
HAL Id: hal-00385164
https://hal.science/hal-00385164v1

Submitted on 18 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting proofs in propositional logic
René David, Marek Zaionc

To cite this version:
René David, Marek Zaionc. Counting proofs in propositional logic. Archive for Mathematical Logic,
2009, 48, pp.P 185-199. �10.1007/s00153-009-0119-5�. �hal-00385164�

https://hal.science/hal-00385164v1
https://hal.archives-ouvertes.fr

Counting proofs in propositional logic

René DAVID∗ Marek ZAIONC†

May 18, 2009

Abstract

We give a procedure for counting the number of different proofs of a for-
mula in various sorts of propositional logic. This number is either an integer
(that may be 0 if the formula is not provable) or infinite.

1 Introduction

The aim of the paper is to give a procedure for counting the number of different
normal proofs of a formula in propositional logic. By the well known Curry Howard
correspondence, this is similar to counting the number of different normal closed
terms of some fixed type in an extension of the λµ calculus.

We show that this number is the least fix-point of a system of polynomial equa-
tions in some natural complete lattice and we give an algorithm for finding such a
least fix-point.

The similar problem of counting closed typed lambda terms was studied (see [1])
but never published by Ben- Yelles. Some description of the Ben-Yelles solution can
be found in Hindley’s book [4]. Similarly Hirokawa in [5] proved that the complexity
of the question whether a given simple type (implicational formula) possess an
infinite number of normal terms (or infinite number of proofs) is polynomial space
complete. Recently similar research about counting λ-calculus objects for program
synthesis was done by Wells and Yakobowski in [9].

2 The logic

2.1 Formulae and proofs

Definition 1 Let A be a set (possibly infinite) of atomic constants. The set F of
formulae is defined by the following grammar

F ::= A ∪ {⊥} | F → F | F ∧ F | F ∨ F

We assume that ⊥ 6∈ A and, as usual, ¬F will be an abbreviation for F → ⊥.

Definition 2 The rules for proofs in classical logic are the following.

∗Lama, Université de Savoie, Campus Scientifique. 73376 Le Bourget du lac. Email :

rene.david@univ-savoie.fr
†Theoretical Computer Science, Jagiellonian University, Lojasiewicza 6, 30-348 Kraków,

Poland. Email : zaionc@tcs.uj.edu.pl. Research described in this paper is supported by Polish

Ministry of Science and Higher Education grant NN206 356236

1

Γ, A ⊢ A
ax

Γ, A ⊢ B

Γ ⊢ A → B
→i

Γ1 ⊢ A → B Γ2 ⊢ A

Γ1, Γ2 ⊢ B
→e

Γ1 ⊢ A1 Γ2 ⊢ A2

Γ1, Γ2 ⊢ A1 ∧ A2

∧i

Γ ⊢ A1 ∧ A2

Γ ⊢ Ai

∧e

Γ ⊢ Aj

Γ ⊢ A1 ∨ A2

∨i

Γ ⊢ A1 ∨ A2 Γ1, A1 ⊢ C Γ2, A2 ⊢ C

Γ, Γ1, Γ2 ⊢ C
∨e

Γ,¬A ⊢ ⊥

Γ ⊢ A
⊥e

Γ,¬A ⊢ A

Γ,¬A ⊢ ⊥
⊥i

2.2 Terms coding proofs

It is well known that a proof, in intuitionistic implicational logic, can be coded by
a simply typed λ-term. The same thing can, in fact, be done for proofs, in classical
logic, of any kind of formulae. The extension from intuitionistic logic to classical
logic is the λµ-calculus introduced by Parigot in [6]. The extension to formulae
using all the usual connectors has been introduced by de Groote in [3]. The next
definition is a presentation of this calculus.

Definition 3 Let V and W be disjoint sets of variables. The set of λµ→∧∨-terms
is defined by the following grammar

T ::= V | λV .T | (T E) | 〈T , T 〉 | ω1T | ω2T | µW .T | (W T)

E ::= T | π1 | π2 | [V .T ,V .T]

The next definition shows how the terms introduced in definition 3 code the
proofs.

Definition 4 The typing rules for the λµ→∧∨-terms are as follows

Γ, x : A ⊢ x : A
ax

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B
→i

Γ1 ⊢ M : A → B Γ2 ⊢ N : A

Γ1, Γ2 ⊢ (M N) : B
→e

Γ, α : ¬A ⊢ M : A

Γ, α : ¬A ⊢ (α M) : ⊥
⊥i

Γ, α : ¬A ⊢ M : ⊥

Γ ⊢ µα.M : A
⊥e

Γ1 ⊢ M : A1 Γ2 ⊢ N : A2

Γ1, Γ2 ⊢ 〈M, N〉 : A1 ∧ A2

∧i

Γ ⊢ M : A1 ∧ A2

Γ ⊢ (M πi) : Ai

∧e

Γ ⊢ M : Aj

Γ ⊢ ωjM : A1 ∨ A2

∨i

Γ ⊢ M : A1 ∨ A2 Γ1, x1 : A1 ⊢ N1 : C Γ2, x2 : A2 ⊢ N2 : C

Γ, Γ1, Γ2 ⊢ (M [x1.N1, x2.N2]) : C
∨e

Remark

Note that, in definition 2, the letter Γ represents a finite multi-set of formulae
whereas, in definition 4, it represents a finite multi-set of indexed formulae i.e. a
finite set of pairs denoted as x : A or α : ¬A where x ∈ V , α ∈ W and A ∈ F
(where each variable occurs only once).

2

In the rest of the paper, we will continue to use the same notation for these two
formally distinct notions. Such a multi-set will be called a context. In a particular
sentence which of the two notions is meant will usually be clear ... from the context.

Definition 5 The set G of goals is the set of ordered pairs denoted as Γ ⊢ A where
A ∈ F and Γ is a context.

2.3 Normal terms and proofs

To avoid to have, for each formula, either zero or infinitely many proofs, we only
consider proofs satisfying two conditions.

1. The first one is usual : we only look at normal proofs i.e. proofs with no
cuts i.e. proofs such that the term that represents it is normal i.e. cannot
be reduced by the reduction rules of definition 6 below which corresponds to
the usual notion of cut elimination in natural deduction. Since every term is
normalizing i.e. can be reduced to a normal term (cf. theorem 8, item 1), if
a formula has a proof then it also has a normal proof. Thus the restriction
does not change the problem.

2. The second restriction, though quite natural, is less usual but also necessary
to avoid to have, for each formula, either zero or infinitely many proofs. It is
as follows.

(a) When we are in one of the branch of a proof by case (we have A ∨ B as
an hypothesis and we assume, for example, A), we are no more allowed
to, again, distinguish the same two cases i.e. we delete the hypothesis
A ∨ B.

(b) We forbid to prove ⊥ or ¬C by contradiction.

(c) When we are in a part of the proof in which we already have assumed
¬B, toward a contradiction, we are no more allowed to prove B by con-
tradiction.

A proof satisfying these three conditions will be called fair. It is easy to check
that if a formula is provable then it has a fair (normal) proof and thus asking
for fairness does not change the problem. Since fairness is less usual, we will
mention in the comments of section 3.4 where it appears in the research for
proof.

Note finally that we may want to add some (optional) restrictions to the number
of proofs we are looking for. They will be given in section 3.6.

Definition 6 The reduction rules for the λµ→∧∨-calculus are given below. Vari-
ables M, N, L are in T and ε is in E. A variable x belongs to V while α is taken
from W.

(λx.M N) ⊲β M [x := N]

(〈M1, M2〉 πi) ⊲ Mi

(ωiM [x1.N1, x2.N2]) ⊲ Ni[xi := M]

(M [x1.N1, x2.N2] ε) ⊲ (M [x1.(N1 ε), x2.(N2 ε)])

(µα.M ε) ⊲µ µα.M [(α L) := (α (L ε))]

3

Remarks

- The first three rules correspond to the elimination of a logical cut: an intro-
duction rule is immediately followed by the corresponding elimination rule.

- The fourth rule corresponds to the so-called permutative conversion: if a case
analysis is followed by an elimination rule the elimination can be done before the
case analysis.

- The last rule corresponds to the so-called classical cuts
Note that the two last rules are necessary to ensure that a normal proof has the
sub-formula property (cf. theorem 8, item 2).

Definition 7 Let t be a λµ→∧∨-term and g = Γ ⊢ A be a goal.

1. We say that t is a proof of g if Γ ⊢ t : A.

2. We say that t is normal if it contains no redex i.e. if it cannot be reduced by
the rules of definition 6.

Theorem 8 Let t be a proof of g = Γ ⊢ A. Then,

1. t can be reduced into a normal proof of g.

2. If t is normal and B is a formula that occurs in the typing tree of t then, there
is a sub-formula C of a formula in {A} ∪ Γ such that B = C or B = ¬C.

Proof Standard. See for example [7] or [8]. �

Theorem 9 There is an algorithm that, given a formula F , computes the number
(i.e. either an integer or ∞) of distinct normal and fair proofs of F .

Proof This is an immediate corollary of theorem 27 below whose statement and
proof is given in the next section. �

3 Proof of the main result

3.1 The idea of the proof

The idea of the proof is quite simple. To each goal g of the form Γ ⊢ A we associate
a variable ng that, intuitively, gives the number of normal and fair proofs of g. By
looking at the possible ways of proving g (either use an introduction rule or an
elimination rule or a proof by contradiction) we get equations relating the ng. We
will show that the number we are looking for is the minimal solution of this set of
equations. The two main technical difficulties are the following.

- We have to be able to compute the solution of these equations. This follows
from the fact that they only use integers, addition and multiplication. An addition
corresponds to the possibility of proving a goal in different ways. A multiplication
means that, to prove the goal, we have to prove two different things. Thus the
equations are polynomial and we will show that, for this kind of equations, we can
always compute the minimal solution.

- The other point is a bit more difficult. To be able to compute its solution, the
set of equations must be finite but, without sufficient care, it is not ! Since, by the
sub-formula property (theorem 8 above), we know that the formulae that appear
in a normal proof are sub-formulae of the initial formula, the set of goals must,
intuitively, be finite (which would imply that the set of equations also is finite) but
since, in Γ, a formula can be repeated many times it is not true that the set of goals
is finite. To solve this problem, we proceed as follows. When, in a proof of some
goal we introduce a new goal, say h, which is the same as a goal h′ that has already

4

been introduced except that it adds some hypothesis that were already present in
h′, we do not consider it as a new one i.e. we do not build an equation for it. This
is because we can show that h, h′ have the same number of proofs. But, to do that,
we need some book keeping because to show that h, h′ have the same number of
normal and fair proofs, we need the fact that h and h′ are, somehow, in the same
part of a proof. This will be ensured by the order we put on the variables ng. Doing
in this way, Konig’s lemma ensures that the set of equations is finite.

3.2 Polynomials

Definition 10 1. The set N ∪ {ω} will be denoted as N

2. The usual order and operations on N are extended to N by

• i ≤ ω and i + ω = ω + i = ω for every i ∈ N,

• 0 · ω = ω · 0 = 0,

• i · ω = ω · i = ω for every i 6= 0.

3. The set N
k

is naturally ordered by (a1, ..., ak) ≤ (b1, ..., bk) if ai ≤ bi for all i.

Lemma 11 N
k

is a complete lattice.

Proof Obvious. �

Definition 12 1. The set of polynomials is the least set of functions (of several
variables) from N to N that contains the constant functions and is closed by
addition and multiplication.

2. The order on polynomials is the point-wise order, i.e. if f(x1, ..., xn), g(x1, ..., xn)
are polynomials, f ≤ g iff ∀x1, ..., xn, f(x1, ..., xn) ≤ g(x1, ..., xn).

Definition 13 1. A polynomial system of equations (PSE for short) is a set
{E1, ..., En} where Ei is the equation xi = fi(x1, ..., xn) and fi is a polynomial
in the variables x1, ..., xn. Such a system will be abbreviated as ~x = F (~x).

2. Let ~x = F (~x) by a PSE. We say that ~a is a minimal solution of the system

if ~a = F (~a) and, for every ~b such that ~b = F (~b), we have ~a ≤ ~b.

3. We denote by F i the i-iteration of F , i.e. F 0(~x) = ~x and F i+1(~x) = F (F i(~x)).

Proposition 14 Let ~x = F (~x) be a PSE. Then, this system has a (unique)
minimal solution ~a (that we will denote by min(F)). Moreover we have min(F) =⊔∞

i=0
F i(~0) =

⋂
{~x | F (~x) ≤ ~x}.

Proof Since it is easy to check that F is increasing, this is a special case of the
Knaster-Tarski lemma. �

Lemma 15 Let f(x, ~y) = f0(~y)+
∑

i≥1
fi(~y)xi be a polynomial (where ~y is possibly

empty) and let h(~y) =
∑

i≥1
fi(~y). Then, g(~y) = f0(~y)+f0(~y)·h(~y)·ω is the minimal

solution of the equation x = f(x, ~y).

Proof If f0(~y) = 0 then the minimal solution is 0. If h(~y) = 0, then for all i ≥ 1,
fi(~y) = 0 and the minimal solution is f0(~y). Otherwise, it is easy to check that the
minimal solution is ω. In all cases the minimal solution is g(~y). �

5

Lemma 16 Let ~x = F (~x) by a PSE. The minimal solution of this system can be
computed from F .

Proof The algorithm to compute this solution is the following. Choose one
variable, call it x and call ~y the remaining variables. The system then looks like:
x = f(x, ~y) and ~y = G(x, ~y). Use lemma 15 to find the polynomial g(~y) which
is the minimal solution of the equation x = f(x, ~y). Repeat the process with the
system ~y = G(g(~y), ~y). It is clear that, in this way, we find a solution of the system.

Denote by (a,~b) this solution. By proposition 14, let (x0, ~y0) = min(F). Since

(a,~b) is a solution of the system we have (x0, ~y0) ≤ (a,~b). Thus it remains to

show that (a,~b) ≤ (x0, ~y0). Since x0 is a solution of the equation x = f(x, ~y0) we
have g(~y0) ≤ x0. Define F ′ by F ′(~y) = G(g(~y), ~y). By the monotonicity of G,
F ′(~y0) = G(g(~y0), ~y0) ≤ G(x0, ~y0) = ~y0. But since the minimal solution of F ′ is
⋂
{~y | F ′(~y) ≤ ~y} we have~b ≤ ~y0. By the monotonicity of g, a = g(b0) ≤ g(~y0) ≤ x0.

�

3.3 Some preliminary results

Definition 17 1. We will denote by F ′ the set of formulae to which we have
added a special element denoted as ∗.

2. Let E be a set of lists of elements of F ′ and A be a formula. We will denote
by [A :: E] the set {[A :: L] | L ∈ E} where [A :: L] denotes the list L on the
beginning of which we have added A.

Remark

Note that the definition implies that, if E is empty, then so is [A :: E].

Definition 18 Let A, B be formulae. The set Elim(A, B) of lists of elements of
F ′ is defined, by induction on the size of A, in the following way.

1. If A = B, then Elim(A, B) = [∗].

2. If A 6= B then,

- If A is atomic, Elim(A, B) = ∅

- If A = C → D, Elim(A, B) = [C :: Elim(D, B)]

- If A = A1 ∧ A2, Elim(A, B) = Elim(A1, B) ∪ Elim(A2, B)

- If A = A1 ∨ A2, Elim(A, B) = {[A]}

Lemma 19 Let A, B be formulae and let L ∈ Elim(A, B). Then the last element
of L is either ∗ or a disjunction.

Proof By induction on A. �

Comments and examples

1. The role of the particular symbol ∗ and the set Elim(A, B) will become clear
in item 3 of the next lemma. The intuition is the following. Elim(A, B) is
the set of lists L satisfying the following properties.

- If L = [A1 :: ... :: An :: ∗] then, to be able to prove B in some context Γ
by using a sequence of elimination rules starting with A, it is enough to prove
A1, ..., An in the context Γ.

- If L = [A1 :: ... :: An−1 :: D1 ∨ D2] then, to be able to prove B in some
context Γ by using a sequence of elimination rules starting with A, it is enough
to prove A1, ..., An−1 in the context Γ and to prove B both in the contexts
Γ ∪ {D1} and Γ ∪ {D2}.

6

2. Assume B, B′ are distinct atomic formulae and A = (A1 → D1∨D2)∧ (A2 →
A3 → B) ∧ (A4 → B′). Then Elim(A, B) = {L1, L2} where L1 = [A1 ::
D1 ∨ D2] and L2 = [A2 :: A3 :: ∗]

Lemma 20 Let t be a normal proof of Γ ⊢ B. Then, t is in one of the following
form (where the ti are normal)

1. Either

- t = λx.t1, B = B1 → B2 and Γ, x : B1 ⊢ t1 : B2

- t = µα.t1 and Γ, α : ¬B ⊢ t1 : ⊥

- t = 〈t1, t2〉, B = B1 ∧ B2 and Γ ⊢ ti : Bi

- t = ωit1, B = B1 ∨ B2 and Γ ⊢ t1 : Bi.

2. Or t = (α t1) and Γ ⊢ t1 : A where Γ ⊢ α : ¬A

3. Or t = (x t1 ... tn) and, for some A such that Γ ⊢ x : A and some L ∈
Elim(A, B), we have

- either L = [A1 :: ... :: An :: ∗] and the ti are proofs of Γ ⊢ Ai

- or L = [A1 :: ... : An−1 :: D1 ∨ D2] and, for i < n, the ti are proofs of Ai

and tn = [x1.u1, x2.u2] and the ui are proofs of Γ, xi : Di ⊢ B.

Proof By induction on the size of the proof. The only non immediate point
is that we cannot use an elimination rule when the type is a disjunction. This is
because, otherwise, we will get a proof of the form (x t1 ... tk [x1.N1, x2.N2] ε)
which is not normal. �

Definition 21 Let t be a normal proof. The size of t (denoted as size(t)) is defined
as follows.

1. size(λx.t1) = size(µα.t1) = size(ωit1) = size(t1) + 1

2. size(〈t1, t2〉) = max(size(t1), size(t2)) + 1

3. size((x t1 ... tn) = max(size(t1), ..., size(tn)) + 1

Definition 22 1. The set P of partial (normal) terms is defined by the follow-
ing grammar

P := V | G | λx.P | µα.P | 〈P ,P〉 | ωiP | (x P ... P)

2. The typing rules for P are the ones of T plus the additional rule

Γ ⊢ g : A
if g = Γ ⊢ A

Remark

A normal proof is partial term that contains no goal.

Definition 23 Let g be a goal. We denote by #(g) the number (considered as an
element of N) of distinct normal and fair proofs of g.

Definition 24 1. Let Γ, Γ′ be two contexts. We say that Γ is equivalent to Γ′

(denoted as Γ ∼ Γ′) if, for any A ∈ F , Γ contains a declaration x : A iff Γ′

contains a declaration y : A.

2. Let g = Γ ⊢ B and g′ = Γ′ ⊢ B′. We say that g is equivalent to g′ (denoted
as g ∼ g′) if B = B′ and Γ ∼ Γ′.

7

Thus two goals g, g′ are equivalent iff their conclusions are the same and they
have same set of hypothesis but each hypothesis may appear a different number of
times in g and g′.

Lemma 25 Let t be a partial proof of goal g. Assume t 6= g and contains some
goal g′ ∼ g. Then #(g) = #(g′).

Proof It is clear that g has no proof iff g′ has no proof. Assume then that
#(g) ≥ 1. Let g′′ = Γ′′ ⊢ A ∼ g be such that, for any formula B, the number of
occurrences of B in Γ or in Γ′ is less or equal to the number of occurrences of B in
Γ′′.

We first show that #(g′′) = ω. It is clear that the term t′ obtained from t by
replacing g′ by g′′ also is a partial proof of g′′ and, if u is a proof of g, it also is a
proof of g′′. Then, the un defined by u0 = u and un+1 = t′[g′′ := un] are distinct
normal and fair proofs of g.

We then show that #(g) = ω (and, by symmetry, #(g′) = ω). Assume, toward
a contradiction, that #(g) is finite. To each proof of g′′ associate the proof of g

obtained by replacing the occurrences of a variable in Γ′′ −Γ by one with the same
type in Γ. Since #(g) is finite and #(g′′) is infinite, there are infinitely many proofs
of g′′ that have the same image by this transformation. But this is impossible since,
in a proof, each variable occurs only finitely many times. �

3.4 The equations

To every goal g = Γ ⊢ A we associate a polynomial system of equations (denoted
as PSE(g)) of the form ~n = P (~n) where a goal gi is associated to each variable ni

and pi is a polynomial that, intuitively, computes the number of normal and fair
proofs of gi of a given size from the number of proofs (of smaller size) of the other
goals needed to prove gi.

PSE(g) is defined by the following algorithm. This algorithm builds, step by
step, a partially ordered set V of variables (denoted as n with some index), a
function F that associates goals to the variables and a set E of equations of the
form ni = pi(~n). We will show (see lemma 26 below) that it terminates. PSE(g)
will be the set of equations we have built when the algorithm terminates.

It is important to note that the function F is not necessarily injective i.e. to
different variables may correspond to the same goal. The reason will be given in
the comments after the description of the algorithm.

- Initial step

Set V = {n0}, F (n0) = g and E = ∅.

- General step
If, for all ni ∈ V , there is an equation ni = pi(~n) in E, then stop. Otherwise,

choose some ni for which E has no equation. We introduce new variables and build
the polynomial pi as the sum of three polynomials in the following way. The first
one corresponds to a proof of F (ni) = Γ ⊢ B beginning by an introduction rule, the
second corresponds to a proof of F (ni) by contradiction and the last corresponds
to a proof of F (ni) by using some hypothesis and several elimination rules.

In the definition of these polynomials we will adopt the following convention.
If h is a goal, when we say “ let n be a variable for h ” (we will also say “ n is a
name for h ”) this will mean that either F (nj) ∼ h for some nj < ni and then n is
such an nj (if there are several choose one) or, if no such variable exists, choose a
fresh index j and set F (nj) = h. For each variable nj introduced in this way, we
set nj > nk for each k such that ni ≥ nk.

8

1. The first polynomial P depends on the main connector of B.

(a) If B is an atomic formula, then P = 0

(b) If B = C → D then let h = Γ, y : C ⊢ D, then let P = nj where nj is a
variable for h.

(c) If B = B1 ∧ B2. Let hi be the goal Γ ⊢ Bi. Then P = ni1 .ni2 where
ni1 , ni2 are variables for h1, h2.

(d) If B = B1 ∨ B2. Let hi be the goal Γ ⊢ Bi. Then P = ni1 + ni2 where
ni1 , ni2 are variables for h1, h2.

2. The second polynomial Q is as follows.

(a) If B = ⊥ or B = ¬C or if there is already in Γ an hypothesis of the form
α : ¬B, then Q = 0.

(b) Otherwise, let h = Γ, α : ¬B ⊢ ⊥ and Q = nj where nj is a variable for
h.

3. The last polynomial is the sum of (over all the hypothesis H in Γ) of the
polynomials RH defined as follows.

(a) If H is x : A, RH is the sum (over L ∈ Elim(A, B)) of the polynomials
RH,L defined below.

- Assume L = [A1 :: ... :: Ap :: ∗]. Then RH,L = ni1nip
where

gi = Γ ⊢ Ai and ni1 , ..., nip
are variables for g1, ..., gp. In particular, if

p = 0, this means RH,L = 1.

- Assume L = [A1 :: ... :: Ap :: D1 ∨ D2]. Then, let gi = Γ ⊢ Ai,
hi = Γ′, y : Di ⊢ B where Γ′ is Γ from which we have deleted the
hypothesis x : A. Let ni1 , ..., nip

be variables for g1, ..., gp, let nj1 , nj2 be
variables for h1, h2. Then RH,L = ni1nip

.nj1 .nj2

(b) If H is α : ¬A then RH = nj where h = Γ ⊢ A and nj is a variable for h.

Comments

1. Eliminating the hypothesis x : A in the case of an elimination of the disjunc-
tion is condition (a) of fairness. The fact that Q = 0 in the first case of a
proof by contradiction is condition (b) and (c) of fairness.

2. The fact that a goal may have different names i.e. we may have F (ni) = F (nj)
for i 6= j comes from the following reason. A goal h may appear in different
proofs of g or in different parts of a proof of g. Of course #(h) does not
depend on the place where h appears but the condition that lets us decide
to give it a new name or not depends of this place. We know, by lemma 25,
that #(h) = #(h′) if h ∼ h′ and h is below h′ in some part of a proof but
there is no reason to have #(h) = #(h′) if they appear in different proofs or
in independent part of a proof.

Lemma 26 The algorithm given above terminates.

Proof Since the goals are made of sub-formulae of the formulae in g, there are
only finitely many possible non equivalent goals. Also note that, when we try to
find a proof for a goal h and we have to consider some goal h1, we give a new name
to h1 (i.e. we introduce a new variable ni such that F (ni) = h1 for which, later, we
will have to find an equation) only when there is no h2 ∼ h1 below h in the branch
of the proof of g that the algorithm, intuitively, constructs. Thus, all the branches
are finite. Since there are only finitely many rules, by Konig’s lemma, only finitely
many variables can be introduced and thus the algorithm terminates. �

9

3.5 Proof of theorem 9

It is an immediate consequence of lemma 25 and theorem 27 below.

Theorem 27 Let g be a goal and let ~a be the minimal solution of PSE(g). Then,
for each variable ni occurring in PSE(g) we have ai = #(F (ai)).

Proof Let PSE(g) be the set ~n = P (~n) of equations and ~b be defined by bi =

#(F (ni)). It follows from lemma 25 that ~b is a solution of PSE(g). Thus, we

have ~a ≤ ~b. Let uk = P k(~0). Since ~a is the minimal solution of the system
~n = P (~n) we have ~a =

⊔∞

k=0
uk. Denote by di(k) the number of normal and fair

proofs of F (ni) of size k and
−−→
d(k) the vector whose components are the di(k). Then

~b =
⊔∞

k=0

−−→
d(k). Note that the equations are done so that

−−−−−→
d(k + 1) ≤ P (

−−→
d(k)). An

immediate induction shows that, for each k,
−−→
d(k) ≤ uk. It follows then that~b ≤ ~a. �

Remark

If, instead of interpreting the variables and coefficients in N, we interpret them
in the set {0, 1} where the operations and the order are the ones of N except that
1+1 = 1, the conclusion of the theorem is then that ah = 1 iff the goal h is provable.

3.6 Some other restrictions on proofs

Definition 28 We say that a normal term t is in η-long normal form if the fol-
lowing holds for every sub-term u of t.

1. If u has type A → B then either u = λx.u′ or u is applied to some other term.

2. If u has type A ∧ B then u = 〈u1, u2〉 for some terms u1, u2.

The algorithm we have given in the previous sections has been designed to get
the number of normal and fair proofs in classical logic. It can be easily transformed
if we want to only count proofs satisfying some constraints.

1. If we want to have proofs in minimal logic i.e. the logic where the rules ⊥i

and ⊥e are deleted, we just forget the second step (which corresponds to proof
by contradiction) in the definition of the set of equations

2. If we want to have proofs in intuitionistic logic, i.e. the logic where the rules
⊥i, and ⊥e are deleted and replaced by the rule

Γ ⊢ ⊥

Γ ⊢ A

we replace the polynomial given in the second step of the definition of the set
of equations by the following one. If g is Γ ⊢ B and B 6= ⊥ then Q = nh

where h is Γ ⊢ ⊥ and Q = 0 otherwise.

3. Instead of changing the logic, we may also want to restrict the form of the
proofs we are looking for. The main usual restriction is to ask to have proofs
in η-long normal form. It is well known that, with this restriction, the system
remains complete. If we want such proofs it is enough, in the definition of the
equations to ask that, if the goal is Γ ⊢ B and the main connector of B is
either an arrow or a conjunction, then we cannot use a proof by contradiction
or use an elimination rule.

4. Our algorithm gives two normal and fair proofs for the formula A → A. These
proofs are λx.x and λx.µα.(α x). We could consider that these two proofs
are the same and, actually, there is a reduction rule in the λµ-calculus that

10

ensures that the second term reduces to the first one. This rule, that looks
like the η-rule of the λ-calculus, is the following µα.(α M) ⊲ M if α does not
occur in M . It intuitively means that if, in a proof of A by contradiction, in
fact you have a proof M of A that does not use ¬A, you can eliminate the
use of the rule for proof by contradiction.

It would be more difficult to consider this rule in the definition of normal
proof. This is because it is non local and our algorithm, by essence, can only
consider local configurations.

3.7 From polynomials to formulae

In the previous sections we have associated to each formula F a set of polynomial
equations whose minimal solution gives the number of normal and fair proofs of F .
The opposite construction is also possible as the next proposition shows.

Definition 29 Let F be a formula of implicational propositional logic i.e. F is
built from atomic formulae by using only the arrow as connectors. The rank of F

(denoted as r(F)) is defined by the following rules.

1. If F is atomic, then r(F) = 0

2. If F = A → B, then r(F) = max(r(A) + 1, r(B))

Proposition 30 Let E be a polynomial system of equations with n variables. We
can compute n formulae A1, ..., An of implicational logic such that, if (a1, ..., an) is
the minimal solution of E then, for all i ≤ n, ai is the number of proofs of Ai in
η-long normal form. Moreover we may assume that r(Ai) ≤ 2 for all i ≤ n.

Proof Let ~x = F (~x) be the system and F = (f1, ..., fn). We take n fresh ground
types O1, . . . , On. For each polynomial fp we construct a formula Bp in the following
way. For each monomial Mi = xα1

1 ·. . .·xαn

n which appears in fp let Ti be the formula
Oα1

1 , . . . , Oαn

n → Op. Remember that constant 1 can be obtained as the monomial
xα1

1 · . . . · xαn

n when all αi = 0. The formula associated to fp is T1, . . . , Tm → Op.
The fact that these formulae satisfy the desired conclusion is straightforward. �

4 Examples

Example 1

We want to compute the number of normal and fair proofs of the formula F

below

F = F1 → F2 → F3 → F4 → F5 → F6 → A

where
F1 = B → C → C F2 = F3 = C F4 = B → C → B

F5 = C → C → A F6 = A → B → A

To avoid too many equations we will restrict ourselves to proofs in η-long normal
form and in minimal logic and, to simplify notations, we will use the same name
for a goal and the variable attached to it and, if a goal has several names, the
corresponding variables will be the same with, possibly, some index. Also note
that, since we will not write the terms representing the proofs, there is no need to
give names to the hypothesis and thus we will write contexts simply as multi-sets
of formulae.
Let Γ = F1, F2, F3, F4, F5, F6. The goals are:

11

x is Γ ⊢ A,
y, y1 are Γ ⊢ B

z, z1 are Γ ⊢ C.

The order on these variables is given by: x < y, z ; y < z1 and z < y1.
The set of equations is

x = xy + z2

y = yz1 z1 = 2 + yz1

z = 2 + y1z y1 = y1z

The minimal solution is x = 4, y = y1 = 0, z = z1 = 2 and, therefore, there are
exactly 4 proofs of F in η-long normal form.

Example 2

We want to compute the number of normal and fair proofs of the formula F

below where ¬cB is the abbreviation of B → C. This formula is a kind of translation
(provable in minimal logic) of Pierce law.

F = ((A → ¬c¬cB) → ¬c¬cA) → ¬c¬cA

Again, we adopt the same restrictions and conventions of notations as in the
previous example.
Let F1 = (A → ¬c¬cB) → ¬c¬cA, F2 = ¬cA and Γ = α1 : F1, α2 : F2.
The goals are

x is Γ ⊢ C,
y, y1 are Γ, A,¬cB ⊢ C,

z, z1 are Γ, A ⊢ C,
u is Γ ⊢ A,

v, v1 are Γ, A,¬cB ⊢ A,
w, w1 are Γ, A,¬cB ⊢ B

r, r1 are Γ, A ⊢ A.

The order on these variables is given by: x < y, z, u ; y < z1, v, w ; z1 < r1 ;
z < y1, r ; y1 < v1, w1

The set of equations is

x = yz + u

y = yz1 + v + w z1 = yz1 + r1

z = y1z + r y1 = y1z + v1 + w1

v = v1 = 1 w = w1 = 0 r = r1 = 1 u = 0

The minimal solution is x = y = z = y1 = z1 = ω and, therefore, there are infinitely
many proofs of F in η-long normal forms.

Example 3

Let F be the formula ¬A∨A. It is known that F is not provable in intuitionistic
logic. We will show that, in classical logic, the are infinitely many distinct proofs
in η-long normal form. Since the number of equations to be written is quite big we
will only write some of those that imply that the number is infinite. To simplify we
will also omit some intermediate goals and/or equations when the relations between
the corresponding variables are easy to show.

The useful goals are the following

12

x is ⊢ F

x1 is ⊢ A, x2 is ⊢ ¬A and x3 is α : ¬F ⊢ ⊥
a is α : ¬F ⊢ A and b is α : ¬F ⊢ ¬A

a1 is α : ¬F, β : ¬A ⊢ ⊥ and a2 is α : ¬F ⊢ ¬A

c is α : ¬F, β : ¬A, y : A ⊢ ⊥
c1 is α : ¬F, β : ¬A, y : A ⊢ A

d is α : ¬F, β : ¬A, y : A, z : A ⊢ ⊥

Some equations are

x = x1 + x2 + x3

x1 = 0, x2 = 0
x3 = a + b

a = a1 + a2

a1 = c (⋆)
c = 2.c1 + d

c1 = 1
The use of lemma 25 gives d = c.

(⋆) a1 actually is the sum of c and some other variables that are easily shown to be
0.

References

[1] C.B Ben-Yelles. Type assignment in the lambda calculus. Syntax and semantics.
Thesis, Mathematics Department, University of Wales Swansea, Swansea, UK
(1979).

[2] W. Dekkers. Reducibility of types in Typed Lambda Calculus. Information and
Computation vol 77, No 2 pp 131– 137 (1988).

[3] P. de Groote. Strong Normalization of Classical Natural Deduction with Dis-
junction. Springer Lecture Notes in Computer Science 2044 pp 182-196 (2001).

[4] J.R. Hindley. Basic Simple Type Theory. Cambridge Tracts in Theoretical Com-
puter Science 42. Cambridge University Press 1997.

[5] S. Hirokawa. Infiniteness of Proof(α) is P-Space Complete. Theoret. Comput.
Sci. 206 no. 1-2, pp 331–339 (1998).

[6] M. Parigot. λµ-Calculus: An Algorithmic Interpretation of Classical Natural
Deduction. Springer Lecture Notes in Computer Science 624 pp 190-201 (1992).

[7] A.S. Troelstra, H. Schwichtenberg. Basic proof theory. Cambridge University
Press 1996.

[8] D. Van Dalen. Logic and structure. Springer 1997.

[9] J. B. Wells, B. Yakobowski. GraphBased Proof Counting and Enumeration with
Applications for Program Fragment Synthesis. Springer Lecture Notes in Com-
puter Science 3573, pp 262-277 (2005).

13

