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Abstract
The motivation for this work comes from two problems– test algebraic independence of arithmetic
circuits over a field of small characteristic, and generalize the structural property of algebraic
dependence used by (Kumar, Saraf CCC’16) to arbitrary fields.

It is known that in the case of zero, or large characteristic, using a classical criterion based
on the Jacobian, we get a randomized poly-time algorithm to test algebraic independence. Over
small characteristic, the Jacobian criterion fails and there is no subexponential time algorithm
known. This problem could well be conjectured to be in RP, but the current best algorithm
puts it in NP#P (Mittmann, Saxena, Scheiblechner Trans.AMS’14). Currently, even the case of
two bivariate circuits over F2 is open. We come up with a natural generalization of Jacobian
criterion, that works over all characteristic. The new criterion is efficient if the underlying
inseparable degree is promised to be a constant. This is a modest step towards the open question
of fast independence testing, over finite fields, posed in (Dvir, Gabizon, Wigderson FOCS’07).

In a set of linearly dependent polynomials, any polynomial can be written as a linear com-
bination of the polynomials forming a basis. The analogous property for algebraic dependence
is false, but a property approximately in that spirit is named as “functional dependence” in
(Kumar, Saraf CCC’16) and proved for zero or large characteristic. We show that functional
dependence holds for arbitrary fields, thereby answering the open questions in (Kumar, Saraf
CCC’16). Following them we use the functional dependence lemma to prove the first exponen-
tial lower bound for locally low algebraic rank circuits for arbitrary fields (a model that strongly
generalizes homogeneous depth-4 circuits). We also recover their quasipoly-time hitting-set for
such models, for fields of characteristic smaller than the ones known before.

Our results show that approximate functional dependence is indeed a more fundamental
concept than the Jacobian as it is field independent. We achieve the former by first picking a
“good” transcendence basis, then translating the circuits by new variables, and finally approxim-
ating them by truncating higher degree monomials. We give a tight analysis of the “degree” of
approximation needed in the criterion. To get the locally low algebraic rank circuit applications
we follow the known shifted partial derivative based methods.
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1 Introduction

Algebraic dependence is a fundamental concept in algebra that captures algebraic/polynomial
relationship of objects like numbers, polynomials, rational functions or power series, over some
field. Here we define algebraic dependence of polynomials, since in this work we deal only
with polynomials. Polynomials f1, . . . , fm ∈ F[x1, . . . , xn] are called algebraically dependent
over field k if and only if there exists a nonzero polynomial A(y1, . . . , ym) ∈ F[y1, . . . , ym] such
that A(f1, . . . , fm) = 0 and such an A is called an annihilating polynomial of f1, . . . , fm. If no
such nonzero polynomial A exists, the given polynomials are called algebraically independent
over k.

For example, f1 = (x+ y)2 and f2 = (x+ y)3 are algebraically dependent over any field,
as y3

1 − y2
2 is an annihilating polynomial. Polynomials x+ y and xp + yp are dependent over

Fp, but independent over Q. Monomials x1, . . . , xn are examples of algebraically independent
polynomials over any field.

Algebraic dependence can be viewed as a generalization of linear dependence as the
former captures algebraic relationships of any degree, whereas the latter captures linear
relationships. Algebraic dependence shares a few combinatorial properties (known as matroid
properties [30]) with linear dependence. For example, if a set of polynomials are algebraically
independent then any subset of them are algebraically independent. The transcendence
degree (trdeg or algRank) of a set of polynomials is defined as the maximal number of
algebraically independent polynomials and it is well defined thanks to the matroid properties.
The concepts of rank and basis in linear algebra have analogs here as transcendence degree
and transcendence basis respectively.

The concept of algebraic independence is useful in several areas of mathematics: field
theory, commutative algebra, algebraic geometry, invariant theory, theory of algebraic
matroids. It has found interesting applications in computer science as well. For example,
[28] used algebraic dependence in analysis of program invariants of arithmetic straight
line programs. To prove lower bounds on the formula size of determinant, [21] also used
transcendence degree as a tool. [7, 9] constructed explicit deterministic randomness extractors
for sources which are polynomial maps over finite fields. [8] gives a cryptography application,
using algebraic characterization of entropy of low degree polynomials. [4, 1, 27] used it for
designing faster deterministic hitting-sets for some interesting cases of the polynomial identity
testing problem (PIT) and proving circuit lower bounds. [5] used algebraic independence of
polynomials to show the hardness of a parameterized counting problem.

An example relevant to computer science is to compute the “entropy” of a given polynomial
map φ : (x1, . . . , xn) 7→ (f1, . . . , fn) in the space Fn

q , where q is a power of p = 2 (more,
generally, p grows as a polynomial in the input size). This turns out to be a question of
computing the transcendence degree of the polynomials f1, . . . , fn [7]. For constant p, there
are no good methods known. Our work improves the state of the art in this regime.

To discuss the complexity of algebraic independence testing, we have to specify the
representation of input polynomials. An arithmetic circuit is a directed acyclic graph
consisting of addition (+) and multiplication (×) gates as nodes, takes variables x1, . . . , xn

and field constants as input (leaves), and outputs a polynomial f(x1, . . . , xn). This is a
succinct representation of multivariate polynomials, as polynomials of high degree (or having
many monomials) can be represented by small circuits.

Perron [31, 32] gave a bound on the degree of the minimal annihilating polynomial, proving
that it is bounded by the product of the degrees of the input polynomials. This bound was
subsequently slightly improved in [22, 4]. Perron’s bound gives us the brute-force approach.
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It reduces the problem of computing annihilating polynomial to solving an exponential sized
system of linear equations and this can be done in PSPACE. Thus, PSPACE is the “trivial”
complexity upper bound for algebraic independence testing, over any field.

The degree bound on the minimal annihilating polynomial happens to be tight. We can
give examples of n quadratic polynomials, such that the degree of their minimal annihilating
polynomial is 2n [22]. There is a hardness result known [22], that shows that computing
even the constant term of the annihilating polynomial is NP-hard, and that annihilating
polynomial is not of polynomial size in general, unless the polynomial hierarchy collapses.

It turns out that the decision version, i.e. checking if the polynomials are algebraically
independent, is much more efficient over zero or large characteristic, even when the polyno-
mials are succinctly represented as circuits. The key idea is a classical result, known as the
Jacobian criterion [20, 4]. It says that if the characteristic of the field is zero, or large enough
(compared to the product of degrees of the given polynomials), then the transcendence degree
equals the linear rank of the Jacobian matrix of the polynomials. This leads to a simple
randomized poly-time algorithm for checking algebraic independence, as we can get the
circuits of the partial derivatives efficiently [3] and then use random evaluations to compute
the rank of the Jacobian matrix. This final step of randomized evaluation is possible due to
the Schwartz-Zippel-DeMillo-Lipton lemma [36, 6, 40].

One direction of the Jacobian criterion (if the polynomials are algebraically dependent,
then their Jacobian matrix is not full rank) holds true for any characteristic. But the
converse fails if the characteristic is small compared to the product of the degrees of input
polynomials. For example, xp is algebraically independent of Fp, yet its derivative vanishes.
We remark here that if two algebraically independent polynomials over characteristic p have
zero Jacobian, then it does not mean that one of them is a p power. Consider, for example,
{xp−1y, xyp−1} over Fp for prime p > 2.

There are infinitely many input instances (set of polynomials), where the Jacobian
criterion fails, i.e. Jacobian vanishes even though the given polynomials are independent.
Those instances can be characterized by the notion of inseparable extension, that appears in
Galois theory, and is formally defined in Sec.2.1. For example, the field extension Fp(x)/Fp(xp)
has inseparable degree p as that many conjugates of p

√
xp in the splitting field are equal. This

is a hard algebraic situation with no good geometric interpretation. Such behavior is absent
over zero characteristic fields. So, positive characteristic requires inventing new concepts.

Naturally, we would like to come up with an efficient (randomized poly-time) algorithm
over small characteristic. Though the failure of Jacobian criterion over small characteristic is
known for long [12, 15], owing to the interest in algebraic independence from computer science
perspective, several recent papers [7, 22, 4] posed the complexity status of this problem
(whether it is in RP) as an open question. One curious aspect is that this problem is one of
the rare ones in computer science where the gap between the known time complexity (EXP)
and the conjectured one (RP) is that stark!

Talking about the two degrees. Let us consider a case where Jacobian criterion fails and
certifying independence gets tricky. Let m1m2 be coprime to p, and f1 = xpm1

1 , f2 = xm2
2 . It

is easy to deduce that the degree of the extension Fp(x1, x2)/Fp(f1, f2) is pm1m2. In fact,
the degree of the annihilating polynomial of {x1, f1, f2} (resp. {x2, f1, f2}) is pm1 (resp. m2).
However, the inseparable degree of the extension is only p, as the former annihilating
polynomial (i.e. ypm1

1 − y2) is a polynomial in yp
1 but not in yp2

1 . Thus, there are cases
when the inseparable degree can be much smaller, even O(1), compared to the extension
degree. Notice that, in general, the inseparable degree is a p-power that divides the extension
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degree, which in turn is upper bounded by
∏

i deg(fi) (by Perron’s bound)– usually an
exponentially large parameter. The methods developed in this work only depend on the
underlying inseparable degree, thus, our algorithm is expected to be much better than
brute-force (in many cases).

A criterion that works for all characteristic for a natural problem like testing algebraic
independence would be mathematically interesting. Computational implications of an efficient
Jacobian like criterion would include a possible generalization (to small characteristic) of
PIT or lower bound results [1], and algebraic extractors or entropy concepts [7].

Work done in case of finite fields. [29] gave a criterion that works over all fields, which
they named Witt-Jacobian criterion. One key idea of the Witt-Jacobian criterion is to lift the
input polynomials from characteristic p ≥ 2 to a field of p-adics, which is zero characteristic.
Witt-Jacobian polynomial can be seen as a scaled up p-adic lift of Jacobian polynomial
and the criterion involves checking certain monomials (degeneracy testing; which looks
hard) rather than zero testing. The main object underlying the proof is the de Rham-Witt
pro-complex; a tool from modern algebraic-geometry (an excellent survey is [18]).

Witt-Jacobian criterion improved the complexity of independence testing problem, over
positive characteristic, from PSPACE to NP#P. In the hierarchy of complexity classes, NP#P

is far above RP; thus there is a huge gap between what we have and what we want.
Partial derivative (defined as formal operators on polynomials), that played a key role

in Jacobian criterion, behaves strangely over positive characteristic. Though it satisfies the
usual rules of derivatives like linearity, product rule and chain rule, one important difference
here is the fact that a non-constant polynomial can have a zero derivative. Another difference
is that the higher derivatives of order k ≥ p are zero for all polynomials over characteristic p.
Hasse-Schmidt derivatives are variants of usual derivatives, that were originally defined by
[17], and independently by [38], to tackle this problem. In computer science literature, Hasse
derivatives were used recently in coding theory (see [10] and the references therein), and PIT
or lower bounds via generalized versions of shifted partial derivatives [14, 13].

Background on PIT and circuit lower bounds. The problems of derandomization of PIT
and proving lower bounds, for explicit family of polynomials, are two fundamental questions
in complexity theory. The question of PIT asks to test whether the polynomial computed
by an arithmetic circuit is identically zero. This question can be studied in two settings.
In the whitebox setting we are allowed to see inside the circuit, whereas in the blackbox
setting we can only evaluate the circuit at some field points. The problem of blackbox PIT is
equivalent to the problem of designing hitting-sets efficiently. Hitting-set is defined as follows.
Let C be a class of polynomials in N variables over a field F. Then, a set H ⊆ FN is called
a hitting-set for the class C, if for every nonzero polynomial C ∈ C, there exists an x ∈ H
such that C(x) 6= 0. PIT has a randomized poly-time algorithm, thanks to Schwartz-Zippel-
DeMillo-Lipton lemma [36, 40, 6]. Derandomization of PIT is an outstanding open question
in complexity theory with several implications, including proving arithmetic circuit lower
bounds (refer to [2] & the survey [37]).

In the world of arithmetic complexity, we have strong structural results like depth
reductions [16, 2]. These results show that strong enough lower bound, or PIT, results for
homogeneous depth-4 (or general depth-3) circuits would give us exponential lower bounds
and quasipoly-time derandomized PIT for general circuits (up to VP). Recent years have
seen a fast growth in papers giving lower bound and PIT results for several special cases
of small depth arithmetic circuits [34, 35]. Although there are strong (almost exponential,
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[26, 23]) lower bounds for homogeneous depth-4 circuits, the best known lower bounds for
non-homogeneous depth-4 circuits are only superlinear (see [33] & the references therein).

Circuits with locally low algebraic rank. Kumar & Saraf [27] defined a locally low algebraic
rank circuit of degree n in N variables over F, denoted ΣΓ(k)ΣΠd, as:
C =

∑
i∈[T ] Γi(Qi1, . . . , Qit), where Qij is a sparse polynomial (all monomials are given

explicitly) of degree at most d, algRank of {Qij | j ∈ [t]} is at most k, and Γi is an arbitrary
t-variate polynomial, for i ∈ [T ].

The size of C comprises N,n, T and the maximum sparsity of Qij ’s. Note that k ≤ N ,
and we will be interested in the cases when kd is somewhat restricted.

Interestingly, ΣΓ(n)ΣΠ subsumes homogeneous depth-4 circuits computing a degree n
polynomial, as for homogeneous circuits k ≤ t ≤ n and Γi is merely the product gate. Since
this class includes non-homogeneous circuits as well (where t can be arbitrarily larger than
k, n), it can be seen as a significant generalization of homogeneous depth-4.

This model subsumes certain other interesting models that were studied by [14, 1, 4] in
the context of lower bounds and PIT. Invariably, their methods need to assume that F has
characteristic zero or exponentially large (since partial derivatives are involved). Our goal in
this paper is to overcome such restrictions.

1.1 Our contribution and relation with previous works
Broadly, in this paper, we prove two main technical theorems, one about the algebraically
dependent polynomials and the other about algebraically independent polynomials. We apply
these two theorems to obtain an algebraic independence testing algorithm, an arithmetic
circuit lower bound over arbitrary field and a PIT algorithm (over fields of characteristic
larger than the individual-degree of the polynomial). We now describe each of the results.

Algebraic dependence to approximate functional dependence. We show that over ar-
bitrary fields, algebraic dependence of polynomials f1, . . . , fm imply the existence of a
transcendence basis such that all the polynomials f1, . . . , fm can be obtained (upto a random
shift and a truncation) as a polynomial function of the basis elements (Thm.10). Essentially,
to obtain the desired polynomial, say fk, we truncate a polynomial function in the elements
of the basis upto the degree of fk. This generalizes the functional dependence result of [27,
Lem.3.1] which asserted the same over fields of zero (or large) characteristic.

We use a proof approach which is different from [27] to achieve the more general results.
In the case of fields of zero characteristic, the subtle strength that this functional dependence
property possesses is that any transcendence basis serves the purpose, which in general is false
over positive characteristic. Our result explains this subtlety using the concept of separating
transcendence basis from Galois theory (Sec.2.1). With this, a simple algebraic manipulation
on the annihilating polynomial, and subspace of polynomial products (Lem.12), yields a
functional dependence up to any desired degree of approximation. (This is a bit simpler
than the approach of [27, Lem.2.4] where they approximate the roots of any multivariate
polynomial using [11, Lem.3.1]. Such methods also appear in classical analysis under Implicit
Function Theorems, see [25].)

Eg. {x1, x2, x1x
2
2} are algebraically dependent over F2. Pick random field elements a1, a2.

The shifted polynomials are {x1 + a1, x2 + a2, (x1 + a1)(x2
2 + a2

2)}. Clearly, (x2 + a2) is not a
function of the other two modulo the ideal 〈x〉2. However, (x1 + a1) is trivially a function of
the other two, namely, (x1 + a1) ≡ a−2

2 · (x1 + a1)(x2
2 + a2

2) mod 〈x〉2.

MFCS 2016
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Algebraically independent polynomials – Criterion. The above example shows that over
fields of positive characteristic, an approximate functional dependence may exist even in the
case of algebraically independent polynomials. We overcome this issue and show that the
independence can be captured by truncating the polynomial function in the basis elements
upto a precise parameter, i.e. if we choose the truncation point to be greater than that
parameter, then algebraically independent polynomials cannot exhibit functional dependence
(Thm.13). This parameter is actually the inseparable degree of an appropriate field extension,
which is a well studied concept in Galois theory (Sec.2.1).

Continuing the above example– {x1, x1x
2
2} are algebraically independent over F2. Pick

random field elements a1, a2. The shifted polynomials are {x1 + a1, (x1 + a1)(x2
2 + a2

2)}. It
can be verified that neither is a polynomial function of the other modulo the ideal 〈x〉3.
This becomes a certificate of algebraic independence. (Note that the inseparable degree of
F2(x1, x2)/F2(x1, x1x

2
2) is 2.)

When the inseparable degree is 1 (which means a separable extension), then looking
at the truncation upto the linear term of shifted basis elements would suffice. So, our
result implies that separable extension is precisely the case when the Jacobian works (an
exposition can be found in the full version). For higher inseparable degree t, our result can
be reinterpreted as giving a Jacobian like result: algebraically independent polynomials have
F(z)-linearly independent higher differentials (Sec.2.2), modulo a carefully chosen subspace Ut

(Rmk.11). This follows by considering the Taylor series, around a “generic” point z, whence,
the functional independence of polynomials shifted by z, implies the linear independence of
shifted polynomials modulo Ut. As shifted polynomials contain all the Hasse-Schmidt higher
derivatives (wrt x and evaluated at the point z), we deduce their F(z)-linear independence
modulo Ut.

Again, a key technical lemma used in finishing the proof is Lem.12 (subspace reduction),
which concerns the ideal theoretic properties of the subspace Ut. Basically, it helps us prove
that if {h1, . . . , hn} are polynomials with their degree(≤ t)-part having algebraically inde-
pendent leading monomials, and gn functionally depends on {g1, . . . , gn−1} (with truncation
beyond t), then some hi is functionally independent of {g1, . . . , gn}.

Application 1: Testing algebraic independence. An easy consequence of Thm.10 and
Thm.13 is that we get a randomized poly-time algorithm for testing algebraic independence
of polynomials over finite fields (say, Fq of characteristic p) in the cases when the inseparable
degree is constant. Since the latter is a p-power (Sec.2.1), our algorithm is interesting when
p is a constant. (Whenever required, we can assume wlog that the input is n circuits in n
variables over an algebraically closed field; see full version for simple proofs.)

I Theorem 1 (Independence testing). For circuits f ∈ Fq[x], we have a randomized poly(s,(
t+n

n

)
)-time algebraic independence testing algorithm, where the inseparable degree of the field

extension Fq(x)/Fq(f) is t (assuming f algebraically independent) & input size is s.

This covers a lot of interesting cases as the inseparable degree can be quite small even
in case of polynomials with exponential degree. As a simple example, take two bivariate
circuits of exponential degree over F2. Suppose they are independent and their Jacobian is
nonzero. Now if we square any one of these two, then Jacobian would fail as the inseparable
degree becomes 2. Previously known algorithms cannot deal with even such a simple case,
whereas we easily handle the case by trying our test with t = 2. In general, the inseparable
degree is upper bounded by Perron’s degree bound (product of degrees of given polynomials,
[32]), so in the worst-case our algorithm is exponential-time. (Witt-Jacobian criterion [29]
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is exponential-time in all cases.) We illustrate the overall idea, and its comparison with
Jacobian criterion, in the figure in the conclusion (Sec.4).

An interesting by-product of the algorithm is that it computes the inseparable degree, of
the given independent polynomials, in the same time.

Application 2: Lower bound for locally low algebraic rank circuits. Using the functional
dependence result, we give an explicit family of polynomials in VNP of degree n in N variables,
where N = nO(1) such that any ΣΓ(n)ΣΠ circuit computing it has size NΩ(

√
n). We obtain

this lower bound over arbitrary fields. This generalizes the lower bound of [27, Thm.1.4]
which itself was a strong generalization of the shifted partials based homogeneous depth-4
lower bounds [23] and Jacobian based lower bounds [1] (all over zero or large characteristic).
Since our functional dependence generalizes the key technical ingredient of [27] to arbitrary
fields, we are able to get the same lower bound (for the same model and hard polynomial
family) over arbitrary fields. Formally,

I Theorem 2. Let F be any field. There exists a family {Pn} of polynomials in VNP, such
that Pn is a polynomial of degree n in N = nO(1) variables with 0, 1 coefficients, and for any
ΣΓ(k)ΣΠ circuit C, if k ≤ n and if C computes Pn over F, then Size(C) ≥ NΩ(

√
n).

I Remark. As remarked by [27], the above model is challenging even for k = 2 (& was open
before us for small characteristic fields). Also, the proof goes through for any k = nO(1), as
long as one picks N as an appropriately large polynomial in n.

The proof of this theorem closely follows [27], and is sketched in the full version.

Application 3: Hitting-set for ΣΓ(k)ΣΠd circuits. We show that for any size-s circuit
C ∈ ΣΓ(k)ΣΠd, where k, d = polylog(s), over fields of characteristic p > individual-degree(C),
there exists a quasipoly(s)-time hitting-set.

I Theorem 3. Let F be any field of characteristic p. There exists an exp(logO(1) s)-time
constructible hitting-set H ⊆ FN for size-s circuit C ∈ ΣΓ(k)ΣΠd with kd = logO(1) s,
assuming p > individual-degree(C) or p = 0.

Again, the proof follows [27]. For PIT, algebraic rank based models have already been
considered by [4, 1, 27]. Our result generalizes some of these results to smaller positive
characteristic (only requiring p > individual-degree(C)). The previous results required p > dk,
which is super-polynomial in the above regime. Our inability to remove this restriction lies
in the nature of shifted partials [14, Lem.4.13]. Eg. the dimension of shifted partials of a
p-power monomial xpe1

1 · · ·xpen

n is not that large over Fp.

2 Preliminaries: Jacobi, Galois and Hasse-Schmidt

We define the central object related to the testing of algebraic independence is the Jacobian.

I Definition 4 (Jacobian). The Jacobian of polynomials f = {f1, · · · , fm} in F[x1, · · · , xn]
is the matrix Jx(f) = (∂xj

fi)m×n, where ∂xj
fi := ∂fi/∂xj .

We state the classical Jacobian criterion [20, 4].

I Lemma 5 (Jacobian criterion). Let f ⊂ F[x] be a finite set of polynomials of degree at most
d, and trdegF f ≤ r. If char(F) = 0, or char(F) > dr, then trdegF f = rankF(x)Jx(f).

MFCS 2016
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Previously, we saw some examples of polynomials over fields of smaller characteristic
where the Jacobian fails. Here is another nontrivial example: f = {x2

1x2 + x3
1, x1x

2
2 + x1x

5
2}

in F3[x1, x2] is a set of algebraically independent polynomials, but rankF3(x)Jx(f) = 1, and
hence the criterion fails.

2.1 Inseparability & separating transcendence basis
For this section, let E ⊇ F be fields. Failure of the Jacobian criterion can be explained using
the fundamental concept of inseparability from Galois theory [19].

I Definition 6. An f ∈ F[x] is separable if it has no multiple roots in its splitting field.

It is easy to prove that. For an irreducible f , separability is implied by the non-zeroness of
∂xf . Thus, if char(F) = 0, then any irreducible polynomial is separable. It further implies
that if char(F) = p > 0 then, an irreducible f is separable if and only if f /∈ F[xp]. We
have this notion of separability in case of field extensions as well. An algebraic extension
E/F is said to be separable if every element α ∈ E has a minimal polynomial over F that is
separable.

For polynomials f1, . . . , fm ∈ F[x1, . . . , xn], we deal with the extension F(x1, . . . , xn)/
F(f1, . . . , fm). This extension is algebraic iff trdeg(f)= n (as every xj depends on f). In
which case, the extension F(x)/F(f) is separable iff the minimal polynomial of xj over F(f)
is separable, for all j ∈ [n]. The latter, clearly, is the case when char(F) = 0. When char(F)
= p > 0, the extension is inseparable if there exists j ∈ [n], such that the minimal polynomial
of xj over F(f) lives in F(f)[yp]. Thus for every xj , we have an mj such that xpmj

j has a
separable minimal polynomial over F(f).

The inseparable degree of the extension F(x)/F(f) is defined as the minimum pm such
that the minimal polynomial of xpm

j over F(f) is separable, for all j ∈ [n]. We also associate
this inseparable degree with the set f .

In the case when f are algebraically dependent, we would like to use a “good” transcendence
basis. This is captured by:

I Definition 7 (Separating transcendence basis). A field extension E/F is called separably
generated if there exists an algebraically independent set (i.e. transcendence basis) S =
{f1, . . . , fr} ⊂ E such that E/F(S) is algebraic and separable.

S is called a separating transcendence basis of E/F.

It is a classical result that such bases exist for fields that we are interested in.

I Theorem 8. Consider a finite set of polynomials f ⊂ F[x]. If F is a finite field (resp. an
algebraically closed field) then there exists a separating transcendence basis, of F(f)/F, in f .

In case F is a zero characteristic field then every transcendence basis of f is a separating
one of the extension F(f)/F.

Proof. It is clear that if F has characteristic zero then there is no possibility of inseparability.
Let F be a finite (resp. algebraically closed) field. [24, Thm.7.20] shows that the extension

F(f)/F is separably generated. Furthermore, [24, Thm.7.18] shows that f contains a subset
that is a separating transcendence basis of the extension. J

Examples. Extension F3(x3)/F3 has {x3} as a separating transcendence basis. Consider
the two transcendence bases of the extension F3(x2, x3)/F3 – {x3} and {x2}. The latter is a
separating transcendence basis, but the former is not.
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2.2 Taylor expansion at z, higher derivatives & differentials

We consider the application of shift (or translation) to our polynomials. We view this as
writing the Taylor expansion of a polynomial f(x) at a “generic” point z [13, Sec.C.1]. A
second view is that of computing the Hasse-Schmidt higher derivatives of f at the point z
[14, 10]. A third view is seeing the shifted polynomial as a Hasse-Schmidt differential [39].
We collect these equivalent viewpoints in a single definition.

I Definition 9 (Formal shift). We see f(x + z) as a polynomial in R := Fp(z)[x] where the
variables x1, . . . , xn are shifted respectively by the function field elements z1, . . . , zn.

Now the coefficient of m := x`1
1 · · ·x`n

n in the Taylor-series expansion of f(x + z) can be
written as 1

`1!···`n!
∂(`1+···+`n)f

∂x
`1
1 ···∂x`n

n

(z).
This is called the Hasse-Schmidt derivative of f wrt m evaluated at the point z. It can be

denoted, by some abuse of notation, as ∂mf(x)|z.
Finally, we can see the formal shift as a Hasse-Schmidt differential, namely, f(x + z) =∑

m m · ∂mf(x)|z (sum over all monomials m in x).

Example. We have ∂2x2/∂x2 = 0 over F2, but ∂2x2/2!∂x2 = 1. Thus, Hasse-Schmidt
derivatives offer a natural solution to this vanishing problem.

This connection between the shifts and Hasse-Schmidt higher derivatives/ differentials is
what motivated us to search for the right framework to study algebraic independence.

Now the Jacobian criterion is given in terms of the first order derivatives of the polynomials
and the failure of Jacobian essentially exposes the inability of first order derivative in capturing
independence. Intuitively, it seems that going to higher derivatives may help. The above
connection points out that perhaps we need to look at higher degree terms (wrt x) of f(x + z)
to get an algebraic independence criterion in cases where Jacobian fails. Eventually, we will
see that the intuition is indeed true.

Operator H. For notational convenience, we define the non-constant part of f(x + z) up
to degree≤ t wrt x, as Htf := f≤t(x + z)− f(z).

This is easier to work with when we do manipulations modulo the ideal 〈x〉t+1
R .

3 Main structure theorems

We use the following standard notation in the paper:
1. F is an arbitrary field. F is its algebraic closure.
2. Fq is a finite field of size q and characteristic p ≥ 2.
3. Let R ⊇ S be a commutative ring extension over a field F, let v1, . . . , vm ∈ R and r ≥ 1.

Then 〈v1, . . . , vm〉rS is simply the set of all S-linear combinations of products vi1 · · · vir

(ij ’s in [m]). It is both an S-module and an F-vector space. (It is an ideal when R = S.)
4. For a polynomial h ∈ F[x], h≤d extracts out the degree≤ d part of h and returns it as an

element in F[x] again.
5. For a polynomial h ∈ F[x], h[≤d] extracts out the degree≤ d part of h and returns it as a

d+ 1 tuple, where for i ∈ [0 . . . d], i-th entry of the tuple contains h=i which is defined as
the homogeneous component of h of degree i.
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74:10 Algebraic Independence over Positive Characteristic

3.1 Functional dependence for algebraically dependent polynomials
A fact about linear independence is that if f1, . . . , fm ∈ F[x] are linearly dependent, it also
implies that every polynomial can be written as a linear combination of the polynomials
in the basis. The question is whether the same can be extended to algebraic dependence:
Does algebraic dependence imply that all the polynomials can be written as a function of
the polynomials in the transcendence basis? It was shown in [27, Lem.3.1] that it is indeed
true (approximately) over fields of zero (and large) characteristic.

We generalize the property using a different proof approach and show that algebraic
dependence implies functional dependence over arbitrary fields (to arbitrary degree of
approximation t).

I Theorem 10 (Functional dependence over arbitrary fields). Let f = {f1, . . . , fm} ⊂ F[x1, . . .,
xn] be a set of polynomials, where F is any field, and t ∈ N. If trdeg of {f1, . . . , fm}
is k, then there exist algebraically independent {g1, . . . , gk} ⊂ f , such that for random
a ∈ Fn, there are polynomials hi ∈ F[Y1, . . . , Yk] satisfying, ∀i ∈ [m], f≤t

i (x + a) =
h≤t

i (g1(x + a), . . . , gk(x + a)).

I Remark. Clearly, Fn is an infinite space. What we mean here by a random a is “random
point in any sufficiently large, but finite, subset of the space”. It will be clear from the proof
that it would suffice to sample from any set of size at most exponential in the input size. We
skip the detailed estimate as in this paper merely existence of a is needed.

We will use z as a formal variable (n-tuple) and can fix it later to a suitable constant
a. To prove the theorem, we consider the ring R := F(z)[x] and its ideal I0 := 〈x〉R. The
ideal collects the non-constant linear polynomials. Now, define the ideal It := It+1

0 and
the quotient algebra Qt := R/It, i.e. we are filtering out, or truncating, all the terms of
degree > t. Now Qt can also be seen as a finite

(
n+t

n

)
dimensional vector space over F(z)

whose basis is monomials in x of degree at most t. In our theorems and proofs, most of the
operations happen in this quotient ring Qt for increasing t’s.

In our analysis, we plan to use the shifting of the variables in the evaluated annihilating
polynomial of {fi, g1, . . . , gk}, and it is clear that on applying the shifts, we will end up having
terms of the form (Htfi)j0(Htg1)j1 · · · (Htgk)jk (recall that in Qt, f(x + z) = f(z) +Htf(x)
). Now, note that due to the filtration in Qt, some of these terms will be equivalent to terms
involving Hr with r < t. We consider an appropriate subspace Ut ⊂ Qt generated by such
“higher” products, which we formally define as: U1 := {0} and

Ut := 〈Ht−1fi,Ht−1g1, . . . ,Ht−1gk〉2F(z) + · · ·+ 〈H1fi,H1g1, . . . ,H1gk〉tF(z) , t ≥ 2.

I Remark 11. InQt, observe that, this is the same subspace as 〈Htfi,Htg1, . . . ,Htgk〉2F(z)+· · ·
+〈Htfi, Htg1, . . . ,Htgk〉tF(z)

Proof of Theorem 10. Consider the set f := {f1, . . . , fm} ⊂ F[x] with algebraic rank k. If
we work over F, then Thm.8 guarantees the existence of a separating transcendence basis
{g1, . . . , gk} ⊆ f . Let g0 := fi for a fixed i ∈ [m]. Now we consider the separable annihilating
polynomial A(y) =

∑
e`
ae`

ye` of the set g := {g0, g1, . . . , gk}, and ae`
’s are in F (e` is a

(k+1)-tuple (ej` | j ∈ [0 . . . k])). Thus, A(g) =
∑

e`
ae`

∏k
j=0 gj(x)ej` = 0. We now apply the

formal shift x 7→ x + z to get A(g0(x + z), . . . , gk(x + z)) = 0, i.e.
∑

e`
ae`

∏
j gj(x + z)ej` =

0.
We now study this relation in the algebra Qt. By Taylor series expansion, we know that

f(x + z) ≡ f(z) +Htf(x) in Qt, so we get
∑

e`
ae`

∏
j(gj(z) +Htgj)ej` ≡ 0. The binomial
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expansion gives a compact expression:∑
e`

ae`

∑
0≤s≤e`

(e`

s
)
· (Htg)s · ge`−s ≡ 0 .

Note that the contribution by s = 0 terms sum up to
∑

e`
ae`

∏k
j=0 gj(z)ej` which is zero.

This implies that an F(z)-linear combination of the products of the form (Htg0)s0 · · · (Htgk)sk ,∑
j sj ≥ 1, vanishes in Qt. Now the key step is to separate out the terms linear in Htgj and

switch the sums, to obtain

Htg0 · g0(z)−1

(∑
e`

ae`
· e0`g

e0`
0 · · · gek`

k

)
+
∑
j∈[k]

Htgj · gj(z)−1

(∑
e`

ae`
· ej`g

e0`
0 · · · gek`

k

)

+ (higher terms with
∑

j

sj ≥ 2) ≡ 0 . (1)

Further, we argue using the minimality and separability of A (in terms of the first variable)
that the “linear” term Htg0 in the vanishing sum above has a non-zero coefficient: as it
would either mean a lower degree annihilating polynomial A :=

∑
e`
ae`

e0`y
e0`−1
0 ·ye1`

1 · · · yek`

k

i.e. contradicting the minimality, or that all the e0`’s are divisible by p (when F has charac-
teristic p) which means that fi does not depend separably on {g1, . . . , gk}; which contradicts
the fact that {g1, . . . , gk} is a separating transcendence basis.

Thus, we get that Htg0 lives in the F(z)-linear span of Htg1, . . . ,Htgk modulo the
subspace generated by the higher terms of the summation in Eqn.1. So, Htg0 lives in the
F(z)-linear span of Htg1 . . . ,Htgk modulo the subspace Ut (Rmk.11) in Qt.

We got Htfi ∈ 〈Htg1, . . . ,Htgk〉F(z) + Ut. Now, we are in a position to apply Lemma 12,
which essentially says that if Hrfn depends on higher order terms (in the sense of Equa-
tion 1) then it can be “dropped” from the ideal manipulations. Thus, we get that Htfi ∈
〈Htg1, . . . ,Htgk〉F(z) +〈Ht−1g1, . . . ,Ht−1gk〉2F(z) + · · ·+ 〈H1g1, . . ., H1gk〉tF(z). The latter (by
Rmk.11) is exactly 〈Htg1, . . . ,Htgk〉F(z) + 〈Htg1, . . . ,Htgk〉2F(z) + · · ·+ 〈Htg1, . . . ,Htgk〉tF(z) .

This implies fi(x + z) ∈ 〈1, g1(x + z), . . . , gk(x + z)〉tF(z) in Qt , which yields the approx-
imate functional dependence around a generic point z.

Fixing z (avoiding some bad choices that make certain z-polynomials in the above proof
zero) to an element a ∈ Fn finishes the proof. J

We now formally state our subspace reduction lemma:

I Lemma 12 (Subspace reduction). Let F be any field, R := F(z)[x], Qr := R/〈x〉r+1 for
r ≥ 1, and f ⊂ F[x]. Define U1 = V1 = {0}, and for u ∈ 〈x〉R, r ≥ 2, define the subspaces
(in the quotient algebra Qr),

Ur := 〈Hr−1f1, . . . ,Hr−1fn〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn〉rF(z) ,

Vr := 〈Hr−1f1, . . . ,Hr−1fn−1, u〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn−1, u〉rF(z) .

If Htfn ∈ 〈Htf1, . . . ,Htfn−1, u〉F(z) + Ut, then Ut ⊆ Vt (for any t ∈ N).

I Remark. If u = 0 then the lemma “reduces” the n polynomial generators, of the subspace
Ut, by one. Hence, the name “subspace reduction”. A simple inductive proof of the lemma is
given in the full version.
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3.2 Algebraically independent polynomials: Criterion
Having proved the functional dependence for algebraically dependent polynomials, one
naturally asks whether a converse exists (for arbitrary fields? to what degree?). We will
characterize this completely.

It’s all about the inseparable degree- We show that if f is algebraically independent of
{g1, . . . , gk} then, under a random shift, f cannot be written as a function of {g1, . . . , gk}
when chosen to truncate at (or beyond) the inseparable degree of the extension Fq(x)/Fq(f, g1,
. . . , gk). Moreover, for each truncation at lower degrees we get functional dependence.

I Theorem 13 (Algebraic to functional independence). Let f ⊂ Fq[x] be algebraically inde-
pendent polynomials (wlog n-variate n polynomials) with inseparable degree pi. Then,
1. for all t ≥ pi, for random a ∈ Fn

q , f≤t
n (x + a) cannot be written as h≤t(f1(x + a), . . .,

fn−1(x + a)), for any h ∈ Fq[Y1, . . . , Yn−1].
2. for all 1 ≤ t < pi, ∃j ∈ [n], for random a ∈ Fn

q , f
≤t
j (x + a) can be written as

h≤t
jt (f1(x + a), . . . , fj−1(x + a), fj+1(x + a), . . . , fn(x + a)), for some hjt ∈ Fq[Y].

I Remark. Our proof works for any field F (manipulate in F). In case of characteristic p ≥ 2
we get the above statement and in characteristic zero use inseparable degree = 1.

Proof idea: By the hypothesis we have that each monomial xpi

j , j ∈ [n], algebraically
depends on f with a separable annihilating polynomial over Fq. Consider ring R := Fq(z)[x].
The basic idea is to consider the minimal annihilating polynomial Aj of {xpi

j , f} and formally
shift the relevant polynomials by z. From the proof of Thm.10 we get a functional dependence
of xpi

j on f(x + z) up to any degree t.
Interestingly, when we take t < pi the monomial xpi

j vanishes mod 〈x〉t+1. This means
that the above yields, in fact, a functional dependence among f(x + z).

On the other hand, for t ≥ pi, we get a nontrivial functional dependence of xpi

j on
f(x + z), for all j ∈ [n]. In this case, one can give an argument using monomial ordering
that there exists no functional dependence among f(x + z).

We can see the classical Jacobian criterion as a special case of Theorems 10 and 13. The
detailed discussions and missing proofs are given in the full version.

4 Conclusion

We give a criterion for testing algebraic independence over positive characteristic, in the
spirit of Jacobian criterion, that works for any field. Its complexity is parameterized by the
inseparable degree bound. It is also strong enough to give the inseparable degree at the same
time. We give applications to locally low algebraic rank circuits in the cases that were open
before.

Jacobian Criterion Our Criterion
The approach: reduces algebraic independence reduces algebraic independence

to linear independence testing to linear independence testing
Related “approximate” shift : f(x) 7→ f(x + z) mod 〈x〉2F(z)[x] f(x) 7→ f(x + z) mod Ut

Vectors for F(z)-dependence: H1f mod U1 Htf mod Ut

Certifies alg.independence if: F(x)/F(f) is separable separable or inseparable F(x)/F(f)
Efficiency in char(F) = 0: randomized poly-time algorithm t = 1, (same as Jacobian criterion)
Efficiency in char(F) = p, fails randomized poly

(
n+pe

n

)
-time

inseparable degree ≤ pe: algorithm
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The main open problem is to investigate whether we can improve the criterion to get a
randomized poly-time algorithm for circuits over a finite field. We mention a few special
cases based on different restrictions on input. None of these cases are (efficiently) solved by
presently known techniques.

the polynomials are supersparse, i.e. sparse polynomials with possibly exponential degree.
two bivariate circuits, with an exponentially large inseparable degree, over F2.
n quadratic polynomials over F2.

Our hitting-set result, for locally low algebraic rank circuits, still has a mild assumption on
the characteristic. Can this be eliminated?

Acknowledgements. We thank Manindra Agrawal, Rohit Gurjar & Arpita Korwar for the
insightful discussions and encouragement. We thank Markus Bläser and the anonymous
reviewers for the elaborate suggestions to improve the draft. NS acknowledges the support
from DST/SJF/MSA-01/2013-14 and SB/FTP/ETA-177/2013.

References
1 M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits circuits: Hitting-sets,

lower bounds for depth-D occur-k formulas & depth-3 transcendence degree-k circuits. In
Proceedings of the 44th ACM Symposium on Theory of Computing (STOC), pages 599–614,
2012. (In SICOMP special issue).

2 Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 67–75, 2008.

3 W. Bauer and V. Strassen. The complexity of partial derivatives. Theoretical Computer
Science, 22(3):317–330, 1983.

4 M. Beecken, J. Mittmann, and N. Saxena. Algebraic Independence and Blackbox Identity
Testing. Inf. Comput., 222:2–19, 2013. (Conference version in ICALP 2011).

5 Radu Curticapean. Counting matchings of size k is #W[1]-hard. In Automata, Languages,
and Programming, pages 352–363. Springer, 2013.

6 Richard A DeMillo and Richard J Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193–195, 1978.

7 Z. Dvir, A. Gabizon, and A. Wigderson. Extractors and rank extractors for polynomial
sources. Comput. Complex., 18(1):1–58, 2009. (Conference version in FOCS 2007).

8 Z. Dvir, D. Gutfreund, G.N. Rothblum, and S.P. Vadhan. On approximating the entropy
of polynomial mappings. In Innovations in Computer Science (ICS), pages 460–475, 2011.

9 Zeev Dvir. Extractors for varieties. In Proceedings of the 24th IEEE Conference on Com-
putational Complexity (CCC), pages 102–113, 2009.

10 Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the
method of multiplicities, with applications to kakeya sets and mergers. SIAM Journal on
Computing, 42(6):2305–2328, 2013. (Preliminary version in FOCS’09).

11 Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for
bounded depth arithmetic circuits. SIAM Journal on Computing, 39(4):1279–1293, 2009.

12 Richard Ehrenborg and Gian-Carlo Rota. Apolarity and canonical forms for homogeneous
polynomials. European Journal of Combinatorics, 14(3):157–181, 1993.

13 Michael A Forbes. Polynomial identity testing of read-once oblivious algebraic branching
programs. PhD thesis, Massachusetts Institute of Technology, 2014.

14 Michael A Forbes. Deterministic divisibility testing via shifted partial derivatives. In
Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages
451–465. IEEE, 2015.

MFCS 2016



74:14 Algebraic Independence over Positive Characteristic

15 Krister Forsman. Two themes in commutative algebra: Algebraic dependence and kähler
differentials, 1992.

16 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic
circuits: A chasm at depth three. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 578–587,
2013.

17 Helmut Hasse and Friedrich K. Schmidt. Noch eine begründung der theorie der höheren
differentialquotienten in einem algebraischen funktionenkörper einer unbestimmten. (nach
einer brieflichen mitteilung von f.k.schmidt in jena). Journal für die reine und angewandte
Mathematik, 177:215–223, 1937.

18 L. Illusie. Crystalline cohomology. In Proc. Sympos. Pure Math., volume 55, pages 43–70,
1994. Motives (Seattle, WA, 1991).

19 I Martin Isaacs. Algebra: a graduate course, volume 100. American Mathematical Soc.,
1994.

20 C. G. J. Jacobi. De determinantibus functionalibus. J. Reine Angew. Math., 22(4):319–359,
1841.

21 K. A. Kalorkoti. A Lower Bound for the Formula Size of Rational Functions. SIAM J.
Comp., 14(3):678–687, 1985. (Conference version in ICALP 1982).

22 N. Kayal. The Complexity of the Annihilating Polynomial. In Proceedings of the 24th
Annual IEEE Conference on Computational Complexity (CCC), pages 184–193, 2009.

23 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An exponential
lower bound for homogeneous depth four arithmetic formulas. In Foundations of Computer
Science (FOCS), IEEE 55th Annual Symposium on, pages 61–70. IEEE, 2014.

24 Anthony W Knapp. Advanced algebra. Springer Science & Business Media, 2007.
25 Steven G Krantz and Harold R Parks. The implicit function theorem: history, theory, and

applications. Springer Science & Business Media, 2012.
26 Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic

circuits. In Foundations of Computer Science (FOCS), IEEE 55th Annual Symposium on,
pages 364–373. IEEE, 2014.

27 Mrinal Kumar and Shubhangi Saraf. Arithmetic circuits with locally low algebraic rank.
Electronic Colloquium on Computational Complexity (ECCC), 22:194, 2015. (To appear in
CCC 2016). URL: http://eccc.hpi-web.de/report/2015/194.

28 M.S. L’vov. Calculation of invariants of programs interpreted over an integrality domain.
Cybernetics and Systems Analysis, 20:492–499, 1984.

29 Johannes Mittmann, Nitin Saxena, and Peter Scheiblechner. Algebraic independence in
positive characteristic: A p-adic calculus. Transactions of the American Mathematical
Society, 366(7):3425–3450, 2014.

30 James G Oxley. Matroid theory, volume 3. Oxford university press, 2006.
31 O. Perron. Algebra I (Die Grundlagen). W. de Gruyter, Berlin, 1927.
32 A. Płoski. Algebraic Dependence of Polynomials After O. Perron and Some Applications.

In Computational Commutative and Non-Commutative Algebraic Geometry, pages 167–173.
2005.

33 Ran Raz. Elusive functions and lower bounds for arithmetic circuits. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 711–720. ACM, 2008.

34 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity, 2016.
https://github.com/dasarpmar/lowerbounds-survey/.

35 Nitin Saxena. Progress on polynomial identity testing-ii. In Perspectives in Computational
Complexity, pages 131–146. Springer, 2014.

36 J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980.

http://eccc.hpi-web.de/report/2015/194


A. Pandey, N. Saxena, and A. Sinhababu 74:15

37 A. Shpilka and A. Yehudayoff. Arithmetic Circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

38 Oswald Teichmüller. Differentialrechnung bei charakteristik p. Journal für die reine und
angewandte Mathematik, 175:89–99, 1936.

39 William Nathaniel Traves. Differential operators and Nakai’s conjecture, 1998.
40 Richard Zippel. Probabilistic algorithms for sparse polynomials. Springer, 1979.

MFCS 2016


	Introduction
	Our contribution and relation with previous works

	Preliminaries: Jacobi, Galois and Hasse-Schmidt
	Inseparability & separating transcendence basis
	Taylor expansion at z, higher derivatives & differentials

	Main structure theorems
	Functional dependence for algebraically dependent polynomials
	Algebraically independent polynomials: Criterion

	Conclusion

