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MissBeamNet: Learning Missing Doppler Velocity
Log Beam Measurements

Mor Yona and Itzik Klein

Abstract—One of the primary means of sea exploration is
autonomous underwater vehicles (AUVs). To perform these tasks,
AUVs must navigate the rough challenging sea environment.
AUVs usually employ an inertial navigation system (INS), aided
by a Doppler velocity log (DVL), to provide the required
navigation accuracy. The DVL transmits four acoustic beams to
the seafloor, and by measuring changes in the frequency of the
returning beams, the DVL can estimate the AUV velocity vector.
However, in practical scenarios, not all the beams are successfully
reflected. When only three beams are available, the accuracy of
the velocity vector is degraded. When fewer than three beams
are reflected, the DVL cannot estimate the AUV velocity vector.
This paper presents a data-driven approach, MissBeamNet, to
regress the missing beams in partial DVL beam measurement
cases. To that end, a deep neural network (DNN) model is
designed to process the available beams along with past DVL
measurements to regress the missing beams. The AUV velocity
vector is estimated using the available measured and regressed
beams. To validate the proposed approach, sea experiments were
made with the ”Snapir” AUV, resulting in an 11 hours dataset of
DVL measurements. Our results show that the proposed system
can accurately estimate velocity vectors in situations of missing
beam measurements. Our dataset and codebase implementing
the described framework is available at our GitHub repository.

Index Terms—Autonomous Underwater Vehicles, Navigation,
Doppler Velocity Log, Deep-Learning

I. INTRODUCTION

The demand for autonomous underwater vehicles (AUV)
is significantly growing [1], [2], [3], [4]. AUVs are used in
a variety of applications, such as seafloor exploration and
mapping [5], pipeline inspection [6], [7], and underwater mine
detection [8]. An accurate navigation system is necessary
for the AUV to navigate challenging sea conditions and
successfully perform the required tasks. From a navigational
perspective, the commonly used global navigation satellite
system (GNSS) is unavailable underwater. Furthermore, un-
derwater currents and the ever-changing landscape make it
difficult to use simultaneous localization and mapping (SLAM)
[9]. Consequently, most AUVs employ an inertial navigation
system (INS) aided by a Doppler velocity log (DVL). The INS
provides a complete navigation solution comprising position,
velocity, and orientation using three-axis accelerometers and
three-axis gyroscopes. However, due to inertial measurement
errors, the pure inertial solution will drift over time [10].
The DVL provides an accurate estimate of the AUV velocity
vector, which is used to aid the INS and obtain an accurate
navigation solution. The fusion between INS and DVL is well
addressed in the literature under normal DVL operating condi-
tions. For example, a rotational dynamic model was shown to
improve the INS/DVL fusion performance [11]. Furthermore,
an adaptive Kalman filter aimed at finding the optimal window

length for each measurement has been suggested [12]. In
order to improve the extended Kalman filter, an innovative
unscented Kalman filter was developed for AUV navigation
[13]. Recently, a dedicated neural network was proposed to
cope with current estimation during INS/DVL fusion [14].
The DVL emits four acoustic beams to the seafloor and mea-
sures the changes in the reflected beams’ frequency. Using the
frequency shift, the beam’s velocity is calculated. The AUV
velocity vector can be estimated when at least three beams
are reflected back. In real-life scenarios, however, beams may
not reflect back to the DVL for several reasons, such as if the
AUV passes over a deep trench in one of the directions, an
underwater sand wave changes the seafloor surface, or when
the AUV operates in extreme roll and pitch angles. In such
scenarios, the DVL cannot estimate the AUV velocity vector,
and the INS/DVL loosely coupled approach cannot be applied.
Since the tightly coupled approach uses any of the available
beams, it can be implemented for the fusion process. Yet, for
practical considerations, the loosely coupled method is usually
implemented [15], [16]. To cope with situations of partial
beam measurement, a model-based extended loosely coupled
approach was suggested [17].
The use of data-driven approaches in navigation and their
benefits over model-based approaches were recently summa-
rized in [18]. A novel method of improving the accuracy of
the estimated DVL velocity in underwater navigation using a
neural network structure was suggested [19]. Furthermore, a
deep learning network that utilizes attitude and heading data
in order to improve navigation accuracy and fault tolerance
was developed [20].
This paper presents, a learning framework, MissBeamNet, to
regress the missing DVL beams and enable AUV velocity vec-
tor estimation. To that end, we leveraged our initial research
to regress only a single beam [21]. The contributions of this
research are:

‚ A modular framework capable of regressing one, two, or
three missing beams.

‚ A robust long short-term memory network architecture
able to accurately regress the missing beams.

‚ Inclusion of depth measurements to improve beam re-
gression accuracy.

‚ A GitHub repository containing our code and dataset as a
benchmark dataset and solution and to encourage further
research in the field.

Here, we provide a thorough analysis of the missing beam sce-
narios. In addition, we compare our results to two model-based
approaches: 1) an average of the missing beam to estimate the
current one (baseline) and 2) the virtual beam approach [17].
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All analyses were made on a dataset consisting of 11 hours
of DVL recordings made by the Snapir AUV [23] during its
mission in the Mediterranean Sea. We further demonstrate
the superiority of MissBeamNet over current model-based
approaches and its ability to estimate the AUV velocity vector
in situations of missing DVL beam measurements.
The remainder of the paper is organized as follows: Section II
describes the AUV sensors and the model-based partial DVL
approaches. Section III presents our MissBeamNet framework,
while Section IV gives our sea experiment results. Finally, our
conclusions are presented in Section V.

II. PROBLEM FORMULATION

This section briefly describes the AUV sensors used in this
research and presents the baseline model-based approaches to
coping with missing beam measurements.

A. AUV Sensors

1) DVL: The DVL transmits four acoustic beams to the
seafloor, which reach the seafloor and bounce back to the DVL
transducers. The DVL measures the change in frequency in
each direction. Based on [24], the relative velocity of each
beam is calculated by:

Vrel “ pFD ` bF,D ` nF,Dq
1000 ¨ Cp1` SFcq

2fs
(1)

where FD is the Doppler frequency shift, bF,D and nF,D are
the bias and noise of the Doppler frequency shift, respectively,
SFc is the scale factor error, C is the speed of sound, and fs
is the transmitted acoustic frequency. The DVL transducers
send acoustic beams in four directions. The standard DVL
configuration is the ”Janus Doppler configuration”.In this
configuration, the transducers are in an ”X” shape, and the
direction of each beam is described by the following equation:

bi “

»

—

–

cos ψ̃i sin θ̃

sin ψ̃i sin θ̃

cos θ̃

fi

ffi

fl

(2)

where θ̃ is the (fixed) pitch angle and ψ̃i is the yaw angle
defined for each beam i as:

ψ̃i “ pi´ 1q90 deg`45 deg, i “ 1, 2, 3, 4. (3)

The estimated DVL velocity in the platform frame is:

ṽpt{p “ pA
TAq´1ATy (4)

where ṽpt{p is the velocity vector, A is the direction matrix
defined as:

A “

»

—

—

—

–

bT1

bT2

bT3

bT4

fi

ffi

ffi

ffi

fl

(5)

and y is the measured beams vector

y “
“

ỹ1 ỹ2 ỹ3 ỹ4
‰T
. (6)

2) Pressure sensor: A pressure sensor measures the pres-
sure of a fluid or gas. In underwater navigation, a pressure
sensor can be used to measure the water pressure at different
depths, which can be used to determine the depth of the sub-
merged vehicle. The underlying physical equation to estimate
the AUV depth is [26]:

p “ ρ ¨ g ¨ h` ρp0 (7)

where p [Kpa] is the measured pressure, p0 is the pressure
in the atmosphere equalling 101.3[Kpa], ρ is water
density[kg{m3], g is the gravity magnitude, assumed
here constant and equal to 9.81 [m{s2], and h [m] is the
depth of the AUV.

B. Model-based approaches for missing beams

1) Average: An average in a time window refers to the
average value of a measurement over a specific period of time
(the ’time window’). This can be useful for smoothing out
noisy or erratic measurements, and reducing the effects of
random errors. In the context of measurement synthesizing the
average is a standard method that uses the average between the
measurements in the previous time window, to assume the cur-
rent measurement. For a time window with N measurements,
the average is :

AV pxq “
1

N

N
ÿ

k“1

xk (8)

The size of the time window is chosen based on the charac-
teristics of the sensor and system. For example, a small time
window may be used for measurements that change rapidly,
while a larger time window may be more suitable for relatively
stable measurements.

2) Virtual Beam: The last velocity vector measurement can
be utilized to predict the current velocity vector [17]. This
method replaces the missing DVL beam measurement with
the previously available measurement. For example, if beam
#1 is absent, solving (4) with the known velocity vector at
k ´ 1 gives an estimate of its velocity:

y1,k « bT1 rv̂x,k´1 v̂y,k´1 v̂z,k´1s (9)

where k is the time index and v̂j,k´1 is the estimated velocity
component from the previous step for j “ x, y, z. This
approximated beam velocity is then used, together with the
measured beams, in (4) to predict the current velocity vector.

III. MISSBEAMNET FRAMEWORK

We propose a deep learning framework, MissBeamNet, as a
mechanism to handle missing DVL beam measurements (1,2,
or 3 beams) and allow the estimation of the AUV velocity
vector. The MissBeamNet framework utilizes n past DVL
beam measurements and the currently available beams as input
to an end-to-end neural network, which regresses the missing
beams. Then, the regressed and currently available measured
beams are plugged into the model-based least squares (LS)
estimator to estimate the AUV velocity vector. Figure 1
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describes our MissBeamNet framework.
Our proposed MissBeamNet can cope with the following
scenarios:
‚ If three beams are available, MissBeamNet will regress

one missing beam.
‚ If two beams are available, MissBeamNet will regress

two missing beams.
‚ If one beam is available, MissBeamNet will regress three

missing beams.
Note, that MissBeamNet was not designed to handle complete
DVL outages, as it requires at least one available beam. For
total outages, other solutions exist [27], [28]. We consider two

Fig. 1. MissBeamNet framework utilizing past DVL beam measurements to
regress the missing beams.

types of neural networks as our baseline network architectures.
The first is based on a one-dimension convolution neural
network (CNN), while the other is based on long-short-term
memory (LSTM) cells. Both networks have been proven to
work with time-series data, such as those considered in our
scenario.

A. Baseline Network Architectures

1) Convolutional Neural Network: In CNN layers, there is
a sparse interaction between the input and output, as appose to
fully connected layers, where all the input parameters directly
interact with the output. The convolution operator is a linear
operator that involves multiplying an input with a kernel
containing learned parameters. The kernel slides through the
input, and the result is the sum of all the multiplications:

yt “
p
ÿ

k“1

xt`kwk (10)

where t is the timestamp, p is the kernel length, w is the
learned kernel parameter, and x,y are the input and output, re-
spectively. The fact that CNN shares parameters by passing the
same kernels through all the input makes CNN architectures
very popular in situations with large inputs. Figure 2 describes
our baseline CNN architecture, including network parameters,
for a scenario of two missing beams. The network is a multi-
head network where past DVL measurements are the input to
the first head, and current DVL measurements are the input to
the second head. The same structure and parameters are used
when one or three beams are missing. The selected activation
function between the layers is Relu and the stride and padding
are set to one.

2) Long Short-Term Memory Network: LSTM is an ad-
vanced version of a recurrent neural network (RNN) and solves
its shortcomings. RNNs are capable of handling temporal
data by using information from prior inputs. However, if
the sequence is long, the RNN may face a problem known
as vanishing/exploding gradients [29]. For example, when a

Fig. 2. Baseline CNN architecture with an example of two missing beams.

gradient is small, it may continue to decrease until the model
is no longer learning. The LSTM addresses these problems
using three types of gates: The forget gate, the input gate, and
the output gate.
The role of the forget gate is to forget unwanted information
from the previous output and current input:

ft “ σpxtU
f ` ht´1W

f ` bf q (11)

where xt is the input, ht´1 is the output of the previous LSTM
cell, W f and bf are the weights and biases of the forget gate,
respectively. In (11) sigmoid function is employed to bring the
parameter it wants to forget closer to zero. The output of the
forget gate is then multiplied by the previous cell state. The
role of the input gate is to update the cell state Ct´1, by first
calculating the input gate it:

it “ σpxtU
i ` ht´1W

i ` biq (12)

where U i and wi are the gate weights and bi is the bias.
Second, calculating the estimated cell state C̃t:

C̃t “ tanhpxtU
g ` ht´1W

g ` bgq (13)

where Ug and wg are the gate weights and bg is the bias. The
results of (11),(12), and (13) are used for the current cell state
calculations:

Ct “ ft ¨ Ct´1 ` it ¨ C̃t (14)

As the name implies, the output gate ot determines which
parameters are important as the output and next hidden state.

ot “ σpxtU
o ` ht´1W

o ` boq (15)

where U t and wt are the gate weights and bt is the bias. The
output gate results are then multiplied by a tanh layer of the
cell state to calculate the current output and hidden state

ht “ ot ¨ tanhpCtq (16)

Figure 3 describes our LSTM baseline network structure.
Previous beam measurements are used as input to the LSTM
layers. After the LSTM features extraction, the features are
concatenated with available beam measurements into a fully
connected layer, which performs the final process resulting in
the output of the regressed missing beams. Note that, like our
baseline CNN network, this is a multi-head network where past
DVL measurements are inputs to the first head, and current
DVL measurements are inputs to the second head. Figure 4
describes the LSTM architecture parameters in the scenario of
two missing beams. The activation function between the layers
is Relu. The same structure and parameters are also used when
one or three beams are missing.
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Fig. 3. Baseline LSTM structure.

Fig. 4. Baseline LSTM architecture with an example of two missing beams.

B. Training Process

The training process of deep neural networks requires defin-
ing a loss function. The common loss functions for regression
problems are mean absolute error (MAE) or mean squared
error (MSE). In this paper, we use MSE loss defined by:

MSE “
1

n

n
ÿ

i“1

pyactual ´ ypredictedq
2 (17)

where n is the number of samples, yactual is the target, and
ypredicted is the model output. Generally, the MSE loss func-
tion will try to adjust the model to better handle outliers than
MAE due to the MSE squared error. However, in our scenarios,
an AUV operates in varying sea conditions, therefore we adopt
the MSE loss. During training, the loss function is calculated
after each forward propagation in order to use the method of
gradient descent and set the DNN initial weight and biases on
values that will provide the desired result. Forward propagation
is the process of the data going through all the layers of
the architecture, like (10) for CNN and (11)-(16) for LSTM
networks. After completing the forward propagation process,
the back propagation process updates the weights and biases
of all the layers with a gradient descent principle

θ “ θ ´ η∇θJpθq (18)

where θ is the vector of weights and biases, Jpθq is the loss
function with the DNN weights and biases set to θ, ∇θ is the
gradient operator, and η is the learning rate.
The learning rate is a crucial hyperparameter, which dictates
how fast the weights and biases change after each training
batch. If the selected learning rate is too low, it might converge
in a local minimum, and if it is too high, the model might not

converge at a minimum. Our selected optimizer for all tested
architectures is an adaptive moment estimation (ADAM) [30].

IV. ANALYSIS RESULTS

A. Dataset Description
To examine the proposed approach, data from sea experi-

ments were employed. All experiments were conducted in the
Mediterranean Sea by the ”Snapir” (ECA A18D), a 5.5[m]
long AUV capable of reaching 3000[m] depth. It is equipped
with the Teledyne RDI Work Horse navigator DVL[31], which
has a four-beams Janus convex configuration with a sample
rate of 1[Hz]. To train the deep neural network, first, all invalid

Fig. 5. The ”Snapir” being pulled out of the water after a successful mission.

DVL data was removed (some of the invalid readings occurred
when actual beams were missing). Then, the data was divided
into routes that the AUV performed. Approximately 60% of
the missions were used as the training dataset and the rest as
the test dataset. The training dataset comprised 23,243 samples
corresponding to 387 minutes of recording, and the test dataset
had 276 minutes of recording (16,618 samples).
Figure 6 shows an experiment with challenging dynamics
which is part of the test dataset.

Fig. 6. Experiment example from the test dataset.

The total of 663 minutes of recordings consists of two
parts: 300 minutes from our initial data collection cam-
paign [22] and 363 minutes in the current campaign.
The complete dataset is publicly available at our GitHub
https://github.com/ansfl/MissBeamNet.
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B. Performance Metric

Performance metrics compare different models/methods and
choose the one with the best performance. Throughout the
research, we used the performance metric of root mean squared
error (RMSE), which is widely used to evaluate models on
regression tasks. RMSE is calculated by taking the root of the
average of squared differences between the predicted values
and the target values

RMSE “

c

řn
i“1pyactual ´ ypredictedq

2

n
(19)

The RMSE results are in the same units as the original data,
making it easy to interpret.

C. Baseline Architectures Comparison

To compare our two baseline architectures described in
Section III-B, we consider a scenario with two missing
beams, namely, beams #1 and #2, and assume six past beam
measurements are used. In addition to these two baseline
architectures, we examine the possibility of using only
past beam measurements instead of the baseline multi-head
approach. These two architectures are denoted as CNN A
and LSTM A. The results of the test dataset in terms of
RMSE are presented in Figure 7. The results shows that

Fig. 7. RMSE results for network architecture comparison.

using the baseline architectures (multi-head) obtained better
performance than working with all the inputs in a single
head. In addition, the performance of the baseline LSTM
showed an improvement of 27 % over the baseline CNN.

D. Number of Past Beam Measurement Influence

The number of past measurements utilized by the network
is defined as the window-size length. The length of the
optimal window size is crucial for model performance. The
window size regularizes the model performance between the
long and short movement patterns. If the selected window
size is too short, the model might miss the pattern of the
AUV movement, and if it is too long, the model might not
react well enough to a movement that just started. Figure 8
shows the RMSE of the baseline LSTM model with different
window-size lengths (between 3-10) when beams #1 and
#2 are being regressed. The results suggest that the optimal
window-size length on our dataset is six measurements.

Fig. 8. RMSE as a function of the window size for the baseline LSTM
network.

E. Additional Input Information

To improve the model performance even further, additional
inputs are considered.

1) Depth Sensor: The last depth sensor reading.
2) AUV Velocity Vector: Domain knowledge is used to

transform the raw data (in this case, the beams) into
meaningful features using feature engineering. Feature
engineering is prevalent in classical machine learning
methods, but less in deep neural networks. The assump-
tion when using a neural network is thet model will
learn the essential relations between features indepen-
dently. The beams and the velocity vector are related,
as the latter is estimated using the former. That is,
the model is not receiving new information. Yet, in
the proposed LSTM-based model, there are only two
fully connected layers, and therefore feature engineering
may help achieve better accuracy or shorten the network
convergence time.

Figure 9 describes the performance of each input with our
baseline LSTM architecture, including additional inputs of 1)
depth, 2) velocity vector, and 3) depth and velocity vector.
The tested case is when beams #1 and #2 are missing, and
beams #3 and #4 are inserted as a two-phase input to our
baseline LSTM network. All of the additional inputs improved

Fig. 9. Velocity RMSE as a function of different input selection for our
baseline LSTM network.

the performance of the baseline LSTM, and the best approach
was obtained using all three input types - beam measurements
(baseline), depth sensors, and the velocity vector. In this
instance, there was a 16% improvement compared to the
LSTM baseline.

F. Missing Beams Analysis

There are 14 combinations of missing beams: four combina-
tions of one missing beam, six of two missing beams, and four
of three missing beams. In the proposed approach a different
network needs to be trained for each of those combinations.
Training for all networks used the same hyper-parameters:



6

MSE loss function with a learning rate of 0.00005, batch size
of 1 sequence, and 150 epochs. In the following sections, we
present the performance of our MissBeamNet approach com-
pared to the average (baseline) and virtual beam approaches.
For this analysis, we employed our baseline LSTM network
described in Section 3.1.2. Based on the results of Section
4.4, we use six past DVL beam measurements and, based on
Section 4.5, both the depth sensor reading and velocity vector
were are added as additional inputs. The results were obtained
on the testing dataset.

1) One missing beam: When one beam is missing, the
least squared approach (4) can be used to obtain the estimated
AUV velocity vector. Table I presents the results of estimating
the missing beam, the speed error obtained when using the
estimated fourth beam together with the measured three, and
the improvement of our MissBeamNet approach over the two
model-based approaches.

Both model-based and MissBeamNet methods were supe-
rior tp the three beams solution, indicating that regressing the
fourth beam is critical to improving the AUV speed estima-
tion accuracy. Specifically, MissBeamNet, improved the speed
accuracy by over 90%. In addition, MissBeamNet performed
significantly better than the model-based approaches, with a
40%-68% improvement. Taking the mean of performance of
all four scenarios MissBeamNet improved the model-based
approaches by over 49.8 %.

2) Two Missing Beams: When considering two missing
beams, six different combinations exist. In such scenarios,
the AUV velocity cannot be estimated. Following the same
procedure as the previous one missing beam scenarios, Table
II presents the results of two missing beams. The results show
a significant difference between the speed error in each com-
bination, even in the model-based approaches, emphasizing
the problem’s complexity. Yet, in all cases, MissBeamNet
was more accurate than the model-based approaches, with a
minimum improvement of 20% that reached almost 50%. The
average improvement over the baseline model-based approach
was 28.7% compared to 49.8% when only one beam was miss-
ing. This is attributed to the model receiving less information
from two current beams compared to three when only one is
missing.

3) Three Missing Beams: Table III presents the results
for the four scenarios in which three beams are missing. As
expected, the speed error when three beams are missing is
higher than in the two or one missing beams scenarios. Yet,
MissBeamNet use improved results by at least 21% over the
model-based approaches. For three missing beams, the average
improvement was 24% compared to 28.7% when two beams
were missing, only 4.7% less, indicating that even with only
one beam at hand, the AUV velocity can be estimated.

4) Hyperparameter Tuning: One of the main challenges in
deep learning research is to find the best combination of hy-
perparameters for the proposed architecture. Each architecture
has several parameters that can influence model performance,
including the number of layers, the number of parameters in
each layer, the type of cost function, the learning rate, and
batch size. To demonstrate the potential of hyperparameter
tuning, we evaluated three different hyperparameters. The

first was the learning rate, which affects how much each
batch changes the weights and biases III-B. The second hyper
parameter was the number of hidden parameters in the LSTM
layer ht III-A2, and the third hyperparameter is the number
of parameters in the LSTM output. To test the importance of
hyperparameter tuning, each parameter was set with a few
available options, and a seed was set (equal initialization
in each run). We focused on a one missing beam scenario,
which has four options - missing beam #1,#2,#3, or #4.
For each case, 15 randomly selected combinations of the
three hyperparameters were examined. Table IV presents the
potential of hyperparameter tuning. It is important to note that
out of the 15 tested hyperparameter combinations, only a few
were better than the results before tuning. Yet, they were able
to improve the missing beam estimation and, consequently,
reduce the speed error and increase the rate of improvement
compared to the two model-based approaches.

V. CONCLUSIONS

Here, we presented MissBeamNet, a deep learning-based
framework developed to compensate for partial DVL measure-
ment scenarios (1, 2, or 3 missing beams). To that end, an
LSTM-based dedicated DNN was derived. We demonstrated
that the best input to the network is past DVL measurements,
past depth sensor measurements, previous velocity vectors,
and the currently available measured beams. Once the missing
beams are regressed, they are combined with the available
beams and plugged into the classical model-based approach
to estimate the AUV velocity vector.
To evaluate MissBeamNet, sea experiments with the Uni-
versity of Haifa’s ”Snapir” AUV were conducted. The data
included several trajectories collected for different purposes
and under various sea conditions. We provide a thorough
analysis of all 14 missing beam combinations and explore
several means to enhance our baseline architecture. The results
show that MissBeamNet allows estimating the missing DVL
beams and, consequently, the AUV velocity vector. Addi-
tionally, MissBeamNet significantly improves the accuracy of
the velocity vector in all examined scenarios compared to
the model-based approaches. The improvement of all three
missing beam combinations was above 20 % over the model-
based approaches. For two missing beams, performance was
generally better compared to three missing beams since the
model uses one additional measured beam. Finally, we show
that hyperparameters-tuned models improve the accuracy of
MissBeamNet by more than 40%.
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TABLE I
ONE MISSING BEAM SCENARIO RESULTS ON THE TEST DATASET

Case Approach Beam 1 Beam 2 Beam 3 Beam 4 Avg.
results

Missing beam [m/s] Average (baseline) 0.110 0.101 0.101 0.111 0.106
Virtual beam 0.139 0.109 0.110 0.129 0.121

MissBeamNet (ours) 0.065 0.048 0.034 0.067 0.053
Speed error [m/s] Average (baseline) 0.066 0.061 0.061 0.067 0.064

Virtual beam 0.079 0.065 0.066 0.077 0.072
Three beams 0.450 0.437 0.438 0.449 0.443

MissBeamNet (ours) 0.039 0.029 0.021 0.040 0.032
MissBeamNet improvement % Average (baseline) 40.9 52.4 65.6 40.3 49.8

Virtual beam 50.6 55.3 68.1 48.0 55.5
Three beams 91.3 93.3 95.2 91.1 92.7

TABLE II
TWO MISSING BEAM SCENARIO RESULTS ON THE TEST DATASET

Case Approach Beam
1,2

Beam
1,3

Beam
1,4

Beam
2,3

Beam
2,4

Beam
3,4

Avg.
result

Missing beams [m/s] Average (baseline) 0.106 0.106 0.111 0.101 0.107 0.106 0.106
Virtual beam 0.121 0.121 0.131 0.110 0.119 0.120 0.120

MissBeamNet (ours) 0.062 0.052 0.085 0.076 0.057 0.066 0.066
Speed error [m/s] Average (baseline) 0.092 0.077 0.096 0.088 0.079 0.092 0.087

Virtual beam 0.106 0.069 0.114 0.096 0.065 0.105 0.092
MissBeamNet (ours) 0.055 0.057 0.075 0.066 0.061 0.058 0.062

MissBeamNet improvement % Average (baseline) 40.2 25.9 21.9 25.0 22.8 36.9 28.7
Virtual beam 48.1 17.4 34.2 31.25 6.15 44.7 30.3

TABLE III
THREE MISSING BEAM SCENARIO RESULTS ON THE TEST DATASET

Case Approach Beam
1,2,3

Beam
2,3,4

Beam
1,2,4

Beam
1,3,4

Avg.
results
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