
∑

j=i+1

hk+1,jαj,i∇f̃(wi)

=(w0 − x⋆)



1− µ
L
hk+1,k − µ

L

k−1
∑

i=0



αk,i + hk+1,i − µ
L

k
∑

j=i+1

hk+1,jαj,i









− 1
L
hk+1,k∇f̃(wk) − 1

L

k−1
∑

i=0



αk,i + hk+1,i − µ
L

k
∑

j=i+1

hk+1,jαj,i



∇f̃(wi).

From this last reformulation, the choice (9), that is

αk+1,i =

{

hk+1,k if i = k

hk+1,i + αk,i − µ
L

∑k
j=i+1 hk+1,jαj,i if 0 ≤ i < k,

allows enforcing the coefficients of all independent terms (w0 − x⋆), ∇f̃(w0), . . . ,∇f̃(wk) to be equal in both (7) and (8),
reaching the desired statement. In addition, note that this change of variable is reversible.

B Algebraic manipulations of (dual-SDP-R)

In this section, we reformulate (dual-SDP-R) for enabling us optimizing both on αi,j ’s and λi,j ’s simultaneously. For doing
that, let us start by conveniently noting that

S(τ, {λi,j , {αi,j}}) � 0⇔
(

S′(τ, {λi,j}, {αi,j}) wN

w⊤
N 1

)

� 0,

with S′(τ, {λi,j}, {αi,j}) = S(τ, {λi,j}, {αi,j})+wNw⊤
N , using a standard Schur complement (see, e.g., [Van Loan and Golub,

1983]). The motivation underlying this reformulation is that this lifted linear matrix inequality depends linearly on {αN,i}i’s.
Indeed, the coefficients of the last iteration only appear through the term wN , which is not present in S′ (details below).

We only consider the case N > 1 below. In the case N = 1, (6) can be solved without the following simplifications. Let
us develop the expression of S′(·) as follows

S′(τ, {λi,j}, {αi,j}) = τw0w
⊤
0 + 1

2(L−µ)

(

λN−1,⋆ gN−1g
⊤
N−1 +

N−1
∑

i=0

λ⋆,igig
⊤
i +

N−2
∑

i=0

λi,i+1(gi − gi+1)(gi − gi+1)
⊤
)

− 1
2
λ⋆,0(g0w

⊤
0 +w0g

⊤
0 ) − 1

2

N−1
∑

i=1

(λi−1,i + λ⋆,i)(giw
⊤
i +wig

⊤
i )

+ 1
2

N−2
∑

i=0

λi,i+1(gi+1w
⊤
i +wig

⊤
i+1)

= τw0w
⊤
0 + 1

2(L−µ)

(

λN−1,⋆ gN−1g
⊤
N−1 +

N−1
∑

i=0

λ⋆,igig
⊤
i +

N−2
∑

i=0

λi,i+1(gi − gi+1)(gi − gi+1)
⊤
)

− 1
2
λ⋆,0(g0w

⊤
0 +w0g

⊤
0 ) − 1

2

N−2
∑

i=1

λi,i+1(giw
⊤
i +wig

⊤
i )

− 1
2
λN−1,⋆(gN−1w

⊤
N−1 +wN−1g

⊤
N−1) +

1
2

N−2
∑

i=0

λi,i+1(gi+1w
⊤
i +wig

⊤
i+1),
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where we used λi−1,i + λ⋆,i = λi,i+1 (for i = 1, . . . , N − 2), and λN−2,N−1 + λ⋆,N−1 = λN−1,⋆ for obtaining the second
equality. Substituting the expressions for wi’s, we arrive to

S′(τ, {λi,j}, {αi,j}) = τw0w
⊤
0 + 1

2(L−µ)

(

λN−1,⋆ gN−1g
⊤
N−1 +

N−1
∑

i=0

λ⋆,igig
⊤
i +

N−2
∑

i=0

λi,i+1(gi − gi+1)(gi − gi+1)
⊤
)

− 1
2
λ⋆,0(g0w

⊤
0 +w0g

⊤
0 )−

N−2
∑

i=1

λi,i+1



1− µ
L

i−1
∑

j=0

αi,j





1
2
(giw

⊤
0 +w0g

⊤
i )

+

N−2
∑

i=1

λi,i+1

i−1
∑

j=0

αi,j

L
1
2
(gig

⊤
j + gjg

⊤
i )− λN−1,⋆



1− µ
L

N−2
∑

j=0

αN−1,j





1
2
(gN−1w

⊤
0 +w0g

⊤
N−1)

+ λN−1,⋆

N−2
∑

j=0

αN−1,j

L
1
2
(gN−1g

⊤
j + gjg

⊤
N−1) +

N−2
∑

i=0

λi,i+1



1− µ
L

i−1
∑

j=0

αi,j





1
2
(gi+1w

⊤
0 +w0g

⊤
i+1)

−
N−2
∑

i=0

λi,i+1

i−1
∑

j=0

αi,j

L
1
2
(gi+1g

⊤
j + gjg

⊤
i+1),

where we simply expressed each wk in two terms, one with the contribution of w0, and the other with the contributions
of gi’s. Although not pretty, one can observe that S′ is still bilinear in {αi,j} and {λi,j}. This expression can be largely
simplified, but this form suffices for the purposes in this work.

C The Information-Theoretic Exact Method is a solution to (Minimax-R)

Proof of Theorem 4 For readability purposes, we establish the claim without explicitly computing the optimal values of the
variables {αi,j} and {βi,j} for ITEM. For avoiding this step, let us note that ITEM is clearly a fixed-step first-order method
following Definition 2. Therefore, following Lemma 3, the method can also be written in the alternate parametrization (8),
using the association wi ← yi (i = 0, 1, . . . , N − 1) and wN ← zN , where yk and zk are the sequences defined by (3). Let
{α⋆

i,j} denote the steps sizes corresponding to ITEM written in the form (8). We proceed to show that by choosing

λ⋆⋆,i =
1− q
L

Ai+1 −Ai

1 + qAN

λ⋆i,i+1 =
1− q
L

Ai+1

1 + qAN

λ⋆N−1,⋆ =
1− q
L

AN

1 + qAN

τ⋆ =
1

1 + qAN

(16)

and setting {β⋆
i,j} in accordance to (14), we reach a feasible solution to (Minimax-R). Note that optimality of the solution

follows from the value of τ⋆, which matches the lower complexity bound discussed in Section 2.3.
For establishing dual feasibility, we relate (Minimax-R) to the Lagrangian of (R). That is, denoting

K = S′′(τ⋆, {λ⋆i,j}, {β⋆
i,j}) −wNw⊤

N = S(τ⋆, {λ⋆i,j}, {α⋆
i,j}),

we have for all (F,G) as in (11), by construction,

F

(

N−2
∑

i=0

λ⋆i,i+1(fi+1 − fi) +

N−1
∑

i=0

λ⋆⋆,ifi − λ⋆N−1,⋆fN−1

)

+Tr(KG)

= τ⋆‖w0 −w⋆‖2 − ‖wN − w⋆‖2

+

N−2
∑

i=0

λ⋆i,i+1

[

f̃(wi+1) − f̃(wi) + 〈∇f̃(wi+1);wi −wi+1〉+ 1
2(L−µ)

‖∇f̃(wi)−∇f̃(wi+1)‖2
]

+

N−1
∑

i=0

λ⋆⋆,i

[

f̃(wi)− f̃⋆ + 〈∇f̃(wi), w⋆ −wi〉 + 1
2(L−µ)

‖∇f̃(wi)‖2
]

+ λ⋆N−1,⋆

[

f̃⋆ − f̃(wN−1) +
1

2(L−µ)
‖∇f̃(wN−1)‖2

]

.
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Using the association wi ← yi (i = 0, 1, . . . , N − 1) and wN ← zN , as well as f(yi) = f̃(yi) +
µ
2
‖yi − x⋆‖2, it follows from

Lemma 1 (the weighted sums below are the same as that of Lemma 1, written in terms of f̃(·) instead of f(·) and scaled by
a factor 1

L+µAN
; their reformulations are therefore also the same up to the rescaling) that for i = 1, . . . , N − 1

λ⋆⋆,i

[

f̃(wi)− f̃⋆ + 〈∇f̃(wi), w⋆ − wi〉+ 1
2(L−µ)

‖∇f̃(wi)‖2
]

+ λ⋆i−1,i

[

f̃(wi)− f̃(wi−1) + 〈∇f̃(wi);wi−1 − wi〉+ 1
2(L−µ)

‖∇f̃(wi)−∇f̃(wi−1)‖2
]

=
1

L+ µAN
(φi+1 − φi),

as well as

λ⋆⋆,0

[

f̃(w0)− f̃⋆ + 〈∇f̃(w0), w⋆ −w0〉+ 1
2(L−µ)

‖∇f̃(w0)‖2
]

=
1

L+ µAN
(φ1 − φ0),

λ⋆N−1,⋆

[

f̃⋆ − f̃(wN−1) +
1

2(L−µ)
‖∇f̃(wN−1)‖2

]

= − (1− q)AN

L+ µAN
ψN−1.

In addition, noting that φ0 = L‖w0 − w⋆‖2 allows reaching the following reformulation

F

(

N−2
∑

i=0

λ⋆i,i+1(fi+1 − fi) +

N−1
∑

i=0

λ⋆⋆,ifi − λ⋆N−1,⋆fN−1

)

+ Tr(KG)

=
1

L+ µAN

(

φ0 − (1 − q)ANψN−1 +

N−1
∑

i=0

(φi+1 − φi)
)

− ‖zN − w⋆‖2

= 0,

where the last equality follows from φN = (1 − q)ANψN−1 + (L + µAN )‖zN − w⋆‖2. Therefore, ITEM is a solution
to (Minimax-R). In more direct terms of the SDP (Minimax-R), one can verify that

λ⋆⋆,0 − λ⋆0,1 =
1− q
L

(

A1

1 + qAN
− A1

1 + qAN

)

= 0

λ⋆i−1,i + λ⋆⋆,i − λ⋆i,i+1 =
1− q
L

(

Ai

1 + qAN
+
Ai+1 − Ai

1 + qAN
− Ai+1

1 + qAN

)

= 0 for i = 1, . . . , N − 2

λ⋆N−2,N−1 + λ⋆⋆,N−1 − λ⋆N−1,⋆ =
1− q
L

(

AN−1

1 + qAN
+
AN −AN−1

1 + qAN
− AN

1 + qAN

)

= 0,

the previous computations therefore imply that K = 0 for ITEM, and hence S′′(τ, {λi,j}, {βi,j}) = wNw⊤
N � 0. ⊓⊔

D An SDP formulation for optimizing function values

In this section, we show how to adapt the methodology developed in Section 3 for a family of alternate design criteria, which
include (f(wN )−f⋆)/‖w0−w⋆‖2 and (f(wN )−f⋆)/(f(w0)−f⋆) (for which numerical examples are provided respectively in
Section E.1 and Section E.2). The developments slightly differ from those required for optimizing ‖wN − w⋆‖2/‖w0 −w⋆‖2;
and we decided not to present a unified version in the core of the text, for readability purposes. In particular, the set of
selected inequalities is slightly different, altering the linearization procedure.

The criteria we deal with in this section are of the form

f(wN )− f⋆
cw‖w0 −w⋆‖2 + cf (f(w0)− f⋆)

=
f̃(wN )− f⋆ + µ

2
‖wN −w⋆‖2

cw‖w0 −w⋆‖2 + cf (f̃(w0)− f⋆ + µ
2
‖w0 −w⋆‖2)

.

As the steps are essentially the same as detailed in Section 3, we proceed without providing much detail. We start with the
discrete version, using the set I = {⋆, 0, . . . , N}

max
{(wi,gi,fi)}i∈I

d∈N

fN − f⋆ + µ
2
‖wN − w⋆‖2

s.t. cw‖w0 − w⋆‖2 + cf (f0 − f⋆ + µ
2
‖w0 −w⋆‖2) = 1, g⋆ = 0

wk generated by (8) for k = 1, . . . , N

fi ≥ fj + 〈gj ;wi − wj〉+ 1
2(L−µ)

‖gi − gj‖2 for all i, j ∈ I.
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The upper bound we use is now very slightly different (the selected subset of constraints is not the same as that of (R))

UBµ,L({αi,j}) = max
{(wi,gi,fi)}i∈I

d∈N

fN − f⋆ + µ
2
‖wN − w⋆‖2

s.t. cw‖w0 −w⋆‖2 + cf (f0 − f⋆ + µ
2
‖w0 − w⋆‖2) = 1, g⋆ = 0

wk generated by (8) for k = 1, . . . , N

fi ≥ fi+1 + 〈gi+1;wi − wi+1〉+ 1
2(L−µ)

‖gi − gi+1‖2 for i = 0, . . . , N − 1

f⋆ ≥ fi + 〈gi, w⋆ − wi+1〉+ 1
2(L−µ)

‖gi+1‖2 for i = 0, . . . , N

The corresponding SDP can be written using a similar couple (G, F )

G =















‖w0 −w⋆‖2 〈g0;w0 −w⋆〉 〈g1;w0 − w⋆〉 . . . 〈gN ;w0 − w⋆〉
〈g0;w0 −w⋆〉 ‖g0‖2 〈g1; g0〉 . . . 〈gN ; g0〉
〈g1;w0 −w⋆〉 〈g1; g0〉 ‖g1‖2 . . . 〈gN ; g1〉

...
...

...
. . .

...
〈gN ;w0 − w⋆〉 〈gN ; g0〉 〈gN ; g1〉 . . . ‖gN‖2















F =











f0 − f⋆
f1 − f⋆

...
fN − f⋆











,

and the similar notations

w0 = e1 ∈ R
N+2, gi = ei+2 ∈ R

N+2, fi = ei+1 ∈ R
N+1,

with i = 0, . . . , N and ei being the unit vector whose ith component is equal to 1. In addition, we can also denote by

wk = w0

(

1− µ
L

k−1
∑

i=0

αk,i

)

−
k−1
∑

i=0

αk,i

L
gi.

A dual formulation of UBµ,L is given by (we directly included the Schur complement)

UBµ,L({αi,j}) = min
τ,λi,j≥0

τ,

s.t.

(

S̄′(τ, {λi,j}, {αi,j})
√
µwN√

µw⊤
N 2

)

� 0,

τ cf f0 +

N−1
∑

i=0

λi,i+1(fi+1 − fi) +
N
∑

i=0

λ⋆,ifi = fN

with

S̄′(τ, {λi,j}, {αi,j}) = τ (cw + cf
µ
2
)w0w

⊤
0 +

N
∑

i=0

λ⋆,i

2

(

−giw
⊤
i −wig

⊤
i + 1

L−µ
gig

⊤
i

)

+

N−1
∑

i=0

λi,i+1

2

(

gi+1(wi −wi+1)
⊤ + (wi −wi+1)g

⊤
i+1 + 1

L−µ
(gi − gi+1)(gi − gi+1)

⊤
)

.

Note that that the equality constraint corresponds to

cf + λ⋆,0 − λ0,1 = 0

λi−1,i + λ⋆,i − λi,i+1 = 0 for i = 1, . . . , N − 1

λN−1,N + λ⋆,N = 1.



24 A. Taylor, Y. Drori

We perform a some additional work on S̄′ (whose dependency on {αi,j} is implicit through the dependency on {wi}), as
before

S̄′(τ, {λi,j}, {αi,j}) = τ (cw + cf
µ
2
)w0w

⊤
0 +

1

2(L − µ)

(

N
∑

i=0

λ⋆,igig
⊤
i +

N−1
∑

i=0

λi,i+1(gi − gi+1)(gi − gi+1)
⊤
)

−
N
∑

i=0

λ⋆,i
1
2

(

giw
⊤
i +wig

⊤
i

)

+

N−1
∑

i=0

λi,i+1
1
2

(

gi+1(wi −wi+1)
⊤ + (wi −wi+1)g

⊤
i+1

)

= τ (cw + cf
µ
2
)w0w

⊤
0 +

1

2(L − µ)

(

N
∑

i=0

λ⋆,igig
⊤
i +

N−1
∑

i=0

λi,i+1(gi − gi+1)(gi − gi+1)
⊤
)

− λ⋆,0 1
2
(g0w

⊤
0 +w0g

⊤
0 ) −

N
∑

i=1

(λ⋆,i + λi−1,i)
1
2
(giw

⊤
i +wig

⊤
i )

+

N−1
∑

i=0

λi,i+1
1
2
(gi+1w

⊤
i +wig

⊤
i+1)

= τ (cw + cf
µ
2
)w0w

⊤
0 +

1

2(L − µ)

(

N
∑

i=0

λ⋆,igig
⊤
i +

N−1
∑

i=0

λi,i+1(gi − gi+1)(gi − gi+1)
⊤
)

− λ⋆,0 1
2
(g0w

⊤
0 +w0g

⊤
0 ) −

N−1
∑

i=1

λi,i+1
1
2
(giw

⊤
i +wig

⊤
i )− 1

2
(gNw⊤

N +wNg⊤
N )

+

N−1
∑

i=0

λi,i+1
1
2
(gi+1w

⊤
i +wig

⊤
i+1),

where we used λ⋆,i + λi−1,i = λi,i+1 (for i = 1, . . . , N − 1) and λ⋆,N +λN−1,N = 1. Now, making the dependence on αi,j ’s
explicit again, we arrive to

S̄′(τ, {λi,j}, {αi,j}) = τ (cw + cf
µ
2
)w0w

⊤
0 +

1

2(L − µ)

(

N
∑

i=0

λ⋆,igig
⊤
i +

N−1
∑

i=0

λi,i+1(gi − gi+1)(gi − gi+1)
⊤
)

− λ⋆,0 1
2
(g0w

⊤
0 +w0g

⊤
0 ) −

N−1
∑

i=1

λi,i+1



1− µ
L

i−1
∑

j=0

αi,j





1
2
(giw

⊤
0 +w0g

⊤
i )

+

N−1
∑

i=1

λi,i+1

i−1
∑

j=0

αi,j
1
2
(gig

⊤
j + gjg

⊤
i )−



1− µ
L

N−1
∑

j=0

αN,j





1
2
(gNw⊤

0 +w0g
⊤
N )

+

N−1
∑

j=0

αN,j
1
2
(gNg⊤

j + gjg
⊤
N ) +

N−1
∑

i=0

λi,i+1



1− µ
L

i−1
∑

j=0

αi,j





1
2
(gi+1w

⊤
0 +w0g

⊤
i+1)

−
N−1
∑

i=0

λi,i+1

i−1
∑

j=0

αi,j
1
2
(gi+1g

⊤
j + gjg

⊤
i+1)

and it remains to remark that the change of variables

βi,j =

{

λi,i+1αi,j if 0 ≤ i ≤ N − 1
αN,j if i = N.

(17)

linearizes the bilinear matrix inequality, again, and it remains to solve the SDP (13) using standard packages. Numerical
results for the pairs (cw, cf ) = (1, 0) and (cw, cf ) = (0, 1) are respectively provided in Section E.1 and Section E.2. A source
code for implementing those SDP is provided in Section 4.

E Numerical examples

As shown in Appendix D, slight modifications of the relaxations used for obtaining (Minimax-R) allows forming tractable
problems for optimizing the parameters of fixed-step methods under different optimality criteria. Although we were unable
to obtain closed-form solutions to the problems arising for these alternative criteria, the resulting problems can still be
approximated numerically for specific values of µ, L and N .

In the following, we provide a couple of examples that were obtained by numerically solving the first-order method design
problem (Minimax-R), formulated as a linear semidefinite program using standard solvers [Löfberg, 2004, Mosek, 2010].
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E.1 Optimized methods for (f(wN)− f⋆)/‖w0 − w⋆‖2

As a first example, we consider the criterion (f(wN )− f⋆)/‖w0 −w⋆‖. The following list provides solutions obtained by
solving the corresponding design problem for N = 1, ...,5 with L = 1 and µ = .1. The solutions are presented using the
notations from (7) together with the corresponding worst-case guarantees.

– For a single iteration, by solving the corresponding optimization problem, we obtain a method with guarantee f(w1)−f⋆
‖w0−w⋆‖ ≤

0.1061 and step size
[h⋆i,j ] =

[

1.4606
]

.

This bound and the corresponding step size match the optimal step size h1,0 =
q+1−

√
q2−q+1
q

, see [Taylor, 2017,

Theorem 4.14].

– For N = 2 iterations, we obtain
f(w2)−f⋆
‖w0−w⋆‖ ≤ 0.0418 with

[h⋆i,j ] =

[

1.5567
0.1016 1.7016

]

.

– For N = 3, we obtain f(w3)−f⋆
‖w0−w⋆‖ ≤ 0.0189 with

[h⋆i,j] =





1.5512
0.1220 1.8708
0.0316 0.2257 1.8019



 .

– For N = 4, we obtain
f(w4)−f⋆
‖w0−w⋆‖ ≤ 0.0089, with

[h⋆i,j ] =







1.5487
0.1178 1.8535
0.0371 0.2685 2.0018
0.0110 0.0794 0.2963 1.8497






.

– Finally, for N = 5, we obtain
f(w5)−f⋆
‖w0−w⋆‖ ≤ 0.0042 with

[h⋆i,j ] =











1.5476
0.1159 1.8454
0.0350 0.2551 1.9748
0.0125 0.0913 0.3489 2.0625
0.0039 0.0287 0.1095 0.3334 1.8732











.

Note that when µ = 0, we recover the step size policy of the OGM by Kim and Fessler [2016]. When setting µ > 0, we
observe that the resulting optimized method is apparently less practical as the step sizes critically depend on the horizon
N . In particular, one can observe that h⋆1,0 varies with the horizon N .

Figure 1 illustrates the behavior of the worst-case guarantee for larger values of N and compares it to the currently
best known corresponding lower bound, as well as to worst-case guarantees for TMM, Nesterov’s Fast Gradient Method
(FGM) for strongly convex functions, as well as to the methods generated with the SSEP procedure from [Drori and Taylor,
2020]. All the worst-case guarantees are computed numerically using the corresponding performance estimation problems
(see e.g., the toolbox [Taylor et al., 2017a]), and as a result, they are tight in the sense that matching inputs to the algorithms
attaining the bounds can be numerically constructed.
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Fig. 1 Numerical comparison (for L = 1, µ = 0.01) between (i) the worst-case guarantee of the optimized method for
f(wk)−f⋆
‖w0−w⋆‖2 (in red; obtained from developments in Appendix D, and numerical examples in Appendix E.1); (ii) a lower

bound on the oracle complexity for this setup (in blue; presented in [Drori and Taylor, 2022, Corollary 3]), which corresponds

to
f(wk)−f⋆
‖w0−w⋆‖2 ≥ µ

2−√
q

1+
√

q

(

1−√q
)2k

; (iii) the triple momentum method [Van Scoy et al., 2018] (cyan); (iv) Nesterov’s fast

gradient method (defined in [Nesterov, 2004, Section 2.2, “Constant Step Scheme, II”]; FGM, green), and (v) the method
generated by the subspace-search elimination procedure (SSEP) from [Drori and Taylor, 2020] (dashed, black).
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Fig. 2 Numerical comparison (for L = 1, µ = 0.01) between (i) the worst-case guarantee of the optimized method for
f(wk)−f⋆
f(w0)−f⋆

(in red; obtained from developments in Appendix D, and numerical examples in Appendix E.2); (ii) a lower bound

on the oracle complexity for this setup (in blue; computed numerically using the procedure from [Drori and Taylor, 2022]);
and (iii) a method generated by the subspace-search elimination procedure (SSEP) from [Drori and Taylor, 2020] (dashed,
black).
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E.2 Optimized methods for (f(wN)− f⋆)/(f(w0)− f⋆)

As in the previous section, the technique can be adapted for the criterion (f(wN ) − f⋆)/(f(x0) − f⋆), see Appendix D for
details. The following step sizes were obtained by setting L = 1 and µ = .1 and solving the resulting optimization problem
from different values of N .

– For a single iteration, N = 1, we obtain a guarantee f(w1)−f⋆
f(w0)−f⋆

≤ 0.6694 with the corresponding step size

[h⋆i,j ] =
[

1.8182
]

,

which matches the known optimal step size 2/(L+ µ) for this setup [De Klerk et al., 2017, Theorem 4.2].

– For N = 2, we obtain
f(w2)−f⋆
f(w0)−f⋆

≤ 0.3554 with

[h⋆i,j ] =

[

2.0095
0.4229 2.0095

]

.

– For N = 3, we obtain f(w3)−f⋆
f(w0)−f⋆

≤ 0.1698 with

[h⋆i,j] =





1.9470
0.4599 2.2406
0.1705 0.4599 1.9470



 .

– For N = 4, we obtain
f(w4)−f⋆
f(w0)−f⋆

≤ 0.0789 with

[h⋆i,j ] =







1.9187
0.4098 2.1746
0.1796 0.5147 2.1746
0.0627 0.1796 0.4098 1.9187






.

– Finally, for N = 5, we reach
f(w5)−f⋆
f(w0)−f⋆

≤ 0.0365 with

[h⋆i,j ] =











1.9060
0.3879 2.1439
0.1585 0.4673 2.1227
0.0660 0.1945 0.4673 2.1439
0.0224 0.0660 0.1585 0.3879 1.9060











.

Note that the resulting method is again apparently less practical than ITEM, as step sizes also critically depend on the horizon
N ; for example, observe again that the value of h⋆1,0 depends on N . Interestingly, one can observe that the corresponding
step sizes are symmetric, and that the worst-case guarantees seem to behave slightly better than in the distance problem
‖wN − w⋆‖2/‖w0 −w⋆‖2, although their asymptotic rate has to be the same, due to the properties of strongly convex
functions. Figure 2 illustrates the worst-case guarantees of the corresponding method for larger numbers of iterations, and
compares it to the lower bound.
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