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ABSTRACT 

 

The conventional manual power line corridor inspection processes that are used by most energy 

utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent 

an attractive and cost-effective alternative approach to these monitoring activities. This paper 

presents a comprehensive investigation into automated remote sensing based power line corridor 

monitoring, focusing on recent innovations in the area of increased automation of fixed-wing 

platforms for aerial data collection, and automated data processing for object recognition using a 

feature fusion process. Airborne automation is achieved by using a novel approach that provides 

improved lateral control for tracking corridors and automatic real-time dynamic turning for flying 

between corridor segments, we call this approach PTAGS. Improved object recognition is achieved 

by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature 

descriptors (color and texture). The results from our experiments and field survey illustrate the 

effectiveness of the proposed aircraft control and feature fusion approaches.  
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1. INTRODUCTION 

 

There is no doubt about the increased reliance that modern societies have on electricity. Electrical 

companies are under continuous and significant pressure to ensure reliable supply and distribution 

of electricity. Whilst trees, shrubs and other vegetation are of remarkable importance to the 

environment and our daily life, inappropriate vegetation around power lines can represent a 

significant risk to public safety and is one of the main causes of power outages. It is commonly 

known that trees falling across power lines are the largest cause of power failures, causing 

widespread power outages and bushfires (Ituen and Sohn 2010; Mills, Gerardo, Li et al. 2010). 

Hence, it is not surprising that power line corridor vegetation management procedures have become 

a significant maintenance cost for electrical companies. For example, Ergon Energy, Australia‟s 

largest geographic footprint energy distributor, currently spends over $80 million a year inspecting 

and managing vegetation encroachments on power lines. Correct and efficient vegetation 

management not only reduces the overall cost but also aids in continuous electricity supply by 

preventing damage to power lines through removal of intrusive trees. Ineffective procedures can 

result in the loss of reliability in electricity transmission, produce serious hazards and expose 

electrical companies to significant financial penalties. 

A power line corridor describes the strip of land upon which utility companies construct their 

electrical infrastructure. Monitoring power line corridors is crucial for the reliability of electricity 

transmission. Trees and shrubs often create obstructions in corridors and pose risks to power lines, 

and therefore utility companies need to scrutinize where and how trees grow in or close to power 

line corridors (Ituen and Sohn 2010). In urban areas, vegetation encroachment is less serious than in 

rural areas as access is much easier and prompt maintenance can be achieved. Moreover, local 

councils and private land owners regularly maintain their trees facilitating the overall maintenance 

process. However, in rural areas, inspection maintenance becomes difficult due to limited access 

and large distances to cover. In these areas, traditional calendar-based tree trimming is often a 

strategy used by energy distributors. Other short-term strategies might be to identify and remove 

nearby objects (i.e. buildings and vegetation) found near power lines. More generally, the risk of 

manmade structures can be controlled through building regulations. However, vegetation grows 

naturally and particularly in rural areas, the growth of vegetation is unmanaged. Strong winds and 

storms can bring branches or even entire trees into contact with power lines. Unmanaged vegetation 



can also grow up into power lines and cause bushfires. Unfortunately, vegetation management over 

large powerline networks is cumbersome and expensive. To manage the tradeoff between safety and 

cost, utility companies often introduce a regular maintenance cycle (e.g. say once every 5 years). 

This strategy assumes that once inspected, properly maintained vegetation can be assumed to 

remain separated from the power line infrastructure until the maintenance cycle is repeated 5 years 

later. However, trees often grow unexpectedly during the period between maintenance due to 

inaccurate vegetation growth modeling and climate changes. For example, the Australian state of 

Queensland is subject to extreme weather conditions, ranging from drought to cyclones. Moreover, 

Queensland can suffer extended periods of dry conditions which significantly increase the risk of 

fire. Strong winds and waterlogged ground can result in trees falling across, and bringing down 

power lines, especially when inappropriate vegetation species have grown too close to power lines. 

Conventional vegetation management strategies only consider the direct clearance of a small 

number of trees within tight corridors below the power line infrastructure, whilst the growth of 

nearby and potentially troublesome vegetation that is slightly outside the corridor is often neglected. 

Whilst indiscriminate removal of all vegetation within a power line corridor is neither cost-effective 

nor eco-friendly, better longer term strategies can be achieved by improved monitoring and 

modeling the growth of all vegetation surrounding power line infrastructure.  

The subjective nature of conventional maintenance strategies often result in some zones being 

trimmed more frequently than required, or conversely, some zones not being trimmed often enough. 

Remote sensing technologies represent an attractive and potentially automated solution for power 

line corridor monitoring activities. Recent efforts toward remote sensing based methods include 

improved data collection using satellite sensors (Beltrame, Jardini, acbsen et al. 2007; Kobayashi, 

Karady, Heydt et al. 2009), an airborne stereo vision system (Sun, Jones, Wu et al. 2006), and 

unmanned aerial vehicles (UAVs) (Jones, Golightly, Roberts et al. 2005; Li, Liu, Walker et al. 

2010). Recently airborne laser scanning has attracted particular attention in power line corridor 

monitoring problem due to the possibility of achieving three dimensional models of infrastructure 

(Chaput 2008; Lu and Kieloch 2008; Jwa, Sohn and Kim 2009). Many utility companies and 

researchers, if not most, use commercial data and software but also generate algorithms tailored for 

their needs. However, there are some critical issues to be addressed regarding automated data 

collection and processing over complicated power line networks. For example, the quality of 

collected data has much to do with aircraft platform stability. The complex nature of navigating 



aircraft over extensive amounts of power line networks calls for an increased level of flight 

automation. To increase the reliability of the information extraction from remote sensing data, 

combining the complementary information derived from multi-source data can be very useful. The 

effective fusion of multi-source data provides the opportunity for more robust operational 

performance and decision making in power line corridor monitoring  

This paper begins in Section 2 with a survey of the remote sensing based power line corridor 

monitoring. We then detail two important aspects of the power line corridor monitoring problem: 

advanced aircraft control for power line corridor monitoring, and multi-sensor data fusion for 

vegetation classification. For this purpose, we first summarize our receding virtual waypoint and 

precision guidance tracking approach reported previously in (Bruggemann, Ford and Walker 2010). 

We then summarize our automated data processing work reported previously in (Li, Liu, Walker et 

al. 2010; Mills, Gerardo, Li et al. 2010; Li, Hayward, Walker et al. 2011). In Section 3, we present 

some new flight tests results that evaluate the ability of the inspection aircraft to maintain a LiDAR 

swath width over the features of interest. Then, a new automated aircraft behavior for maneuvering 

capability at power line corridor corners is described and flight test results presented. In Section 4, 

new approaches and results for the combined use of LiDAR and multi-spectral image data, as well 

as the fusion of multiple visual feature descriptors are presented. The paper ends in Section 5 by 

presenting some conclusions drawn from the lessons we learnt during our 3-year power line 

corridor monitoring project.  

2. TECHNOLOGY OVERVIEW 

2.1. Power Line Corridor Monitoring Using Aerial Remote Sensing 

Ergon Energy has a long-term strategy of managing vegetation according to different species; 

species can be generally categorized as either desirable or undesirable species. Species with fast 

growth rates and that also have the potential to reach a mature height of more than four meters are 

defined as undesirable species. These undesirable species often pose high risks to electrical 

infrastructure and therefore should be identified and removed. It is also worth mentioning that a 

reasonable long-term maintenance strategy is to encourage low-growing trees or shrubs because 

they are expected to compete with tall growing species and deprive the taller trees of light and 

nutrients. These low growing species, along with the rare and endangered species, are defined as 

desirable species that should be managed differently. 



The need to manage risk motivates the collection of data over power line corridors and the 

identification of objects of interest in order to assess the risk levels and guide the field workers for 

vegetation clearance in the corridors. Remote sensing represents a particularly attractive solution for 

power line corridor monitoring. Actually, aerial vehicles have been intensively used in power line 

inspection for a long period. One present practice is to fly helicopters/airplanes along the corridor 

and try to identify dangerous trees and assess the condition of overhead lines assets by visual 

observation. Such visual inspection is time consuming and labor intensive. The advances in sensor 

technologies and intelligent computing techniques provide the opportunity to move from traditional 

vegetation management strategies to more automated, accurate and cost-effective solutions.  

2.1.1. Remote Sensing Platforms 

Satellites and aircraft are the most widely used platforms for remote sensing in earth observing data 

collection. Current satellite sensors are not the best choice for monitoring power line corridors due 

to two critical limitations: the unfavorable revisit time and lack of choices in optimum spatial and 

spectral resolutions. At the most practical level, most collections of data gathered from satellites are 

available only on predetermined schedules, and even those with an “on-demand” capability are also 

limited by their orbits and the demands of other users. In contrast, airborne data collection offers a 

much greater level of flexibility. Another advantage of an airborne platform is that different sensor 

payloads can be easily fitted, while the sensors launched on a satellite are rarely changeable. As a 

consequence, airborne systems can be regularly upgraded as sensor technology advances. 

Improvements to sensors include systems with higher spectral and spatial resolution, and advanced 

microwave or LiDAR sensors. In addition, higher spatial resolutions are easier to obtain from 

airborne platforms, due to their low altitude. A limitation which impedes large-scale airborne 

remote sensing applications is that the traditional piloted airborne platforms involve high 

operational costs. Moreover, using piloted aircraft for power line inspection will place the pilots at a 

greater level of risk. Many airborne LiDAR systems, if not most, use helicopter platforms (Ituen 

and Sohn 2010). Although flying LiDAR with a rotorcraft has some advantages over fixed-wing 

aircraft where tight turns are required, a fixed-wing aircraft has advantages over rotorcraft in terms 

of cost per kilometre surveyed in the large-scale aerial inspection tasks that we are considering in 

this paper.  

Remote sensors mounted on unmanned aerial vehicles (UAVs) could fill this capability gap, 

providing a cheap and flexible way to gather spatial data from power line corridors which can also 



meet the requirements of spatial, spectral, and temporal resolutions. Recent developments in the 

aerial vehicles themselves and associated sensing systems make UAV platforms increasingly 

attractive for both research and operational mapping (Berni, Zarco-Tejada, Suárez et al. 2009; 

Gurtner, Greer, Glassock et al. 2009). One of the main barriers to using UAVs is their inability to 

carry power-demanding and heavy payloads. LiDAR systems are usually too heavy for 

small/medium sized UAV platforms. This UAV limitation may be overcome in the near future as 

there are already small LiDAR systems in the market suitable for UAVs. However, the performance 

of these units in terms of the quality of data collected is currently well away from their full-sized 

counterparts and more development is required. Another key barrier to using UAV is the aviation 

regulatory issues associated with using UAV outside of visual range of an operator. However, if 

both these barriers can be addressed, the combination of small LiDAR type systems and advanced 

UAVs might represent a powerful aerial inspection technology. 

The above mentioned limitations of current UAV technology motivate consideration of manned 

semi-autonomous systems as a technological step from manually piloted inspection towards fully 

autonomous operations. Manned semi-autonomous systems would provide increased automation in 

the aerial survey task but also allow the pilot to remain onboard to monitor and provide human 

control and oversight of the flight. Manned semi-autonomous operation has advantages over the 

current manually piloted approach such as reducing the crewing requirements (pilot only, instead of 

sensor operator and pilot), and allowing a pilot without specialized skills in flying above powerlines 

to safely and routinely conduct successful aerial surveys. Safety could also be improved by reducing 

pilot fatigue and by allowing the pilot to focus upon important aircraft safety-of-operation tasks 

such as the “see-and-avoid” function.  

2.1.2. Automated Data Processing 

There are two kinds of remote sensing: passive remote sensing and active remote sensing. Passive 

sensors detect natural radiation that is emitted or reflected by the object or surrounding area being 

observed. Reflected sunlight is the most common source of radiation measured by passive sensors. 

Optical remote sensing images such as satellite and airborne multi-spectral imagery are collected 

from passive sensors. The spatial resolution and spectral resolution are the two most important 

characteristics of optical remote sensing imagery. Spatial resolution commonly referred to as “pixel 

size” in digital images, has a close relationship with the information content that can be extracted 

from the image; however, higher spatial resolution is not always beneficial. In many sensor 



processing problems, images with a spatial resolution near the size of the object of interest are often 

preferred (Lefsky and Cohen 2003). Spectral resolution is the richness of spectral information in 

optical remote sensing imagery. Different materials reflect and absorb differently at different 

wavelengths. Spectral features are the specific combination of reflected and absorbed 

electromagnetic radiation at varying wavelengths which can uniquely identify an object. For 

example, near-infrared (NIR) wavelengths have been successful applied to estimating vegetation 

biophysical properties (Rautiainen 2005). Active sensors, on the other hand, emit energy in order to 

scan objects and areas whereupon a passive sensor then detects and measures the radiation that is 

reflected or backscattered from the target. Light detection and ranging (LiDAR) is an example of 

active remote sensing in which the properties of returned scattered light are used to find range or 

other information of a distant target. Traditionally, the primary use of LiDAR data is to obtain 

altitude data and generate digital terrain models (DTM). In recent years, however, the range of 

applications in which laser scanning can be used has greatly broadened. With the advancement of 

sensor technology, the achievable resolution of point clouds makes it possible to map individual 

trees and power lines from airborne laser scanning data. 

As may already be evident from the previous section, aerial remote sensing represents an attractive 

solution for power line corridor mapping. Compared to corridor mapping, automated and intelligent 

information extraction from remotely sensed data is even more challenging. One special need for 

power line corridor monitoring is to automatically detect the objects of interest for further 

interpretation and decision making (major objects of interest include power line assets and 

vegetation). Automated data processing aims to automatically detect these objects from aerial 

imagery, and tries to extract more specific information such as vegetation species and height 

information.  

Risk assessment of power lines and adjacent trees is meaningful only when power lines and trees 

can be detected. A number of papers have been published on power line detection during the past a 

few years, both from 2D imagery and 3D LiDAR point cloud data. A straight line can approximate 

a power line segment in aerial images. Therefore, some classic line detection algorithms like the 

Hough transform may be used to detect power lines in images. Yan et al. employed Radon 

transform to extract line segments of the power lines, followed by a grouping method to link each 

segment and a Kalman filter to connect the segments into an entire line (Yan, Li, Zhou et al. 2007). 

Li et al. developed a filter based on a simplified pulse coupled neural network model (Li, Liu, 



Walker et al. 2010). This filter can simultaneously remove the background noise as well as generate 

edge maps. After that, an improved Hough transform is used by performing knowledge-based line 

clustering in Hough space to refine the detection results. The accuracy of 2D image based power 

line detection algorithm depends on the quality of the image. Low spatial resolution and motion blur 

are the two major causes of the failure of the power line detection algorithms. LiDAR is more 

popular for power line survey than image-based approaches because it can provide high density 

point cloud data and does not rely on illumination conditions. LiDAR can more effectively generate 

accurate elevation and terrain models, which can also help to remove terrain points and other 

similar linear features (e.g. fences). Moreover, the 3D nature of LiDAR data makes it possible to 

model the sag of lines, which is also crucial for the maintenance of electrical infrastructure. For 3D 

LiDAR point cloud data, line detection can be conducted either by clustering similar features in a 

voxel (Jwa, Sohn and Kim 2009) or mapping 3D data to two 2D planes (horizontal and vertical) and 

then roughly detecting the power line points in the horizontal plane and reconstructing the catenary 

curve in the vertical plane (Liu, Li, Hayward et al. 2009). No matter which method is used, prior 

removal of non-powerline points (e.g. terrain, tree and building) will always be helpful to reduce the 

false positive rate in power line detection. 

Tree detection from remote sensing imagery is well researched, particularly in the context of forest 

and plantation management (Pouliot, King, Bell et al. 2002; Mallinis, Koutsias, Tsakiri-Strati et al. 

2008). According to our literature review, image based tree detection methods can be broadly 

categorized as either local maxima/minima, template matching, region growing, or edge detection 

approaches (Li, Hayward, Zhang et al. 2008). As the most widely used tree detection method, the 

local maxima/minima approach uses the following assumption: the radiometric properties of a tree 

can be described through a mountainous landscape in which peaks are approximate crown apexes, 

and surrounding valleys represent the space between crowns or where crowns overlap or touch 

(Pouliot, King and Pitt 2005). However, this assumption is not always true. In some real situations, 

multiple trees touch closely and have no distinct dark boundary between tree crowns. Research 

indicates that in this case template matching gives better results, however it is very time consuming 

(Erikson and Olofsson 2005). Another drawback of the local maxima/minima approach is the initial 

assumptions about crown size and shape, and the relative inflexibility of the model to accommodate 

irregular crown form. Considering the spectral properties of vegetation, particular near-infrared 

band, can be very helpful to detect trees. Li et al. employed a simplified pulse-coupled neural 



network (PCNN) that uses spectral features as input, post-processed using morphological 

reconstruction (Li, Hayward, Zhang et al. 2009). The algorithm has been shown to outperform both 

JSEG (Deng and Manjunath 2001) and TreeAnalysis (Erikson 2003) in tree crown segmentation, 

but the primary error source is the under-segmentation of tree clusters due to the crown overlap. 

LiDAR system can measure both vertical and horizontal structures of object, which make it a good 

means for detecting individual trees and estimating tree parameters. Many LiDAR based tree 

detection algorithms borrow the idea from image based methods. Leckie et al. applied the valley-

following method (Leckie, Gougeon, Hill et al. 2003), and Kwak et al. segmented individual trees 

from LiDAR data using extended maxima transformation of the morphological image-analysis 

method (Kwak, Lee, Lee et al. 2007). Despite the benefit of 3D information in tree segmentation, 

the lack of spectral and texture information makes it hard to derive more detailed vegetation 

information (e.g. biophysical properties and species) only from LiDAR data. Combination of 

LiDAR data and optical imagery is considered to be a very promising solution.     

2.2. Control of Airborne Platform 

Maintaining stability and control of a fixed-wing airborne platform above a powerline corridor is 

necessary for reliable data capture of ground assets and features such as powerlines and vegetation. 

To achieve data capture objectives with a body-fixed downward pointing LiDAR or camera, the 

aircraft must maintain an accurate track over the powerline corridor, with minimal lateral position 

and angular heading deviation from the desired flight path over the line. The lateral position 

deviation is referred to as cross-track error and is a key parameter which the controller attempts to 

minimise. At the same time, platform orientation must be controlled and stabilized since excessive 

aircraft bank angle may result in parts of the corridor being missed or poor captured data quality 

(Nelson, Barber, McLain et al. 2006; Bruggemann, Ford and Walker 2010; Holt and Beard 2010) 

2.2.1. Limitations of Current Aerial Survey Industry Practices and Technologies for 

Inspecting Powerline Corridors 

Currently in the aerial survey industry, platform stability and tracking is typically maintained by 

manual pilot control with operator assistance. Pilots are required to concentrate upon a flight display 

for extended periods of time during inspection must be allowed regular breaks for rest and recovery. 

A representative diagram of this approach is given in Figure 2.  However the powerline inspection 

task can involve flying extensive amounts of powerline corridor on a routine basis. For example 



Ergon Energy‟s network in Queensland, Australia consists of 150,000 km of powerline and could 

require 4000 hours or more flying time to inspect the whole network. Flying aircraft at low altitude 

over powerlines for up to 4 or 5 hours a time is a tedious and potentially dangerous task under 

manual piloted control. We argue that improved safety of airborne operations and an increased 

reliability of data capture may be achieved through the increased use of flight automation for 

inspection tasks. 

However, our study of current autopilots and GPS navigators showed that these existing 

technological solutions are not designed for controlling an aircraft to track powerlines - they are 

designed chiefly for routine navigation including waypoint to waypoint navigation and conducting 

holding patterns and procedure turns. Further, standard autopilots and GPS navigators typically lack 

the configurability and tuneability required to allow them to perform in a suitable way for powerline 

corridor inspection. Unlike waypoint to waypoint navigation, tracking powerline corridors for 

inspection requires both aircraft translational and rotational motion to be controlled (Bruggemann, 

Ford and Walker 2010). It should be clear from consideration of the powerline network to be flown 

(Figure 1) that, from an automatic control point of view, a different solution is required to that 

provided by standard autopilots and navigators, because: 

• The powerline network consists of many large and sudden changes in line direction as well 

as short spacing between lines sections. This presents automatic control challenges such as how to 

maintain accurate position over the line, yet also limit and control aircraft orientation (e.g. bank 

angle) such that no sections of the corridor are missed (Bruggemann, Ford and Walker 2010). Also, 

terrain variations and aircraft altitude and speed need to be considered.  

• A very large number of waypoints are required to specify a powerline network under 

inspection. This presents challenges in both waypoint database management and flight planning. 

For example, Ergon‟s electrical distribution in Queensland is described by approximately 1 million 

waypoints. 

• Typically, the total width of a specified powerline corridor must be inspected (not just the 

powerline itself) and this requirement necessitates consideration and monitoring of aircraft 

orientation and the sensor footprint on the ground.  

• Automatic turn re-planning around powerline corridor segments (in cases of excessive cross-

track error or bank angle requiring a go-around maneuver) is also advantageous for reliability of 

data capture.  



New automatic control technology could allow improved safety by removing the need for the pilot 

to manually maintain track and orientation over the line and allowing the pilot to focus upon 

operating the aircraft and situational awareness. It could also facilitate single crew operations that 

do not require an additional operator to assist the pilot.  

Past research has focused on the problem of automatic control of airborne platforms for the purpose 

of aerial inspection of linear assets such as rivers, roads, pipelines and powerlines (Frew, McGee, 

Kim et al. 2004; Rathinam, Kim, Soghikian et al. 2005; Egbert and Beard 2007; Holt and Beard 

2010). Early studies discovered that simple PID-based control loops can lead to poor cross-track 

error performance due to GPS derived tracking errors (Niculescu 2001; Frew, McGee, Kim et al. 

2004). Hence, nonlinear controllers based on minimization of heading or heading error rate were 

proposed (Niculescu 2001; Frew, McGee, Kim et al. 2004). Alternative line tracking strategies 

related to proportional navigation type guidance laws such as biased proportional navigation (Holt 

and Beard 2010) and precision guidance (Bruggemann, Ford and Walker 2010) have also been 

proposed. Vector field and Lyapunov based approaches have also been proposed for more general 

path tracking problems with UAVs (Ren and Beard 2004; Nelson, Barber, McLain et al. 2006).  

The past control literature acknowledges the problem of maintaining features of interest within the 

sensor field of view; however, the issues associated with tracking powerline corridors and their  

impact on LiDAR swath width have not been well studied. The swath width of a LiDAR is the 

across-track distance that is mapped while on a survey line (Costa, Battista and Pittman 2009). 

Swath width depends upon LiDAR scan angle and also aircraft height above terrain. In tracking 

powerline corridors, it is desired to capture a corridor region. The swath width is an important 

parameter in survey applications as it needs to be wide enough such that the LiDAR scanning beam 

covers the complete width of the corridor region to be surveyed, yet narrow enough such that the 

point cloud density is dense enough to capture specific (and possibly thin) features of interest such 

as individual powerlines. Since LiDAR data files are large, narrow swath width also has advantages 

in terms of reducing the amount of data stored during a survey flight. Integrated system design, 

automatic guidance, maneuver and control solutions for an aircraft tracking linear infrastructure has 

already been investigated in (Bruggemann, Ford and Walker 2010). However, the impacts on 

LiDAR swath width when tracking powerline corridors and the ability to conduct automatic turns 

around powerline corridors were not investigated in this earlier work. For this purpose an evolved 



prototype of the architecture presented in (Bruggemann, Ford and Walker 2010) called the 

Powerline Tracking Automatic Guidance System (PTAGS) was developed as described next. 

2.2.2. Powerline Tracking Automatic Guidance System (PTAGS) 

The Powerline Tracking Automatic Guidance System (PTAGS) provides improved lateral control 

for tracking corridors and automatic real-time dynamic turning for flying between corridor 

segments. A diagram of the system architecture is given in Figure 3. PTAGS takes waypoints 

describing the powerline corridors as input from a flight and waypoint management system and 

commands a standard aircraft autopilot, whilst considering both translational and rotational motion 

with respect to the corridor. A key feature of this approach is the feedback loop from aircraft 

performance (aircraft position and orientation with respect to the powerline corridor as measured by 

onboard navigation systems) to PTAGS which then utilizes new automated guidance, maneuver and 

control algorithms to command the aircraft autopilot. It also includes automatic decision-making 

which enables the autopilot to plan and fly turns that incorporates available knowledge at the time 

such as LiDAR swath width, aircraft airspeed and roll angle. Dynamic turn re-planning (“go-

around”) capability in the case of missed data capture or unacceptable cross-track or roll angle 

tolerances is also implemented. 

 

Figure 1 A 20 km by 15 km area of powerline network (black lines). The distribution, size and 

orientation of lines indicate challenges for automated guidance and control of a fixed-wing airborne 



platform. Large and sudden changes in line direction and short spaces between lines sections require 

specialized control techniques. 

 

Figure 2 Manual control of inspection aircraft (current industry practice). 

 

 

Figure 3 Automatic control of inspection aircraft with PTAGS 

 

The control system architecture of PTAGS is given below (Figure 4) as already presented in 

(Bruggemann, Ford and Walker 2010). The key functions of PTAGS are the Receding Virtual 

Waypoint (RVWP), Guidance and Maneuever Selection which send roll guidance commands to the 

aircraft autopilot. The architecture is decomposed and approximately sorted according to the time 

scales of the dynamics handled within each loop. The outer loop (guidance) corresponds to slower 

features of the dynamics (translational motion), whilst the inner loop (autopilot) controls the faster 

dynamics (rotational motion). This decomposition allows the inner autopilot loop to be handled by 

an already certified commercial autopilot; the use of certified autopilots simplifies the process for 

certification of the overall developed inspection solution. In fact, we have safely conducted flight 

experimentation with a Cessna 172 aircraft for the past two years, with appropriate approval by the 

regulators. This decomposition also allows platform specific issues to be contained within one loop 

such that the design of the outer loops is less dependent upon platform specifics, allowing re-use on 

different aircraft platforms.  
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Figure 4 Control system architecture of PTAGS.  

 

 

The trajectory planning and guidance functions are indicated by the Receding Virtual Waypoint 

(RVWP) and Guidance block on Figure 4. The RVWP is specified as a point on the infrastructure at 

some look ahead distance ahead of the aircraft‟s current location, and the point moves along the 

infrastructure as the aircraft moves along. A feature of this approach is the avoidance of 

discontinuities in the planned flight path (due to corners where powerline segments join) which 

results in “cutting across corners” behavior. When using a RVWP approach to describe the 

reference trajectory, the lateral stability of the platform depends upon characteristics of the autopilot 

response and the look ahead distance selected. 

The guidance function in PTAGS utilizes a precision guidance law which commands a lateral 

acceleration ca to minimize the track error between desired flight trajectory and current aircraft 

location. The lateral acceleration commands are calculated from current aircraft location, current 

receding virtual waypoint location, and the heading direction of the powerline infrastructure to be 

tracked. Further details are published in (Bruggemann, Ford and Walker 2010). 

The maneuver selection block includes switching logic between control for “on survey” and “off 

survey” tasks. On survey is when the LiDAR system will be switched on and collecting data, over 

the powerline corridor infrastructure. In this case the powerline corridor itself describes straight line 

piecewise linear paths to be tracked and defines the reference trajectory for the RVWP. But there 

are also “off survey” periods where the aircraft is conducting maneuvers such as steady turns to 

align itself in preparation for the next “on survey” inspection leg. In “off survey” periods a curved 

reference trajectory for conducting a turning maneuver is constructed based upon Dubins paths 

(Chitsaz and LaValle 2007), and the receding virtual waypoint moves along this curved path with 

tracking provided by the precision guidance law, to achieve an automatic turning control. Roll 

RVWP and 

Guidance   
Maneuver 

Selection 

Autopilot and 

Dynamics 

c  ca  

Feedback of aircraft position and orientation  

PTAGS  



commands c  are then sent to the autopilot, which have been determined from lateral acceleration 

commands ca  using a simple kinematic bank turn model as described in (Bruggemann, Ford and 

Walker 2010). Studies of the performance of PTAGS in “off survey” mode tracking a curved 

reference trajectory and impacts of the “on survey” line tracking mode on LiDAR swath width will 

be presented in Section 3. 

2.3. Multi-source Feature Fusion for Improved Vegetation Classification 

LiDAR is an effective sensor for 3D information acquisition and has great potential to assist 

vegetation management in power line corridors. However, due to the variations of point density and 

lack of spectral information, it is often hard to achieve robust tree detection results from only 

LiDAR data. Distinct spectral signatures in red and near-infrared bands have been successfully used 

to discriminate vegetation and non-vegetation (Li, Hayward, Zhang et al. 2009). However, grass, 

low vegetation is hard to be discriminated from trees as they present very similar colors and even 

textures. A better solution is to combine multispectral images and LiDAR data to improve tree 

detection and segmentation.  

As discussed in section 2.1, the species information is valuable to model the growth of vegetation 

and discriminate desirable and undesirable tree species. Tree species classification from remote 

sensing data has been intensively studied in forest management (Sugumaran, Pavuluri and Zerr 

2003; Holmgren, Persson and Söderman 2008; Breidenbach, Næsset, Lien et al. 2010). However, 

successful classification is mostly seen at forest stand level or individual trees with different genus 

(e.g. coniferous or deciduous species) because they look obviously different in visual appearance. 

Detailed individual tree species is often hard to discriminate due to their similarity in visual 

features, even for human expert interpretation from imagery or field survey. We borrow the idea 

commonly used in human face recognition and try to improve tree species classification by 

selecting more discriminative visual feature descriptors. A feature fusion method is developed by 

combing color and texture feature descriptors using kernel PCA and maximum likelihood based 

intrinsic dimensionality estimation. 

2.3.1. LiDAR and Multi-spectral Data Fusion for Improved Tree Crown Segmentation 

Detection of trees has been intensively studied previously, particularly within the application of 

remote sensing of forest environments. Whilst similar in concept, the environment in power line 



corridor is more complex because the background is cluttered with shadows, bare soil, shrubs and 

grass, all presenting irregularities that need to be handled by the detection algorithm. Vegetation has 

a distinctive spectral signature, characterized by a low reflectance in the visible part of the solar 

spectrum, and a high reflectance in the near-infrared (NIR) region. Therefore, NIR information is 

widely used in the remote sensing community for the detection and classification of vegetation. 

Combining LiDAR elevation data can further improve tree detection by removing low-growing 

grass and shrubs. For classification of tree species, object-based methods are preferred as they are 

straightforward and have been shown to obtain higher classification accuracy in high resolution 

image classification (Blaschke 2010). To conduct an object-based classification, accurate individual 

tree segmentation is required. Subsequent to this, a range of classification algorithms can be used in 

the object-feature space.  

As discussed in section 2.1.2, 2D image based tree crown segmentation algorithms often meet 

difficulties in discriminating grass, shrub and trees since these types of vegetation are often very 

similar in both color and texture. The 3D nature of LiDAR data makes it especially well suited to 

this situation. However, the success and quality of the results depend on the point density of LiDAR 

data as well as the size, shape and distribution of trees. Multi-spectral imagery provides spectral and 

texture information that is complementary to LiDAR information. Therefore, combining LiDAR 

data and multi-spectral imagery seems to be a promising way to improve individual tree crown 

detection and delineation. In this study, a region level fusion method is developed to combine multi-

spectral image and LiDAR data for individual tree crown detection and delineation.  

The first step towards fusing LiDAR and multi-spectral imagery is referencing. This step is also 

known as sensor alignment or registration and establishes a common reference frame for different 

sensor data. If the two sensors are mounted on the same aerial platform then the navigation system 

(GPS/IMU) provides position and attitude data for both the aerial camera and the LiDAR system. 

Since the GPS/IMU unit and the two sensors are physically separated, the success of sensor 

alignment relies on how well the relative position and attitude of the various system components 

can be determined. The multi-spectral imagery and LiDAR data used in our experiments have 

already been georeferenced by the commercial data provider, which simplifies the sensor fusion 

process. 

Assuming that sensor alignment has been completed with sufficient accuracy, LiDAR data can then 



be considered as an additional image layer of the multi-spectral imagery. After ground filtering, 

object points are obtained to refine the tree crown segmentation. The fusion process is described in 

Figure 5. First, LiDAR point cloud data and georeferenced multi-spectral imagery are processed 

separately. On one side, an initial segmentation is conducted in spectral feature space using the 

algorithm developed in (Li, Hayward, Zhang et al. 2009). After that, regions in the initial vegetation 

segmentation map are labeled for the following fusion process. On the other side, a ground filtering 

algorithm using statistical analysis is conducted to separate terrain and object points (Liu, Li, 

Hayward et al. 2009). Then the point clouds are converted to a 2.5D height image. The pixel size of 

the height image used in this paper is 15 centimeters, which is the same with multi-spectral image 

pixel. The lowest Z coordinate (height) within the bounds of a pixel is chosen as the height of that 

pixel. The 2.5D depth image is then integrated with the labeled vegetation segmentation map. A 

simple thresholding process is used in order to remove grass and low vegetation. The region mean 

height histogram is calculated to visualize the height difference among regions. The mean height of 

a region which contains grass and low vegetation points will be much lower than a region which 

contains only trees. Finally, a watershed-based segmentation (Bleau and Leon 2000) is employed to 

further decompose the tree clusters to individual trees. 

 

Figure 5 Framework of LiDAR and georeferenced multi-spectral imagery fusion for individual tree 

crown segmentation 

2.3.2. Color and Texture Feature Fusion for Improved Tree Species Classification 

After individual trees have been segmented, a number of local feature descriptors can be used to 

represent each tree crown. The use of appropriate features to characterize an output class or object is 



fundamental for any classification problem. There is no generically best feature for image 

classification. The selection of an appropriate feature descriptor must reflect a specific classification 

task in hand and usually needs to be obtained through experimental evaluation. We have conducted 

a feature evaluation (Li, Hayward, Zhang et al. 2010) and developed a new rotation and scale 

invariant spectral-texture feature descriptor (Li, Hayward, Walker et al. 2011). The experimental 

results published in our previous work demonstrated that tree species classification performance can 

be considerably improved through careful design of feature descriptors. In this paper, we further 

evaluate the fusion of multiple color and texture features based on a kernel PCA based method. 

Color and texture are two fundamental features in describing an image, but prior research has 

generally focused on extracting color and texture feature as separate entities rather than a unified 

image descriptor (Whelan and Ghita 2009). The idea of using both color and texture information  

has strong links with human perception, and these links motivates an investigation of how to 

effectively fuse color and texture as a unified descriptor to improve the discrimination over viewing 

color and texture features independently. Although the motivation of using color and texture 

information jointly in object-based image classification is clear, how best to combine color and 

texture in a unified object descriptor is still an open issue. Huang el al. (Huang, Zhang and Li 2008) 

proposed a multiscale spectral and spatial feature fusion method based on wavelet transform and 

evaluated in very high resolution satellite image classification. Zhang et al. (Zhang et al., 2008) 

extracted texture features using multi-channel Gabor filters and Markov random fields integrated 

the two features using a neighbourhood oscillating tabu search approach for high-resolution image 

classification (Zhang, Zhao, Huang et al. 2008). However, these methods extract features from fixed 

window size and do not consider all pixels within an object as a whole. Moreover, heavy 

computational burden is induced by combining multiple features (through „the curse of 

dimensionality‟) and these burdens may limit the practical performance of the classifier. 

It is often difficult to classify objects using a single feature descriptor. Therefore, feature-level 

fusion plays an important role when multiple features are used in the process of object classification. 

The advantages of feature fusion are: 1) the most discriminatory information from original multiple 

feature sets can be derived by the fusion process; 2) the noisy information can be eliminated from 

the correlation between different feature sets. In other words, feature fusion is capable of deriving 

and gaining the most effective and least-dimensional feature vectors that benefit the final 

classification (Yang, Yang, Zhang et al. 2003). The feature fusion framework is illustrated in Figure 



6. After object segmentation, color and texture features are extracted from image objects. Different 

feature vectors are normalized and then serially integrated. After that, kernel PCA is used to 

globally extract the nonlinear features from the integrated feature sets as well as to reduce the 

dimensionality. The intrinsic dimensionality of the serial fused features is estimated using a 

maximum likelihood method to select the target dimensionality from the kernel PCA fused feature. 

Finally, features selected from Kernel PCA are used as the input to classifiers for further analysis. 

Figure 6 Framework of object-level color and texture feature fusion 

We first use a serial fusion strategy by simply combining different feature vectors into one set of 

feature union-vector. Different features vectors are combined into one set of feature union-vector. 

As the features are different on the value scope, they are initialized into range [-1,1] by Gaussian 

criterion. Consider a n-dimensional feature vector ijfF  , where ijf  is the th
j  feature 

component in iF . Assuming that ijf  is a Gaussian sequence, we compute the mean jm and the 

standard deviation j . Feature ijf  is normalized by jjijij mff )(  . Suppose   and   

are two feature vectors which are extracted from the same image-object. The integrated feature 

union-vector is defined by 












 . Obviously, if feature vector   is m-dimensional and   is 

n-dimensional, then the dimension of feature vector    is nm  .  

Traditional linear feature selection and extraction methods such as PCA are conducted in the 

original input space, and thus cannot properly handle nonlinear relationships in the data (Cao, Shen, 

Sun et al. 2007). For example, the principal components of features may not be linearly related to 

the input variables and the features of different categories may not be simply separated by a 



hyperplane. To solve this problem, kernel methods can be introduced to map original data to a 

kernel space using a mapping function. Kernel PCA is one of these kernel methods which 

reformulate traditional linear PCA in a high-dimensional space using a kernel function. Given M  

input vectors px , kernel PCA firstly map the original input vectors px  into a high-dimensional 

feature space )( px . Performing PCA in the high-dimensional feature space can obtain high-order 

statistics of the input variables, which is also the initial motivation of kernel PCA (Xie and Lam 

2006). In PCA, the principal component of px  is the product of px  and the eigenvectors of the 

covariance matrix of M  input vectors. However, it is difficult to directly compute both the 

covariance matrix of the high-dimensional feature space )( px
 
and its corresponding eigenvectors 

and eigenvalues in the high-dimensional feature space. Therefore, kernel tricks are employed to 

avoid this difficulty and the principal eigenvectors are computed from the kernel matrix, rather than 

the covariance matrix. More details of kernel PCA are introduced in the appendix of this paper. 

Using kernel PCA to find the underlying structure of and the correlations of multiple feature sets 

has important benefits. First, the most discriminatory information can be derived and redundant 

information can be eliminated from the fusion process. Second, the dimension of feature sets can be 

reduced and thus the computational cost of the subsequent classification stage is reduced. However, 

it can still be difficult to find a suitable criterion for selecting optimal features using kernel PCA.  

Up to this point we have assumed that the target dimensionality of the low-dimensional feature 

representation was known and specified by the user. In practice, the optimal dimensionality needs to 

be estimated automatically. A possible solution is to estimate the intrinsic dimensionality of the 

high-dimensional feature set and then use this estimate as the target dimensionality. Intrinsic 

dimensionality is the minimum number of variables that is necessary in order to represent all the 

information in a dataset. In this paper a maximum likelihood estimator (MLE) (Levina and Bickel 

2004) is employed to estimate the intrinsic dimensionality. MLE is a local intrinsic dimensionality 

estimator which is based on the observation that the intrinsic dimensionality of the data manifold 

around one data point can be estimated by measuring the number of data points covered by a 

hypersphere with a growing radius. MLE considers the data points in the hypersphere as a Poisson 

process, in which the estimated intrinsic dimensionality d  around data point ix
 
in given k  

nearest neighbours is given by 
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where )( ik xT represents the radius of the smallest hypersphere with centre ix  that covers k  

neighbouring data points. 

Different numbers of neighbouring data points can be treated as the different scales. It was clear 

from equation (1) that the calculation of intrinsic dimension d̂  depends on scale parameter k. In 

this paper, the intrinsic dimension is obtained by averaging d̂  over a scale range ],[ 21 kk  using 

the following equations: 
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where d̂  is the number of input vectors, kd̂  is the estimated dimension at scale k , and d̂  is the 

final estimated dimensionality. 

 

 

3. AIRBORNE PLATFORM CONTROL EXPERIMENTS AND RESULTS 

3.1. Study of Swath Width Variation under Autopilot Control 

 

Simulated and experimental flight test results of new guidance and control techniques for inspection 

of linear infrastructure that demonstrated improved cross-track and heading error performance in 

line tracking were previously published in (Bruggemann, Ford and Walker 2010). Here we present 

further results which illustrate the effect of aircraft position and orientation on swath coverage and 

corridor tracking performance under autopilot control. An experimental flight test was made of a 

Cessna 172 fitted with PTAGS tracking a 10 km section of powerline corridor at Kingaroy, 

Queensland, Australia. PTAGS commanded the aircraft autopilot for lateral control whilst the pilot 

maintained vertical control with average speed of 46 m/s and average altitude of 457 m above 

ground level. Aircraft position and orientation were recorded via a survey grade dual frequency 

GPS-INS system for later evaluation of the flight performance. Wind conditions included a 15 knot 



south westerly wind and low turbulence. The next two sub-sections study the impact of terrain, 

altitude and aircraft bank angle on LiDAR swath width. 

3.1.1. Impact of Terrain Variation on Swath Width  

In this section, the impact of terrain variation on swath width is studied on the basis of aircraft flight 

data, including measured aircraft position and attitude, collected during a powerline inspection 

flight. A LiDAR sensor was not installed during this flight, but a fictitious LiDAR swath width 

(corresponding to a LiDAR swath pattern covering a 45 degree field of view) can be calculated 

from simple geometry. The situation is illustrated by Figure 7 and Figure 8 showing that the swath 

width for a lower altitude above ground (AGL) is smaller than the swath width for higher AGL 

(under level terrain assumption).  

 

Figure 7 Changes in terrain height cause changes in altitude above ground (AGL), which will 

impact swath width. 
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Figure 8 The effect of altitude above ground level (AGL) on swath width. The swath width for a 

lower AGL is smaller than the swath width for a higher AGL.  

 

To isolate the impact of the terrain variations, the measured aircraft altitude will be ignored in the 

following swath calculations and only aircraft attitude and position information will be used (a 

mean altitude above ground of 457 m or 1500 ft will be assumed). A digital terrain elevation model 

was obtained for the flight test area and then a fictitious steady-rate climb flight profile was 

calculated that corresponds to a mean altitude of 457 m (1500 ft) above the terrain model, as shown 

in Figure 9. This fictitious vertical profile was assumed so that variations in estimated swath would 

be due only to terrain variation and roll motion (and not due to features of the experiment aircraft‟s 

altitude dynamics). Note that in practice there would be some vertical error in tracking the vertical 

flight profile under autopilot or manual pilot control which will introduce additional variation in 

swath width.   

Using simple trigonometry, the swath width was then estimated on the basis of the terrain profile 

model, the assumed vertical flight profile, the measured aircraft position and attitude, and the width 

estimates for two different vertical flight profiles is shown in Figure 10. Because vertical effects 

have been removed, the variability of the estimated swath width is purely due to aircraft roll motion 

recorded from the flight test. For comparison purposes, the estimated swath width variation under 

the alternative assumption of a flat terrain profile (that is, constant altitude flight above a flat 
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terrain) is also shown in Figure 10. During the flight experiment there was an average 26 m and 

maximum 86 m swath width difference between considering the terrain variations and assuming flat 

terrain. The noticeable greater variability in swath width in the presence of terrain variation suggests 

that terrain variation impacts the swath width more significantly than aircraft roll motion. This 

highlights inspection challenges in terms of not only lateral but also vertical automatic control of the 

aircraft, and these challenges will impact LiDAR sensor considerations. However, this does not 

mean that roll motion should be disregarded, as will be seen in the next section.  

 

Figure 9 Aircraft steady climb (calculated), required to achieve a mean altitude of 457 m (1500 ft) 

above terrain. 



 

 Figure 10 Impact of terrain variation on swath width showing a difference of up to 86 metres (at 

around 580 seconds) as compared to flat terrain. 

3.1.2. Impact of Aircraft Bank Angle on Swath Width 

Results examining swath width variation due to bank angle are now presented (whilst tracking a 15 

km long section of powerline corridor using an aircraft under autopilot control). As illustrated by 

Figure 11, a non-zero bank angle can change the geometry causing the swath width to change, but 

more significantly a non-zero bank angle might cause the swath width to not cover the entire 

corridor width.  
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Figure 11 Impact of Aircraft Bank Angle on Swath Width (with flat ground assumption). 

 

Figure 12 shows the swath variation (estimated swath including terrain variation, as explained in 

previous section) due to bank angle for a Cessna 172 tracking powerlines under autopilot control 

using the precision guidance and control algorithms presented in (Bruggemann, Ford and Walker 

2010). A desirable corridor width of 200 m was assumed and is displayed on the figure as the red 

lines.  

The PTAGS successfully maintained swath coverage over 98% of the corridor region. However 

there was one part of the corridor missed due to excessive roll angle, as indicated by A on the 

figure. Note that during the flight experiment the aircraft roll angle did not exceed 15 degrees (due 

to the rate-1 turn limitation of the autopilot).  

From these results it is evident that the aircraft bank (which is necessary to change the heading of 

the aircraft and maintain lateral track over the corridor) has the undesirable but unavoidable effect 

of moving the swath region away from the corridor to be inspected. Thus, autopilot guidance and 

control algorithms for aerial inspection must make tradeoffs between accurate position track over 

the corridor and constraining the roll so that the complete corridor region is measured. Both desired 

roll changes (to effect a heading change) and undesired roll changes (such as due to wind gusts) 

present a challenge for automatic control of the airborne platform for tracking powerline corridors. 

This problem is magnified in smaller aircraft or UAVs that are more susceptible to wind gusts. 

Although roll stabilized sensor systems exist, stabilization of the sensor head does not solve all 

issues associated with excessive roll angle. For example, excessive aircraft roll might cause loss of 

lock of GPS satellites (GPS is typically integrated in LiDAR survey systems to provide the 

aircraft‟s absolute position). Also, the amount of roll stabilization offered by commercially 

available LiDAR aerial survey systems is often limited to small angles due to the additional expense 

in terms of captured data quantity or quality. It is therefore desirable to mitigate unwanted roll 

motion via design of better control of the aircraft platform. Better aircraft roll behavior might be 

achieved via maneuver selection strategies, and the use of constrained bank or skid turns as 

proposed in (Bruggemann, Ford and Walker 2010; Mills, Ford and Mejias 2011) .  

A feature of the specialized powerline tracking and guidance algorithms is that the aircraft ground 

track cuts across the powerline corners (observe the behavior of the blue line of Figure 12). A small 



corner of corridor that was missed due to track error (introduced by the “cutting across the corner” 

feature of the guidance algorithm) is indicated on Figure 12 by B. This highlights an issue in 

tracking short line segments with sharp changes in line direction – a decision is required on whether 

or not to proceed to “cut across the corner” or command a complete turn such that the complete 

segment is captured. This is essentially a tradeoff between flight efficiency and certainty of data 

capture. That is, a complete turn could be conducted at every change in corridor direction to help 

ensure corners are not missed, but this would be inefficient in terms of flying time and distance. On 

the other hand, a “cutting across corner” approach at every change in corridor direction may result 

in missing parts of the corridor as seen on the figure. This decision could be made in-flight based 

upon the known angular change in corridor direction with a predictive swath coverage model, or 

made in pre-flight planning. The automatic turn performance of PTAGS in conducting complete 

turns around corners will be presented in the following section.    

 

Figure 12 Tracking a 15 km long powerline corridor under autopilot control with PTAGS. Black – 

powerline corridor centre, red – 200 m wide powerline corridor, green - swath width (accounting for 

terrain variation and aircraft bank angle), blue – aircraft ground track.  The results demonstrate 
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B. Part of corridor 

missed due to track error 



successful coverage of the corridor under autopilot control for most of the corridor, with occasional 

miss of corridor (as indicated by A and B on figure). 

3.2. Demonstration of Automatic Turn Capability around Corridor Corners  

When tracking powerline corridors, a key requirement is that when the aircraft turns around 

between two line segments the aircraft can successfully maintain lateral stability whilst returning on 

track towards the next line segment without missing the corner of corridor where the two segments 

meet. This section presents results that illustrate the automatic turn capability of PTAGS around 

corners. A test case consisting of three line segments connected by 90 degree changes in direction 

was constructed as shown by the black lines on Figure 10. These line segments were flown by the 

Cessna under autopilot control using PTAGS which automatically calculated and flew turns 

between each segment. If PTAGS detected that it could not get back on track to the next line 

segment without missing the corridor PTAGS automatically triggered a “go-around again” 

maneuver.   

On Figure 10 the ground-track of the aircraft is shown by the red lines (the trajectories shown 

correspond to the power lines being inspected twice). The aircraft successfully executed 90 degree 

cornering maneuvers without the sensor swath width missing the corners. During one of the 

cornering maneuvers the aircraft missed the start of the powerline corridor at the top corner due to 

wind gusts. However the PTAGS automatically triggered a “go-around again” maneuver to ensure 

inspection is complete (hence the three turns shown at the top corner compared to two turns shown 

at the bottom corner). This automated “go-around again” maneuver demonstrates the dynamic re-

planning capability of the system under autopilot control. Finally, some lateral instability can be 

seen on straight segments which may indicate some algorithm tuning or refinement is required. 
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Figure 13 Automatic turning around 90 degree corners with PTAGS, demonstrating successful 

tracking of lines after turns and triggering of a “go-around again” maneuver. Black lines – line 

segments. Red lines – aircraft ground track.   

4. AUTOMATED DATA PROCESSING EXPERIMENTS AND RESULTS 

4.1. Data Collection 

In this study, both aerial remote measurements and ground survey data were collected. The first 

series of flights (conducted by a local company) collected data from a high resolution digital 4-band 

multi-spectral camera (DuncanTech MS-4100) with a DGPS/INS mounted in the cargo area of a 

Piper Cub. In these flights, multi-spectral data was captured over 4 spectral bands: NIR (800-

966nm), red (670-840nm), green (540-640nm), blue (460-545nm) whilst traveling at approximately 

34m/s (65 knots) at an altitude of 350m AGL(multi-spectral images were captured at approximately 

15cm GSD). The second series of flights (conducted by a different local company) collected data 

Extra “go around 

again” turn triggered  



from an airborne LiDAR scanner mounted onto a Cessna aircraft. In these flights, the LiDAR data 

was collected with a scan angle of ±30° with an average sample rate of 9 points per square meter. 

Figure 14 shows the data collection systems.  

  
(a)  Multi-spectral imagery collection system 

  
(b) Lidar data collection system 

Figure 14 Data Collection Systems 

The ground survey was conducted in a 1.5 kilometer corridor in the towns of Murgon and Wondai 

in Central East Australia where the above identified multi-spectral image and LiDAR data were 

collected. The ground truth data of vegetation species were obtained with domain experts‟ 

participation. Figure 15 shows a mosaic of the test area generated from aerial images acquired from 

the trial. It should be noted that classifying all types of species in power line corridors requires 

significantly more resources than are currently available; however, classifying species in a given 

test area as a proof of concept is possible. In this research, we focus on three dominant species in 

our test field: Eucalyptus tereticornis, Eucalyptus melanophloia, and Corymbia tesselaris. We 

abbreviate the species names to Euc-Ter, Euc-Mel and Cor-Tes.  



 

Figure 15 Experiment test site 

4.2. LiDAR and Image Data Fusion 

Figure 16 shows a pair of CIR image and LiDAR point cloud data in urban areas. Figure 17 shows 

the fusion process and the result using the image and LiDAR data. As shown in Figure 17 (a), an 

initial segmentation was conducted on the CIR image without any post-processing. The initial 

segmentation detects trees as well as other vegetation segments (e.g. grass). Figure 17 (b) shows the 

2.5D depth image of LiDAR object points after ground filtering. Each connected region in the initial 

segmentation map was labeled, showing different colors in Figure 17 (c). The 2.5D depth image is 

then integrated with the labeled vegetation segments map. A simple thresholding process is used in 

order to remove grass and low vegetation. An overlay of the LiDAR points after the fusion process 

on the initial segmentation map is shown in Figure 17 (d). From this figure, we can see that the low 

mean height regions representing grass and other low vegetation were separated. Figure 17 (e) 

shows the tree segments after the fusion process. Afterwards, a watershed algorithm was applied on 

the Figure 17 (e) to decompose the tree clusters to individual tree crowns. As can be seen from the 

final segmentation result, low vegetation regions have been successfully removed. However, a 

critical limitation from this fusion process is that it depends on the high point density of LiDAR 

data. For a small-sized tree crown and low point density LiDAR data, no points or only a few points 

hit the tree which may cause the tree to be removed due to low region mean height. A series of 13 

pairs of multi-spectral imagery and LiDAR data were selected for processing with a total number of 

183 trees. Frames were removed from the full sequence of images to minimize image overlap 

(overlap might see some trees processed more than once). Furthermore, the developed algorithm 

was only applied to those areas of the image that contained the power-line corridor. The developed 



tree crown segmentation algorithm achieved a detection rate of 97.27% and a segmentation 

accuracy of 84.7%.  

 

Figure 16 A pair of the collected multi-spectral image and LiDAR point cloud data 



 

Figure 17 Fusion of LiDAR and multi-spectral imagery for individual tree crown segmentation 



4.3. Color and Texture Feature Fusion 

In order to select the most appropriate features for tree species classification, we have evaluated a 

number of state-of-the-art local feature descriptors and machine learning classifiers (Li, Hayward, 

Zhang et al. 2010; Li, Hayward, Walker et al. 2011). The evaluation results demonstrated that the 

classification success varies between different feature descriptors and classifiers. Overall, the 

rotational and scale invariant spectral-texture feature developed in (Li, Hayward, Walker et al. 

2011) showed the best overall classification accuracy and support vector machine (SVM) was 

suggested as it generally obtains robust classification performance. In this paper, we extend the 

same strategy to evaluate the performance of the feature fusion method with a SVM classifier. The 

V-fold cross validation technique was employed in the experiment, and 10 folders were selected for 

the cross validation. The dataset is partitioned into 10 groups, which is done using stratification 

methods so that the distributions of categories of the target variable are approximately the same in 

the partitioned groups. Then 9 of the 10 partitions are collected into a pseudo-learning dataset and a 

classification model is built using this pseudo-learning dataset. The rest 10% (1 out of 10 partitions) 

of the data that was held back and used for testing the built model and the classification error for 

that data is computed. After that, a different set of 9 partitions is collected for training and the rest 

10% is used for testing. This process is repeated 10 times, so that every row has been used for both 

training and testing. The classification accuracies of the 10 testing datasets are averaged to obtain 

the overall classification accuracy. 

Two classic color and texture features, color histogram and local binary pattern (LBP) (Ojala, 

Pietikainen and Maenpaa 2002) are tested in the experiment. The overall classification accuracies of 

the fused color-texture feature were compared with single color and texture feature vectors and 

serial integrated feature vector through the same classifier. For comparison purpose, another widely 

used nonlinear feature selection technique, Generalized Discriminant Analysis (GDA), is also 

evaluated in the experiment. GDA is also known as Kernel Linear Discriminant Analysis (Kernel 

LDA), it is the reformulation of LDA in the high dimensional space constructed using a kernel 

function (Baudat and Anouar 2000). In this experiment, a Gaussian kernel function is used to 

construct GDA for the fusion of color-texture features. 

From the experiment, the overall classification accuracies of color histogram and LBP texture 

features are 76.03% and 71.07% respectively. The serial integration of these two features shows 



better performance over single feature with an overall accuracy of 83.47%. To evaluate of 

performance of fused feature using kernel PCA, we use a step-by-step model justification method 

(Song and Tao 2010). We justify the dimensionality from 2 to 8 with steps of 2, and from 10 to 100 

with steps of 10, for the fused feature vectors. Figure 18 shows the classification accuracy curve at 

different dimensions. As we can see from the figure, the kernel PCA fused feature performs much 

better than single feature and serial integrated feature. However, the kernel PCA fused feature is 

still based on the assumption that user can specify a good target dimensionality. The estimation of 

intrinsic dimensionality using MLE is employed as the automatic selection of optimal number of 

dimensions. From our experiment, the intrinsic dimensionality of the integrated LBP and Color 

histogram feature is 39.3016, which conforms to the result from Figure 18 where the best accuracy 

(95.04%) is obtained at dimension 40.  

 

Figure 18 Classification accuracies of the fused features at different dimensions 

Table 1 The classification results of single and fused color and texture features 

 Hist_RGBNIR LBP Serial Fusion KPCA-40 GDA-40 

Overall Accuracy 76.03% 71.07% 83.47% 95.04% 91.73% 

Analysis Time 79.46 s 246.29 s 305.83 s 13.63 s 4.63 s 

In the experiment, the computational costs of the classifiers using different feature vectors are also 

compared. The analysis time is recorded under a desktop PC configuration of core duo 2.66GHz 

CUP and 2GB memory. Table 1 summarizes the overall accuracies and analysis time using different 

feature sets. The optimal dimension of kernel PCA and GDA fused feature is 40, which is derived 

from the estimation of the intrinsic dimensionality. From the results, we can see that the analysis 



time varies a lot for different feature sets. High dimensionality of the original color and texture 

features and the serial fused feature cause high computational costs, while the using the nonlinear 

fusion method like kernel PCA and GDA can not only improve the classification accuracy but also 

significantly reduce the dimensionality and the computational costs. 

From the experimental results, it is clear that fusion of color and texture features provides improved 

discriminative power over using them independently. Moreover, the proposed nonlinear feature 

fusion strategy using kernel PCA has shown great improvement over the serial fusion strategy, not 

only on reducing the dimensionality and computational cost, but also on removing noisy 

information and improving the discriminative power. The proposed feature fusion strategy can be 

extended to combine any other feature vectors if they are considered to have some complementary 

information. 

 
(a) tree crown detection and segmentation 

 
(b) classification map (species are represented using different colors) 

Figure 19An example of Individual Tree Segmentation and Species Classification 



Figure 19 shows an example of individual tree crown segmentation and classification map. It should 

be noted that trees can often appear differently in different seasons and even the same tree species 

may vary due to their health status. The data that was available did not provide the opportunity to 

classify the same vegetation under different conditions. Therefore, more variables may need to be 

considered to model a specific tree species more accurately in future work. 

 

5. CONCLUSION AND FUTURE WORK 

This paper comprehensively investigated the use of aerial remote sensing techniques for power line 

corridor monitoring and vegetation management. A technology overview and a series of 

experiments and results are presented. The major technological contributions and the lessons we 

learnt are summarized as follows:  

 Automatic Control of Airborne Platform 

Currently, standard industry practice is to fly powerline corridors under manual piloted control. This 

mode of flying over extensive powerline infrastructure on a routine basis is seen to be dangerous 

and tedious, justifying the development of autopilot technologies which may assist a human pilot 

and eventually lead to complete autonomous UAV solutions for more efficient and safer operations.  

The Powerline Tracking Automatic Guidance System (PTAGS) developed at ARCAA specifically 

for tracking powerline corridors attempts to address some of the horizontal control problems and 

showed satisfactory performance in tracking powerline corridors. Experimental results 

demonstrated the impact of roll angle and terrain variation on swath width which must be 

considered for an aircraft under autopilot control tracking powerline corridors. The key challenges 

lie in the lateral and vertical automatic control of the aircraft as both consideration of translational 

and rotational motion is required. Further work is required to address these challenges further and 

extend the approach to also consider vertical motion. 

 Reliable and Automated Data Processing 

The information derived from multi-sensor data and various modeling approaches provides the 

opportunity to increase the reliability of the information extraction for robust operational 

performance and decision making in corridor monitoring (e.g. improved classification, increased 

confidence and reduced ambiguity). By fusing LiDAR with multi-spectral imagery and also color 

with texture features, we were able to significantly improve tree segmentation and species 



classification. The next stage is to apply the same fusion strategy to combine geometric features 

derived from LiDAR data and the spectral-texture features derived from multi-spectral imagery. 

Effective fusion of multi-sensor, multi-resolution, multi-temporal and multi-platform image data, 

together with geospatial data and GIS represents the future solution for smart power line corridor 

monitoring.  

The presented methods for object recognition (i.e. power lines and trees) are designed for off-line 

use. Data is collected, stored in a repository and analyzed at some later time. Real-time processing 

of data would be beneficial if useful information could be extracted that assists in the decisions 

made by the aircraft control system. For example, real-time power line detection can be used for the 

purposes of active aircraft guidance in situations where there is no or limited prior knowledge about 

the network (e.g. GPS locations of power line are not accurately known). Alternatively, the real-

time identification of regions outside the immediate vicinity of the power-line where vegetation is 

sparse could be used to reduce the resolution of data stored. Questions concerning the algorithms 

and computing architectures that are best suited to increase the autonomy of a UAV capturing 

significant amounts of data need to be addressed in future work. 

 

APPENDIX 

Kernel Principal Component Analysis (PCA) 

Assuming that the kernel matrix is centered, i.e. 0),(
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j  element of i  ),,1( Mj  . 

In order to obtain low dimensional feature representation, the data is projected onto the eigenvectors 

of the covariance matrix C . The result of low-dimensional data representation Y  is obtained by 

computing the principal eigenvectors of components of px  in the space )( px . 
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The mapping performed by kernel PCA relies on the choice of the kernel function. In this paper, 

Gaussian kernel is employed which is widely used in many applications. The kernel function is 

defined as: 
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Where   is shape parameter. 
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