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ERRATUM

Les pages 5 et 6 doivent être inversées.

Pages 5 and 6 have to be interchanged.



A NOTE ON THE INFLUENCE OF PROGRAM
LOADING ON THE PAGE FAULT RATE

M. Parent, D. Potier
IRIA/LABORIA

Résumé :

Dans la modélisation des systèmes informatiques à mémoire virtuelle, la fonction de durée de vie
qui exprime le temps moyen entre fautes de pages pour un programme donné en fonction de
l'espace mémoire alloué joue un rôle important. Cet article présente un modèle qui permet d'étu¬
dier l'influence sur la durée de vie des défauts de page initiaux nécessaires pour remplir l'espace
mémoire alloué et montre que cette influence peut être importante losque le temps moyen de ré¬
sidence du programme en mémoire principale est petit.

Abstract :

In virtual memory computer system modeling the life time function (LTF) which expresses the
mean virtual time between page faults of a given program as a function of memory space alloca-
ted to it, plays an important rôle. This paper présents a mode! to study the influence of the ini¬
tial page faults needed to fill the memory allocation on the LTF and it is shown that this influen¬
ce is far from négligeable when the mean residency time of the program in main memory is small.
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A NOTE ON THE INFLUENCE OF FROGRAM

LOADING ON THE PAGE FAULT RATE

I - INTRODUCTION

Many models of paged virtual memory Systems based on queueing

networks have been developped recently in order to predict their performances

[2, 3, 10, 11, 20]. The main difficulty encountered

during the définition of these models is the characterization of program

behavior with respect to their memory requirements [13] . The framework
of queueing network représentation implies that memory requirements have to

be expressed in some way or other as demands on servers : in other words,

space requirements have to be transformed into time requirements.

In the context of page on demand Systems [12] this transformation
can be done by the so-called "life time function" (LTF) which relates for a

given program, the mean time between two consécutive page faults to the number

of page frames allocated to the program. The LTF of a program is defined

and measured in the virtual time of the program for a given page replacement

algorithm (PRA) and a given page size [s]. If a program exécution trace
is avaflable, the LTF of the program can be obtained easily for a large class

of PRA using the technique of stack processing [19, 6].. Hence, for
a given PRA and a given page size, the LTF can be considered as an intrinsic

model of the program paging activity.

Examples of expérimental LTF's of a FORTRAN compiler for various page

sizes and anLRU PRA are presented on figure 1 . The leveling of ail the curves is dus

to the fact that a fixed set of pages has to be loaded whatever the allocation
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of main memory is and to the fact that program exécution time is finite. This

phenomenon can be accentuated if a program is interrupted before its completion

and loses pages during these interruptions. In particular, for very short

transactions, the swapping out of programs can increase considerably

the page fault rate if the pages are reloaded on a page-on-demand basis and
this may become the dominant factor in the paging behavior of the program [15].
This cornes from the fact that programs tend to demand pages at a very rapid
rate until they have acquired a sufficiency of pages (which can be thought
of a the "working set") [16]. An example of a model where the influence of

the initial page faults has been considered can be found in [17],

Since this phenomenon is not intrinsic of the program itself it is

important not to include it in the LTF as it is obtained with stack processing

for example. The best way to do this is to consider that the mean time between

page faults is function of the number of pages actually loaded in main

memory and not of the number of page frames allocated. The LTF defined this

way can be obtained as previously if we discard the initial page faults

needed to fill the space allocation.

To a given LTF defined as above, we can associate a modified life-time

function (MLTF) which represents the run-time environment mean time between

page faults as a function of allocated core space when the interruptions
and the swapping policy are taken into account. We présent in this paper

a model to dérivé the MLTF from the LTF for various swapping policies. The

results are obtained for a simple model of the LTF and illustrate how the

LTF can be distorded by factors other than intrinsic program behaviour. These

effects are demonstrated on a global model of a virtual memory multiprogrammed

machine, and the results are used to provide an upper bound of the performance

improvement which can be achieved by preloading the program before each

activation.
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II - THE MODEL OF PROGRAM BEHAVIOR

In the context of multiprogrammed computer Systems, the exécution

of a program consists of a sequence of CPU intervais and interruptions due

to i/o requests, page-faults, end of time-slice, or end of exécution. Depending

on the nature of these interruptions and on the memory allocation policy,
when a process starts a new CPU interval, it does or does not still possess

the set of pages loaded in main memory immediately before the last inter¬

ruption .

In this study, we shall only be concerned with two types .of interrup¬
tions : page fault interruptions which increase the number of pages loaded

in main memory by one, and program interruptions such that during the time

interval elapsed between the interruption and the réactivation of the program,

some pages may have been swapped out . We will also make the following

assumptions :

H1 : The CPU intervais between program interruptions as defined above are

independent, identical exponentially distributed random variables with

mean T.

H2 4- The maximum number M of page frames allocated to a program is fixed and .

pages are loaded in main memory on a page on demand basis. .

H3 : The intervais of time between two consécutive page faults of a program

are independent, identical exponentially distributed random variables

with mean q_^ when i pages of the program are loaded in main memory (qp
represents the LTF of the program as it has been defined in the introduction).

H4 : The transition between the number i of pages of the program loaded

in memory when the program is interrupted (program interruption) and the
number j of pages loaded in memory when it starts a new CPU interval is
described by a first order Markov Chain with transition matrix (a..),

The main assumption (H3) used in this modeling is to consider that the

time between page faults is a négative exponential random variable which

dépends only on the actual number of pages in main memory (intrinsic life-time

function) . Experiments conducted on real trace data [9] show that this

assumption is not unfounded but the random variable has an hyperexponential

distribution. In any case assumption H3 (the other assumptions are much weaker)
has been proved to give satisfactory results in a model of virtual memory

System [7, 14] and we can infer from this that it is justified.
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Under assumptions H1 - H4> the exécution of a prograin in virtual tirne

(program running time) consists of a number of CPU intervais separated by

program interruptions and page fault interruptions (the length of these inter¬

ruptions is not taken into account in virtual time). If a program has i pages

loaded in main memory when it starts a CPU interval, at the next program

interruption, the program will have j pages in main memory with

j = min (i+k, M)

where k is the number of page faults which occured during the time considered.

At the beginning of the next CPU interval, the program will start with Z pages

(Z < j) with probability a .
1 *

Let us define the state X(t) of a program at a given instant t of its

virtual time as the number of its pages it possesses in main memory. The set

of states E is then

E = {1, 2,...,M}

and the state transition diagram is represented on figure 2. With the assump¬

tions H1 , H2, H3, H4, X(t) is a semi-Markov process which we can now analyze .

Let P = (p. .) be its transition matrix. Transitions are caused by two différent
1 > 3

events : page fault and program interruption. From the exponential assumptions

H1 and H3, the probability £ that the next event to occur is a page fault

when the program is in state i, can be expressed as :

l/qi
°i l/qi + 1/T ^

and the mean virtual time e^ in state i is given by

6i = l/q± + i/T ^
With probability 1 - O the program will be interrupted in state i,

and will be reactivated in state j with probability a.. from H4. Hence, we
3-J

have
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Erom équation (7) we can define the memory utilization ratio m/M
which represents the mean fraction of pages frames actually used during the

exécution of a program, and équation (8) gives the MLTF r^ derived from the LTF q^.

In the appendix, closed form solutions of équation (4 ) are given for

various transition matrices a...
il

III - MMERICAL RESULTS

The previous analysis provides theoretical results for the évaluation

of the effect of program loading in main memory on a demand paging basis. The

two main factors considered here are the mean. time T between program interruptions

and the number of pages which are in main memory after the processing of the

interruption. For the numerical results, it was assumed that the life-time

function of programs, that is, the mean virtual time e between two page faults

when a program has i pages loaded in main memory, is given by the Belady
model [5] :

.k
e = a 1

where a and k dépend on program characteristics and on the processor speed.

This model has been validated using real trace data [9] and the results obtained

frcm these experiments show values of k ranging from 1.5 tû 4.

The MLTF and the memory utilization ratio have been plotted (Fig. 4, 5)
according to the number of page frames allocated to a program for various values of

T and k (to eliminate the influence of a, ail times have been divided by a). The

four models solved in the appendix have been used to describe the number of

pages remaining in memory after a program interruption which occurs when i

pages are loaded :

Model A :

After the interruption, the program finds a single page-in memory

(syst'ematic swap-out) .

Model B :

The program may find any number j, (1 < j < i) of pages after the

interruption with equal probabilities (random page losses) .
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&± i=1. .M-1 ; j = i+1

(1^>i)aij i=1 ,—M-1 ; ô = 1 , —i
pi,j = ; 3=1, • • .m-1 (3)

'1JVaMM+% 1=M ' 3=M
0 otherwise

Let II = (n , ...,n ) be the vector of steady state probabilitie;

defined by

n = np (4)
M

E n. = 1 (5)
i=1 1

n represent the steady state probability that the program is in

state i when a transition takes place. The vector of steady state probabilities

T = (Y where Y^ is the steady state probability that X(t) = i, is
obtained from n and e., i=1,...M by

1

n.e.

Y. = , i = (6)
S YjJ=1 J J

Hence in the virtual time of the program, the actual mean number

m of pages loaded in main memory is given by

M

m = E 1 Y-»
1=1

and the actual mean time between page faults when a maximum number M

of page frames are allocated is

M

rM=S W
1=1

with m < M

rM ~ qM



Model C :

The program may find ail its i pages back with probability (1 —p ) or

one single page with probability (3 after the interruption (swap-out with

probability |3). Two values have been selected for |3 : (3 = 0.2 and |3 = 0.8.

Model D :

With this model, the page loss process is studied in more détail

and the influence of the interruption time is considered (small interruption
times lead to small page losses).

For ail models and with the selected parameters for T and k, the

MLTF flattensout' while the LTF is strictly convex. Hence, depending on the

parameters for a given memory size allocated to a program, large différences

between the LTF and the various MLTF's can be observed, and these différences

increase with k as it can be seen from fig. 4 and cannot be disregarded for

typical values of k, i.e. k - 3.

For the memory utilization, ("fig. 5) il can also be observed that for ail

models, the effective use decreases rapidly (expecially for large values of k)
with the number of pages allocated to a program. In some Systems [l] this

problem is minimized by overallocating memory space, but it is quite difficult
to estimate the percentage which can be reasonably overallocated. It has to

be mentiormed here that these utilizations have been computed for one program

with respect to its virtual time. To compute real memory utilization, the

multiprogramming effect has to be considered in order to take intc account

the waiting times after a page fault. A two or three server model may be

used to do this if we distribute programs into classes according to the number

of their pages which are loaded. Although the analytical solution of such

a model is known [4] numerical results would be difficult to obtain due
to the large number of classes (m classes if m is the maximum number of pages

allocated to a program).

The MLTF's computed for môdel A (systematic swap-out after a program

interruption) have been used to evaluate the influence of the mean time T

between program interruptions on CPU utilization in a multiprogramming system.

The computer system was modelled by a central server queueing network



as described in [7]. The three servers are the CPU, the paging drum and a disk file

System (see fig. 6) and it is assumed that prograin interruptions due to a file access

do not cause a swap-out. Overheads are taken into account for each kind of interrup¬

tion of CPU time (page fault, file i/o, transaction end). Other applications of this

model can be found in [14] and [16] where it was used to point out conditions of

optimality for multiprogramming.

Figure 7 displays the CPU utilization versus the multiprogramming

level for various values of T and k. For a given value of the locality k, it

can be seen that small interaction times may cause a sensible réduction of

the CPU utilization an hence of the System throughput especially in the

optimum range of the system (k• = 2, n = 4 in the exemple). One can also notice

on this example that the optimum multiprogramming level (for identical

programs) was independent of the time T. Similar results were obtained for

other configurations and also with a simpler two servers model.

This example illustrâtes the worst case dégradation since we suppose

that the entire program is swapped out at each interruption and is afterwards

reloaded on a page on demand basis starting with one single page. Hence, if

interrupted programs can expect to find more than one page after the processing

of an interruption, the performance of the system will increase up to the

maximum value obtained with the original LTF which was closely approximated

in the example by the curve T = 5000 msec. This is the idea behind the

technique of prepaging where,after each swap-out, the monitor reloads more

than one page at the end of the interruption. Depending on the system, the

entire or part of the core allocation is loaded or the working set as it was

at the time of interruption is loaded before the program is allowed to run. The

analysis presented here provides an estimation of the maximum gain which

can be expected from this technique.



APPENDIX

Solution of the model

ABC
We consider three différent matrices a. namely a.a.a... In

model A, we assume that a. . is defined as follows
ij

~ if j - 1 i = 1 Maij 10 if j > 1 "" *

Model A represents the case where a program has ail its pages swapped

out when it is interrupted, and is reactivated with a single page.

In model B, we assume that when a process is interrupted in state i,
it will be reactivated in any of the states 1, 2,... i with equal probaiblity

l/i. We therefore have

B
_ /1 A

aii ~ \o
1 /i j = 1 , .. .i

i > i
i = 1,.M-

In model C, a program interrupted in state i is assumed to be

reactivated in state 1 with probability (3 and in state i with probability

1-p . We then have

a°. = {j ^ *! = 1 i = 1, ...M.ij J1-p if j = i*0 Otherwise

Model D is described in détail at the end of the appendix.

Solution of model A
,

The state transition diagram is represented in figure 3 • From the
A

définition of a. we have
ij

i = 1 » . . -M-1 ; j = i+1,

= 1-Oi i - 1, .. .M ; j = 1,
id '

0M i = M;j=M,
0 otherwise
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and équation ( 4 ) can be expressed

M

n, = s (1 - 04 n. ,
1=1

n2 7 <*1 ni '

n
i : &i-i ni-i '

nM ~ ^M-1 nM-1 + nM*

It follows immediately :

i-1
n. - n n o , i = 2, M-1

j=1 J
n1 M-I

^ = 1 ~ ' •

Solution of model B

We have

f S. , i = 1 , ...M-1
1 '

1 - a

p±,j = <
1 - a,

1
, i = 1, .. .M-1,

I , i = M, j = 1 ,

M

(-'M

1 - ftM
M M , i = M, j = M

otherwise

and équations ( 4) can be written :

M
■ n1 - E ("

M 1-0
—^) n.

j=i 0 J

n.
m 1-0.

= a, n1 + E ( . -1) n
j=2
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M 1-0.
n. = 0 n. . + S (—:—x) n.
i 1-1 i-1 ^ 3

1 -

Om "I 1M M-1 M-1 M ÏÏM + HM

n.
1

In order to solve this System of équations, we form the différences

II. . , i = 2, M. We then have :i-1

1 - 0.
n. - n. . = r%. . n. , - 0. „n. „ - ——i 1-1 ^1-1 1-1 1-2 1-2 1-1

i-1

ni_1 , i = 2, m-1,

which turns into

^ni " i-1 °i-1 ni-1^ i-1 ^i-1 ~ i-2 °i-2 *

i-1

Erom this équation, the solution is simply obtained as

i-1
n. = i n no.

1
J=1 •>

n M-1

n„ = m -—1— ■ n o.H ' - °M J=1 J

Solution of model C

We have :

1 - i = 1 j j = 1

O, i = 1 ,...M-1 ; j = i+1

Pil
(1 - oi)p
(1 - o,)0-P)

i = 2,.. .m-1 ; i = 1

i = 2, . . .M-1 ; j = i

0 ~ Ojj)(l-p) + 0M i = M ; j = M

otherwise
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and équation ( 4:) writes :

M

n1 = (1 - oJ n + t (1 - o-Jp n
i=2

n2 = ^ nt + (1 - 02)(1 - p) n2

ni =^i-i Vi + ~ OiXi-fOn.

nM %-1 njî-1 + nM +

We obtain :

i-1 <$.
n. - n n / \

1 1
j=1 (<Vl+|i) ~ P *3+1

n M-I o
n„„ = -—1— n J
« 1 - 0„ (»j+l + P) - P »j+,

In the three models, is computed from équation (5 ) and the Y.

can be directly obtained by using équation (6 ).

Solution of Model D

Model D is more complex because we look in détail into the page

loss process (in real time and independently of the program paging activity) .

We suppose that the program starts its interruption with i pages in memory

and we want to find the probabilities en
^ for it to end its interruption with

j pages (j < i).

We will now suppose that the program looses pages one by one during

the interruption. If the interruption time and the time until the next page loss



A 3

when the program has j pages in memory are both exponentially distributed

random variables (with means I and r.), then the probability to .loose one
J

more page at any stage of the process is given by :

Ôj 1/r + 1/1

and the matrix (a..) is obtained simply :
3

a. . = 1 - ô.
1,1 î

a. . , = ô . ( 1-6. , )
i,i-1 î i-1

a. .=6.6. ... 6.^(1-6.)i i-T J+1 3

a. -ô. ô. ...ô
i,.1 ii-1 2

Now, in order to compute r_^, we can assume that the page stealing
rate is constant and equally . distributed among a fixed number of "eligible

pages" . This leads to the formula :

r. = *■
î î

where |3 can be thought of as the mean time between two pages steals for a

given eligible page frame.

This leads to :

ô. = tt-
î i+Y

where

y.f
A simple closed form solution of équation (4) was not found with

this model, but the numerical solution is easily obtainable starting from
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II through the following récurrence formula :

M

n3-1 = ^7 C n3 - £, (1 - ^ «u ni ]J ' «J

nM is obtained from équation (5) and the are again obtained with équation
(6).
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Fig.1 : Expérimental LTFs for différent page sizes
(FORTRAN compilation)
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Fig. 3 : State transition diagram for model A
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Fig. 4a : Modified life time function (e/ot vs memory size)

( mod. A ; mod. B ; —-mod. C(3=0.2) ; mod. C(g=0.8) )
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Fig. 4b : Modified Xife time function (e/a vs memory size)
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Fig. 5 : Memory utilization ratio vs number of pages allocated
( mod. A ; mod. B ; mod. C(B=0.2) ; mod. C(3=0.8) )



Fig. 6 : Three servers model
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Fig. 7 : CPU utilization ratio vs multiprogramming level N

T=5000 msec

T=1000 msec

T= 250 msec

paging drum mean service time = 5 msec.
filing disk mean service time = 30 msec.
mean time between i/o =30 msec.
number of mean memory page frames M= 250

e = a(M/N)^ where a= 0.01 msec.

end of exécution overhead = -5 msec.

paging overhead = 1 • msec.
1/0 overhead = 2. msec.


