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The problem of establishing a mutually held secret
cryptographic key using a radio channel is addressed. The
performance of a particular key distribution system is
evaluated for a practical mobile radio communications
system. The performance measure taken is probabilistic,
and different from the Shannon measure of perfect secrecy.
In particular, it is shown that by using a channel decoder,
the probability of two users establishing a secret key is
close to one, while the probability of an adversary gen-
erating the same key is close to zero. The number of
possible keys is large enough that exhaustive search is

impractical. © 1996 Academic Press, Inc.

[. INTRODUCTION
—

The need for secure data communications in mo-
bile systems is apparent. A broker or a banker might
need to relay sensitive data to a selected customer
through the radio channel. In one-key cryptographic
techniques, such as DES [1], a common secret key is
needed between such two users. Key distribution
and protection is an extremely important aspect of
secure communications systems. However, it is not
unlikely that the two users do not share a common
secret key a priori, but need to use a secure channel.
In the case where two users do not share a common
key it is possible to use two-key public key cryptogra-
phy (PKC) such as described in [2].

As an exploration of an alternative to PKC, a
technique proposed in [3] demonstrated that charac-
teristics of the radio channel might be used to the
same effect. These characteristics are the confirmed

short term reciprocity of the channel and the rapid
spatial decorrelation of phase in the radio channel;
that is, for an incrementally short period of time, the
impulse response of a channel viewed from the
antenna from A to the antenna for B is the same as
the impulse response of the channel viewed from B
to A, excluding thermal noise. In this paper the
performance of the key management technique that
was proposed in [3] is evaluated for the purpose of
practical implementation.

In addition to providing another paradigm for
establishing a mutually held secret variable over a
public channel, the method addressed in this paper
is further motivated by the following consideration.
The popular PKC algorithms are unprovably secure.
The complexity of computation for conventional PKC
schemes and the amount of information that must be
exchanged can be quite severe. As new attacks
against the PKC systems are uncovered, these sys-
tems have retreated to ever longer exchange vectors
and ever more complex computations. The technique
addressed in this paper is a practical alternate
mechanism for cryptovariable establishment and
sharing. The mechanism for secrecy in this scheme
depends upon a physical process, and the cryptovari-
able can be established with computations equiva-
lent to a bounded distance decoding algorithm. Thus,
the decoder we use to establish the cryptographic
variable may also be used for processing the subse-
guent data transmission. Also a conventional PKC
system requires a (pseudo) random quantity to be
generated by each party. With the proposed system
there is no need to do this, as the randomness is
provided by the non-time stationarity and non-
spatial stationarity of the channel itself.

Wyner [5] and Ozarow and Wyner [6] exploit the
channel for secret communications but in a com-
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FIG. 1. A block diagram showing the system considered
with two different time varying channels; ni(t), i = 1, 2, 3,
represent thermal noise. The impulse response of channel
AB is the same as the impulse response of channel BA, but
it is different from that of channel AE or BE.

pletely different setting. Their results are existence
proofs; in particular, it was shown that for given
noisy channels (one for the communicators and one
for an eavesdropper) there exists a rate below which
perfect secrecy is possible. This assumes the eaves-
dropper has a noisier channel than the communica-
tors’ channel. In [7] the author has an interesting
overview of cryptographic key agreement schemes
that use the channel in different ways. In most of
these schemes the two parties initially share a short
secret key; the work in [7], however, relaxes this
assumption and addresses the problem of generating
a shared secret key by two users each knowing a
random variable and the two random variables being
dependent. A protocol is described to establish a
common secret key and which uses a noisy channel.
However, this protocol is completely impractical
when the eavesdropper’s channel is much better
than the communicators’. The scheme described in
this paper is computationally secure even when the
eavesdropper has a substantially better channel
than the communicators’. Finally, the recent work in
[8] evaluates information theoretic models of secret
sharing. The authors were able to determine the
largest achievable key rate—called key capacity.
The performance measure taken in this paper is
probabilistic, and different from the Shannon mea-
sure of perfect secrecy [4]. In particular, it is shown
that by using a channel decoder, the probability of
two users establishing a secret key is close to one,
while the probability of an adversary generating the
same key is essentially zero; this will be referred to

as probabilistic secrecy. Also, the number of possible
keys is large enough that exhaustive search is impracti-
cal, this will be referred to as computational secrecy.

The paper is organized as follows. The system model
and the key distribution technique are addressed in
Section I1. The performance of the proposed technique is
analyzed in Section 111; there, numerical results using
Golay coding are evaluated. In Section IV we draw
conclusions.

[I. SYSTEM MODEL
—

The proposed system is shown in Fig. 1, where E is
an adversary. During the kth signaling interval
(KT, (k + 1)T], A transmits s(t) consisting of two
sinusoids at frequencies f; and f, with equal phases
and equal energy E; that is,

2E
s(t) = /? cos (2nfit + &)
2E
+ 4 /? cos (2nf,t + ¢). (1)

The signal is transmitted through a time-varying
faded channel, corrupted by additive white Gaussian
noise n(t) with double-sided power spectral density
No/2. We assume that cos (2~f;t) and cos (2=f,t) are
orthogonal and separated by at least the coherence
bandwidth of the channel. Then the received signal
r(t), fort € (KT, (k + 1)T], is given by

[2A3(K)E
r(t) = —T cos (2rfit + O4(K))
2A5(K)E
+ Tcos 27f,t + 0,(Kk)) + n(b),

where the random variables A;(k), i = 1, 2, are inde-
pendent and identically distributed random vari-
ables due to fading, with Rayleigh probability den-
sity functions

M ( N ) for ;=0
—exp|— —|, forn =

pa(\) = {07 20° , (2)
0 for \; <O

where o2 = E(A?(k)) is a characteristic of the channel
(E denotes expectation with respect to p,). The
random variables ®,(k) and ©,(k) are mutually inde-
pendent, each with a uniform probability density
function over [—, 7).




B differentially detects an estimate of A2 = 0,(k) —
0,(k) and quantizes the estimate into one of M phase
values, say Q (). Except in sequences, the time index
k will be dropped with no ambiguity.

The differential baseband signal can be shown
to be

UB =2A1A2E eXp {j(@l - 2)} + AlNl + A2N’2€

= Xg +]Ye, (3)
where N; and N, are complex valued Gaussian
random variables with zero mean and variance
2EN,, and * denotes conjugation. The estimated
phase difference is given by ®8 = tan~1Yg/Xz and the
guantizer output is Q (®B).

Repeating the above transmission at times k = 1,
2,...,n, B establishes the sequence

S = (Q(¥2) Q(®) - - Q (¥B)). (4)

Similarly, B transmits a sequence of two sinusoids
at the frequencies f, and f, and with equal phases,
after negligible delay among transmissions; that is,
A transmits, then B, then A, and so on in an
interleaved order to maintain the reciprocity assump-
tion. For instance, consider a mobile with speed of
100 km/h and using a carrier in the 900 MHz region;
with a delay of 10 ps, the distance moved by the
mobile would be 0.00028 m, which is negligible
compared to the wavelength 0.3 m. Thus A forms
the baseband differential signal

UA :2A1A2E eXp {j(®1 - @2)} + A]_Vl + A2V92€

=Xa+jYa, ®)
where V,; and V, are independent of N, and N,. The
estimated phase difference is ®A tan=1 Ya/Xa.
Notice that due to the reciprocity of the channel, the
only difference between U, and Ug is the additive
Gaussian noise.

Therefore, A establishes the sequence

Sa = (Q(®@1) Q(®2) - - - Q(PR))- (6)

An adversary E will have the information
Ug =2A3A,E exp [j(O3 — O,)] + A3N; + A4N3
= Xe +jYe, (7)

where A;, i =1, 2, 3, 4 are mutually independent, and
the estimated phase difference is ®F = tan—1Yg/Xg;

also, 0, i = 1, 2, 3, 4 are mutually independent
random variables.
The adversary E establishes the sequence
Se = (Q(¥5) Q(@E) - - - Q(®F)). (8)
The sequences S,, Sg, and Sg are the input to an
error correction decoder. The outputs of the decoders
are the keys K,, Kg, and Kg. Notice that there is no
encoding performed at the transmitter end. The
decoder essentially limits the number of possible
keys to increase the reliability for key agreement.

[ll. PERFORMANCE ANALYSIS AND RESULTS
—

The following events will be used to assess the
performance of a key distribution system:

Gi = {(DA (= Ri! q)B (S Ri}l Bi = {(DA (S Ri! q)E (S RI}Y
here R; is the region in phase space that is mapped to

symbol i.
The probability of a symbol match among A, B is

M
pg = PrilJ Pr(Gi)]

M
=2 (Pr(®* € Ry))2. ©)

i=1

The probability of a symbol match among A, E is
M

Pp = Pr |L=J1 (B = M (10)

The probability of an estimated phase in a decision
region is derived in the Appendix.

Now consider the use of a linear block code with
minimum Hamming distance d, dimension k, and a
block length n equal to the length of the secret key
needed. Then t = |(d — 1)/2| is the number of errors
that can be corrected by the decoder. The probability
of agreement being in success is the probability of
the two received vectors being in the same decoding
region of a codeword. This can be shown to be
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FIG. 2. The performance of (23,12) Golay code to establish a key of length 64 bits by concatenating three codewords.

where A, is the weight enumerator function of the
code, and

B=m;+m,+mg+m,
0=j+k=t

O=m;+j+-my+k-—mg+m,=t.

The probability of adversary success Pg is given by a
similar equation substituting p, for p,. For small k,
more redundancy is available and a code with better
error correction capability can be obtained; however,
the number of possible keys becomes smaller and for
small enough k exhaustive search by an adversary
becomes feasible. Therefore, the choice of the code
parameters are crucial, since the code restricts the
key space, but the reduction should not yield an
insecure system. Without the use of a decoder, Pr(K, =
KB) = Pr(SA = SB) = pg and Pr(KA = KE) = PI’(SA =
Sg) = 1/M™.

It is of interest to discuss more tradeoffs involved in
the key distribution system. Some tradeoffs were pointed
out earlier: small k yields a code with good error
correcting capability, but exhaustive search becomes
faster exponentially with decrease k. For large M, a
larger code can be used thus increasing the computa-
tional secrecy of the system; also, p, decreases, which
results in a good probabilistic secrecy. However, this is
not sufficient to obtain a good cryptographic system;

with increasing M, thermal noise effects become domi-
nant and an increase in E,/N, is required to achieve a
key agreement with certain probabilistic secrecy. There-
fore, a tradeoff exists between computational secrecy,
probabilistic secrecy, and transmitted energy.

To demonstrate with an example, consider the use
of a (23,12) Golay code to establish a key of length 64
bits. This key is the concatenation of three subkeys
each of length 23 (the last 4 bits can be dropped). The
Golay code is a perfect code, and, therefore, the
decoder will always output a codeword. The proba-
bility of key establishment is then given by Pr(K, =
Kg)?, where Pr(K, = Kg) is given in (11). Figure 2
shows the performance of the system in terms of 1 —
Pr(K, = Kg) as a function of average E/N,. The use
of a decoder is necessary for A and B to establish
a cryptographic key. However, a decoder does not
help E.

The choice of a code and the corresponding decoder
is important. One would be tempted to use a Reed—
Solomon code with large M, since exhaustive search
by an adversary for such codes is essentially impos-
sible, and the performance of such codes is attractive
in error control coding. The problem with using
Reed—Solomon codes is the fact that the code is
sparse. With very high probability the analyzed
protocol will fail to establish the cryptographic key. This
is true when using any sparse codes.




[V. CONCLUSION
—

We have evaluated the performance of an uncon-
ventional cryptographic key agreement technique
based on the reversibility of a radio channel. This
technique results in superior computational secrecy
as well as probabilistic secrecy. Using this scheme,
arbitrary long keys can be shared, and a key can
change during a “session.” An equivalent system
would be the transmission of 2M orthogonal tones by
each user. This system will have the same perfor-
mance; however, it requires a much larger band-
width, as required by orthogonal signaling.

APPENDIX
—

In this Appendix, the probability density function
of @ is evaluated. Initially, assume A = 0, — 0O, is
given and equal to 0.

Consider

U= 2A1A2E + AlNl + /\2N”2c
=X +jY
X = 2A,A,E + Re(A;N; + A,N%)

Y = Im(A;N; + A,N%),

where, conditioned on A; and A,, E(X) = 2A;AE A p,
E(Y) = 0, and variance (X) = variance (Y) = 2EN,
(A3 + A% 2 g2 The conditional joint probability
density function of X and Y is

1
P(X, Y|A1, A) = 2 &P [—[(x — w2 + y2)/263

(o]

with the change of variables

R = X2 + Y2,

the conditional joint density function of ® and R is
given by

d ¢ 1Y
an =tan'_
X

p(R! CI)‘Alr AZ)

R
> exp {—(R? + p? — 2uR cos ®)/207).

2mo;

Integrating over R € [0,»), it can be shown that the

probability density function of ® is given by

1
pa(¢Il) = 5 exp [T
+ —— ([T cos &) exp [T sin2 ]
— cos &) exp {—T sin
\E Y p
X [1 - Q(\/E cos ¢)],
where
_ A E
A2+ AZN,
and

Q) = = fw exp {—u?/2} du.
vom

The probability density function Pr(y) can be shown
to be

1y 1 oY 1
P =) ——————expi—= dx,
0= [ e
where ¥ = 20¢2E/N, is the average signal-to-noise
ratio.

The probability density function of & conditioned
on A # 0 is then given by pg(d — A). Finally, note that
0, and O, are identically distributed uniform ran-
dom variables over [—r, ). The sum A = O, — 0O,
can take values in [—2, 2m) according to a triangu-
lar function (the convolution of two uniform distribu-
tions). Thus to resolve the ambiguities of 2, define
the random variable

A—2w, w=A=2m
A = A, —mT=A=mT .
A+2w, -2a=A=-=w

It can be shown that A’ is uniformly distributed over
[—, ]

With regions given by R; = [—(i — 1)2nw/M, i2w/M),
fori=1,..., M, the desired probability is given by

Pr(® € R)

% f: f; fRi Po(¢ — 3C)P(T) dd dd dr.
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