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ABSTRACT 

In this article an Iterated Local Search algorithm for the capacitated vehicle routing problem with 

sequence-based pallet loading and axle weight constraints is presented. Axle weight limits impose a 

great challenge for transportation companies. Yet, the literature on the incorporation of axle weight 

constraints in vehicle routing models is very scarce. The effect of introducing axle weight constraints in 

a CVRP on total routing cost is analyzed. Results show that integrating axle weight constraints does not 

lead to a large cost increase. However, not including axle weight constraints in the planning profcess 

may induce major axle weight violations.  

 

1. INTRODUCTION 

The capacitated vehicle routing problem with sequence-based pallet loading and axle weight 

constraints is an extension of the classical Capacitated Vehicle Routing Problem (CVRP). It integrates 

loading constraints in a routing problem and is based on a real-world transportation problem. For state-

of-the-art reviews of the literature concerning the combination of Vehicle Routing Problems (VRP) and 

loading problems, the reader is referred to Iori and Martello [12] and Pollaris et al. [22]. Vehicle routing 

problems consider the distribution of goods between depots and customers or nodes [26]. The goal is 

to find a set of routes for a fleet of vehicles which fulfills every customer demand and where the objective 

function (e.g., total distance, routing costs) is optimized. The basic version of the vehicle routing 

problem is the CVRP. The CVRP considers a homogeneous vehicle fleet with a fixed capacity (in terms of 

weight or number of items) which delivers goods from a depot to customer locations. Split deliveries 

are not allowed. In this article, a variant of the classical CVRP is considered. The demand of the 

customers consists of pallets. These pallets may be placed in two rows inside the vehicle but cannot be 



 

stacked on top of each other because of their weight, fragility, or customer preferences. Sequence-

based loading is imposed which ensures that when arriving at a customer, no pallets belonging to 

customers served later on the route block the removal of the pallets of the current customer. 

Furthermore, the capacity of a truck is not only expressed in total weight and number of pallets but also 

consists of a maximum weight on the axles of the truck. Axle weight limits pose a challenge to 

transportation companies as they incur high fines in the event of non-compliance. Weigh-In-Motion 

(WIM) systems on high- ways monitor axle weight violations of trucks while driving which increases the 

probability that axle weight violations are detected [13]. Furthermore, trucks with overloaded axles 

represent a threat for traffic safety and may cause serious damage to the road surface. To our 

knowledge, Lim et al. [14] and Alonso et al. [2] are the only authors that address axle weight constraints 

in a container loading problem. Lim et al. [14] develop a heuristic method to tackle the single container 

loading problem with axle weight constraints. Alonso et al. [2] develop integer linear programming 

models to tackle multicontainer loading problems with axle weight constraints in which items are first 

packed on pallets and afterward, pallets are placed onto trucks. 

 

The CVRP with sequence-based pallet loading and axle weight constraints was introduced in Pollaris et 

al. [23]. A Mixed Integer Linear Programming model (MILP) is proposed to solve the problem to 

optimality for networks of up to 20 nodes. To the best of our knowledge, this is currently the only paper 

that addresses the integration of axle weight constraints in a VRP. The problem has similarities with the 

Multi-Pile VRP (MP-VRP), the Double Traveling Salesman Problem with Multiple Stacks (DTSPMS), and 

the Traveling Salesman Pickup and Delivery Problem (TSPPD) with multiple stacks. Doerner et al. [8] 

develop a Tabu Search (TS) method and an Ant Colony Optimization (ACO) method to solve the MP-VRP, 

based on a real-world application regarding the transport of wooden chipboards. For every order, 

chipboards of the same type (small or large) are grouped into a unique item, which is placed onto a 

single pallet. The vehicle is divided into three piles on which pallets can be stacked. Pallets containing 

large chipboards can extend over multiple piles. The other pallets can be placed into a single pile. 

Because of this specific configuration of pallets placed into multiple piles, the original three-

dimensional problem can be reduced to a one-dimensional one. Tricoire et al. [27] develop a 

combination of VNS and branch-and-cut to solve the MP-VRP exactly for small-size instances and 

heuristically for large-size instances. In both papers, sequence-based loading is taken into account. The 

DTSPMS, proposed by Petersen and Madsen [21], considers pickup and delivery of goods performed in 

two separate networks in vehicles with multiple stacks. All pickups must be made before any delivery 

can take place. The goods cannot be repacked, nor vertically stacked. The goods can be placed in several 

rows (horizontal stacks). In each row, sequence-based loading (which is equivalent to Last-In-First-Out 

as only a single dimension is considered) is assumed. It is assumed that each order consists of a single 

item. The problem is based on a real-world application in which in a first phase a container is loaded 

onto a truck to perform pickup operations and returned by that truck to a depot or terminal. In a second 

phase, the container is loaded onto a train, ship, plane, or another truck and transported to another 

depot or terminal. In the depots or terminals, there are no facilities to repack the items inside the 

container. In the final phase, the container is again transferred to a truck which performs the delivery 

operations [21]. Petersen and Madsen [21], Felipe et al. [11], and Felipe et al. [10] develop heuristic 
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methods to solve the DTSPMS, while Lusby et al. [18], Petersen et al. [20], Lusby and Larsen [17], Alba et 

al. [1], and Alba et al. [3] propose exact algorithms. Côté et al. [6] and Côté et al. [5] consider the TSPPD 

with multiple stacks with LIFO loading. They propose a heuristic method and a branch-and-cut 

algorithm, respectively. ØvstebØ et al. [19] examine a similar problem on Roll-on/Roll-of (RoRo) ships 

that transport cargo on wheels. The decks on the ship may be divided into lanes in which the cargo may 

be placed. The lanes may be compared to stacks in a truck. Sequence-based loading is considered as a 

soft constraint. A penalty cost is incurred if the constraint is violated. 

 

In this article, we present a metaheuristic for the CVRP with sequence-based pallet loading and axle 

weight constraints and compare the results to those of the CVRP without axle weight constraints. To the 

best of our knowledge, it is the first time that a vehicle routing problem with axle weight constraints is 

studied on networks of realistic size. More- over, we present the first heuristic solution approach for this 

problem. The goal of this article is twofold. First, the performance of the metaheuristic is validated by 

comparing results with those from Pollaris et al. [23]. Second, instances with networks of 50-100 

customers are analysed to observe the extent to which axle weight limits are violated when ignored in 

the planning process and the necessary additional costs to avoid these violations. 

 

Figure 1 indicates the effect that axle weight constraints may have on a routing solution by means ofa 

simple example (see Pollaris et al. [23] for more details). Consider a single truck with a capacity of 22 

pallets. Sequence-based load- ing is assumed and the vehicle is unloaded through the rear. Suppose 

four customers, each with a demand of five pal- lets, need to be delivered by this vehicle from a single 

depot. Total weight of the five pallets is 12, 2, 2, and 12 tonnes, respectively. Figure 1a shows the shortest 

route and the corresponding loading scheme when axle weight constraints are ignored. This solution 

may no longer be feasible when axle weight constraints are accounted for, because the relatively large 

weight of the pallets of customer 4 is mainly carried by the axles of the tractor, which typically have the 

lowest net weight capacity. The optimal route when axle weight constraints are accounted for many, 

therefore, change to the one depicted in Figure 1b, in which the weight of these pallets is distributed 

more evenly between both axles. However, this clearly results in an increase in optimal route length. 

The remainder of this article is organized as follows. In the next section, a problem description is given 

for the CVRP with sequence-based pallet loading and axle weight constraints. Section 3 describes an 

Iterated Local Search method (ILS) method which is developed to tackle the problem. In section 4, 

computational experiments of the ILS are described and a comparison is made between the CVRP with 

and with- out axle weight constraints. In the final section, conclusions and future research opportunities 

are discussed (section 5). 

 

2. PROBLEM DESCRIPTION 
The problem addressed in this article is the CVRP with sequence-based pallet loading and axle weight 

constraints. For a mathematical formulation of the problem, the reader is referred to Pollaris et al. [23]. 

The goal is to find a vehicle routing plan such that the demand of each customer is satisfied and the total 



 

distance traveled is minimized. Demand of the customers consists of europallets (80 x 120 cm). These 

pallets are delivered from a single depot with an unlimited fleet of homogeneous vehicles. It is assumed 

that all pallets of a single customer have the same weight and that the weight is uniformly distributed 

inside each pallet, that is, the center of gravity of a pallet lies in its geometric midpoint. Pallets may be 

placed in two horizontal rows in the truck. Pallets are loaded and unloaded through the rear of the 

vehicle. Sequence-based loading is assumed. Pallets are packed dense inside the vehicle. This means 

that there may be no gap between two consecutive pallets in the container and that all pallets are 

alternately packed in the left and right row. Furthermore, dense packing entails that there may not be 

an open space between the front of the container and the first pallets that are packed. Dense packing is 

often imposed to increase the stability of the load as it restricts the moving area of the pallets 

considerably. The driver therefore needs to spend less time on securing the cargo than when pallets are 

spread over the vehicle. Vertical stacking is not allowed due to fragility of goods. Moreover, customers 

usually do not want goods of other customers to be stacked on top of their goods. 

 

Axle weight is the weight that is placed on the axles of the truck. A truck with five axles is illustrated in 

Figure 2. The first axle, also called the steering axle, and the second axle, called the driving axle, both 

belong to the tractor. The axles of the trailer are tridem axles. Tridem axles are three successive axles 

with a distance of less than 1.8 and more than 1 m between the middle of the first axle and the middle 

of the second axle, and between the middle of the second axle and the middle of the third axle. When 

item j is placed in a vehicle, the weight of the item is divided over the axles of the tractor and the axles 

of the trailer. Variable aj
F represents the weight of the items of node j placed on the coupling of the truck 

(which is the link between the tractor and the trailer). The weight on the coupling is carried by the axles 

of the tractor. Variable aj
R represents the weight of the items of node j on the axles of the trailer. As weight 

distribution varies with every pickup or delivery, this should be monitored not just at the point of 

departure but throughout the journey. A load that is placed at the rear of the vehicle (behind the axles 

of the trailer), has a negative weight on the axles of the tractor. For this reason, it is possible that by 

unloading this item a violation of the weight limits of the axles of the tractor is induced. 
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Figure 1. Graphical representation of an optimal vehicle route and the corresponding loading scheme of a 

container (in top view) (a) without axle weight constraints, (b) with axle weight constraints. The load of, 

respectively, customer 1, 2, 3, and 4 is indicated by C1, C2, C3, and C4. 

 
The calculation of the weight of the pallets of customer j on the coupling point or the axles of the tractor 

(aj
F ) and on the axles the trailer (aj

R ) is presented in Equations (1) and (2). Figure 3 graphically presents 

the parameters in Equations (1) and (2). The weight of the pallets of customer j is denoted by wj. CGj 

represents the distance from the front of the container to the center of gravity of the pallet of customer 

j. Parameter c denotes the distance from the front of the container to the coupling. The final parameter 

d represents the distance between the coupling and the central axle of the trailer. 

 

 
 

The weight of the pallets is divided over the axles of the trailer and the axles of the tractor. The 

distribution of the weight over the axles depends on the distance between the pallet and the axles. The 

first factor of the second member in Equation (1) computes the percentage of the weight that 

is assigned to the axles of the trailer by dividing the distance between the coupling and the center of 

gravity of the item by the distance between the coupling and the central axle of the trailer. The second 

factor is the weight of the item. The larger the distance between the item and the coupling, the higher 

the percentage of weight that is distributed to the axles of the trailer will be. The weight on the coupling 

is computed in Equation (2) by subtracting the weight on the axles of the trailer from the weight of the 

item. 

 



 

The values of the upper bounds of the weight on the axles of the tractor and on the axles of the trailer 

depend on vehicle characteristics and are specified in legislation. The lower bound of the weight on the 

axles of the tractor may also be fixed in legislation. In this article, we take the Belgian legislation as an 

example. Belgian legislation (KB 15.03.1968 art 32 bis) incorporated European Directive 97/27/EC that 

specifies that the mass corresponding to the load on the driving axle must be at least 25? of the total 

mass of the loaded truck. There are no specific guidelines concerning the lower bound on the weight on 

the axles of the trailer except for the fact that it can never be negative as a negative weight on one of the 

axles would cause the truck to overturn. Therefore, the weight of the pallets that is placed on the axles 

of the trailer added up with the weight of the empty truck that is carried by the axles of the trailer should 

be higher than or equal to zero. Similarly, the weight of the pallets that is placed on the axles of the 

tractor added up with the weight of the empty truck that is carried by the axles of the tractor should be 

higher than or equal to zero. The lower and upper bounds refer to the total weight on the axles, which 

is the sum of the axle weights of each individual customer. 

 

Figure 2. Axle weight tractor (steering axle, driving axle) and trailer (tridem axles) (figure adapted from 

TruckScience). 

 
 

Figure 3. Tractor (with two axles) and trailer (with tridem axles) (figure adapted from TruckScience). 

 

 
 

3. SOLUTION METHOD 
The proposed solution method is based on an Iterated Local Search (ILS) framework which is proven to 

be a highly effective heuristic for routing problems [16]. The ILS consists of four procedures (Generate 

initial solution, Local Search, Perturbation, Acceptance Criterion). The procedures are presented in 

Algorithm 1. First, an initial solution is constructed. This solution is improved using local search until a 

local optimum is reached. The local search is performed by a Variable Neighborhood Descent (VND). A 
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new starting point for the local search is generated by perturbing the current solution. The acceptance 

criterion determines after the local search with which solution the process continues. The ILS stops after 

a consecutive non-improving iterations. A non-improving iteration is an iteration in which no new best 

solution was found. For more information regarding the general ILS framework, the reader is referred to 

Lourenço et al. [16]. Note that as the local search is performed by a VND, the algorithm may also be 

called Iterated Variable Neighborhood Descent, as used in Chen et al. [4]. 

 

Algorithm 1 Steps of the ILS 

 

 

 

 

To improve the efficiency of the algorithm in this article, a pool of feasible and infeasible routes is 

constructed. Each time a route is proven to be (in)feasible in terms of loading, this route is stored in the 

appropriate pool. This avoids duplicate loading feasibility checks of a single route. In the following 

sections, our implementation of the ILS is described. 

 

3.1. INITIAL SOLUTION 

Routes are constructed by inserting nodes one by one. The load of a node that is inserted is placed 

directly behind the load of previously inserted nodes. To obtain a feasible initial solution, special 

attention is given to the insertion of difficult nodes. Nodes are considered difficult if they cannot be 

inserted feasibly in the front of a truck because the mass of the pallets exceeds the capacity of the axles 

of the tractor. These axles typically have the lowest axle weight capacity. The load of those nodes should 

therefore be placed more toward the end of the truck. As sequence-based loading is assumed and no 

gaps are allowed between the front of the truck and the load (see section 2), these nodes can only be 

feasibly inserted after the insertion of one or several other (non-difficult) nodes in a route. 

For each difficult node, a list is constructed with all nodes or combinations of two nodes that would 

lead to a feasible packing scheme when these nodes precede the difficult node. To decide for each 

difficult node which option is chosen, a binary constraint satisfaction problem (BCSP) is solved. The 

following notation is used: 

Ω = set of difficult nodes (index j) 

Φ= set of non - difficult nodes (index i) 



 

j = set of options for difficult node j (index a) 

 
The decision variables are defined as: 

 
 

The constraints are as follows: 

 

 
 

No objective function is specified as the only goal is to find a solution that meets all constraints. 

Constraint (3) ensures that for every difficult node, a single option is chosen. Constraint (4) makes sure 

that each non-difficult node i can only be inserted once. The BCSP is solved with CPLEX 12.6 with the 

default parameters. Preliminary tests (see section 4.2) have shown that a solution can often already be 

obtained when allowing only a single non-difficult node to precede each difficult node. Additionally, for 

some instances, considering both a single and a combination of two non-difficult nodes, considerably 

increases computation time. Therefore, the BCSP is first solved with options consisting of a single non-

difficult node only. When the BCSP is not able to not find a feasible solution, a combination of two nodes 

is allowed. 

 

When the BCSP finds a feasible solution, each difficult node is inserted into a route along with the node(s) 

from the corresponding option that was selected by the BCSP. 

Therefore, as many routes as difficult nodes are created. The remaining non-difficult nodes are inserted 

with a regret-2 insertion heuristic. The regret value of a node is defined as the absolute difference in 

costs between the cheapest insertion of a node and the second cheapest insertion of that node into 

another route. In each iteration, insertions in the existing routes are considered as well as in an 

additional empty route. The node with the highest regret value is inserted in its best insertion position. 

This procedure continues until all nodes are feasibly inserted into a route. 

 

3.2. LOCAL SEARCH 

We apply a local search in which four neighborhoods are used. The exchange operator ([28]) swaps two 

nodes which can be either from the same route or from different routes. The 2-opt operator ([7]) 

removes two arcs of a single route and generates two new arcs in such a way that the section between 



Published in: Networks (2017), Volume 69, Issue 3, Pages 304 - 3161  

DOI: 10.1002/net.21738 
Status : Postprint (Author’s version)  

 

 

 

the removed arcs is reversed. Only arc-pairs which are separated with at least four customers are 

considered in this neighborhood to avoid scanning the same moves as the exchange operator. The 

cross-exchange operator ([25]) interchanges two segments of different routes while preserving the 

orientation of the segments and the routes. At least one of two segments need to be of size greater than 

one to avoid scanning the same moves as in the exchange neighborhood. There is no upper bound on 

the size of the segments. Finally, the relocate operator ([28]) removes a node from its route and reinserts 

it in another place in its original route or in another route. This move may reduce or increase the number 

of routes in the solution, as relocation to an empty route is also considered. For each neighborhood, all 

possible moves are identified after which a best improvement strategy is applied. An overview of the 

local search procedure may be found in Algorithm 2. 

 

The sequence of the neighborhoods is fixed. As relocate is also used in the perturbation phase, this 

operator is placed last in the local search to prevent that changes made during perturbation can be 

easily undone. When a local optimum is reached in a neighborhood, the local search proceeds to the 

next neighborhood. When a local optimum is reached in the last neighborhood, the local search 

procedure is repeated until no more improvement is found in any of the neighborhoods. 

 

3.3. PERTURBATION 

In the perturbation phase, customer relocation is considered once for each customer, using a 

randomized objective function. The general framework of the perturbation procedure may be found in 

Algorithm 3. 

 

Customers are considered in random order. For each customer, a first improvement strategy is used 

because the goal of the perturbation phase is merely to change the current solution. It is, therefore, not 

necessary to choose the move with the largest improvement. The insertion positions of a customer are 

considered in random order, that is, the first route that is considered for insertion is chosen randomly 

and in each route, the first position that is considered is also chosen randomly. 

 

The effect of relocating a customer to another position is randomized by adding a noise factor to the 

insertion cost. Analogous to RØpke and Pisinger [24], this noise is calculated as a random number in the 

interval [— η* maxD, η * maxD] where η is a parameter to control the amount of noise and maxD is the 

maximum distance between two nodes in the network. When the randomized insertion cost is negative 

or zero, the next insertion position for the customer is considered. When the randomized insertion cost 

is positive, the move is immediately implemented and the perturbation process continues with the next 

customer. 

 

If the perturbation does not change the solution s, η is increased with ηincr and the perturbation is 

repeated. After 8 consecutive non-improving iterations of the ILS, a heavy perturbation is applied. This 

means that n increases with ηheavy to increase the level of diversification. 
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3.4. ACCEPTANCE CRITERION 

An acceptance criterion based on record-to-record travel ([9]) is applied. An overview of the procedure 

may be found in Algorithm 4. The solution s obtained after local search is always accepted to become 

the new incumbent solution s of the next ILS iteration if the cost is lower than the cost of the current 

best solution sb . When the cost of s is higher than the cost of sb and no heavy perturbation will be applied 

in the next iteration of the ILS (non_improving_it < δ), the solution is still accepted if the worsening is 

smaller than a certain threshold value. This threshold value is a fraction β of the cost of sb . In case a 

heavy perturbation will be applied in the next ILS iteration, a worsening is never accepted in order not 

to deviate too far from the current best solution. In case s is not accepted to become the new incumbent 

solution, the search continues from sb . 

 

 
 

3.5. PARAMETER SETTING 

To tune the parameters of our algorithm (η0, ηincr, ηheavy, δ, β), we used the irace package, provided by 

Lopez-Ibanez et al. [15]. The irace package is designed for automatic algorithm configuration and 



 

implements the iterated racing procedure, which is an extension of the Iterated F-race procedure [15]. 

The automatic configuration process is stopped after 5000 runs of the ILS. The parameters tuned in our 

algorithm are given in Table 1, along with the range and tuned value. 

 

We generated 20 test instances with sizes ranging from 20 to 75 nodes for the parameter tuning. These 

test instances are different from the ones used in the computational experiments in section 4. 

 

 
The number of consecutive non-improving iterations, α, after which the ILS is stopped is set to 250. This 

value was determined based on the results of a single run of the test instances, in which no substantial 

improvement was found after more than 220 consecutive non-improving iterations. 

 

4. COMPUTATIONAL EXPERIMENTS 
In this section, computational tests of the ILS on the CVRP with sequence-based pallet loading and axle 

weight constraints are described. All tests are performed on a Xeon E5-2680v3 CPU at 2.5 GHz with 64 

GB of RAM. Different problem classes are constructed to demonstrate the performance of the model 

under various problem characteristics. The results are compared to those of the CVRP without axle 

weight constraints. 

 

4.1. TEST SETTING 

To test differences between the two models (CVRP with and without axle weight constraints), four 

different problem classes are created by varying the values for the number of pallets of each customer 

(Li) and the total mass of the pal-lets of each customer (Qi). In Table 2, the problem classes are presented. 

These problem classes are the same as used in Pollaris et al. [23]. The number of pallets may have a low 

variation (between 4 and 7 pallets per customer) or a high variation (between 1 and 15 pallets per 

customer). With respect to the weight of the pallets, axle weight constraints do not play a role when only 

light pallets (under 500 kg) are considered. Therefore, a distinction is made between customer demands 

of only heavy pallets (between 1000 and 1500 kg) and a 55% mix between customer demands with light 

pallets (between 100 and 500 kg) and customer demands with heavy pallets. 

 

We use two instance sets to test the performance of the ILS. The first instance set from Pollaris et al. [23] 

consists of 96 instances with networks ranging from 10 to 20 customers with randomly generated 

coordinates for each customer between 0 and 10. The position of the depot is fixed to (5,5). This instance 

set is used for the validation of the ILS. The second instance set consists of 96 instances with networks 

ranging from 50 to 100 customers. The coordinates are generated in the same manner as in the first 
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instance set. In all instance sets routing costs are computed by taking the Euclidean distance between 

the coordinates of each node pair. Values for number of pallets and total weight for each customer are 

generated randomly in the intervals specified in Table 2, depending on the problem class. All the 

instances can be found on the following website http://alpha.uhasselt.be/kris.braekers/. 

An unlimited number of vehicles is considered. Characteristics of the vehicle fleet (measurements, 

capacity, mass, axle weight limits) are derived from information from a Belgian logistics service 

provider. The vehicle type that is considered is a 30-foot truck that consists of a two-axle tractor 

(steering axle and driving axle) and a trailer with tridem axles. In total, 22 pallets may be placed inside 

the truck. The total weight capacity of the truck consists of 32.2 tonnes. No more than 11.6 tonnes may 

be placed on the coupling, while no more than 21 tonnes may be placed on the tridem axles of the trailer. 

The distance from the front of the container to the coupling [parameter c in Equations (1) and (2)] is 1 

m. The distance between the coupling and the central axle of the trailer [parameter d in Equations (1) 

and (2)] is 5.5 m. For more information regarding the vehicle characteristics, the reader is referred to 

Pollaris et al. [23]. 

 

4.2. CONTRIBUTION OF BCSP 

The need for the BCSP in the generation of the initial solution is demonstrated by generating for each 

instance an initial solution with three different insertion methods. In the first method, an initial solution 

is generated by solely using a regret-2 insertion heuristic without giving special attention to difficult 

nodes. In the second method, a BCSP is solved by allowing only a single non-difficult node to precede 

each difficult node. The third method solves a BSCP with both a single and a combination of two non-

difficult nodes. The regret-2 insertion heuristic was able to find a feasible solution in 132 out of 192 

instances. In 187 out of 192 instances a feasible solution was found when considering only a single non-

difficult node. For the remaining five instances a feasible initial solution was found when both a single 

node and a combination of two non-difficult nodes were allowed. 

 

4.3. Validation of ILS 

Because of the stochastic character of the metaheuristic, twenty independent runs are performed on 

each instance. The average and best results for each instance are reported. Results of each run on each 

instance can be found on the following website http://alpha.uhasselt.be/kris.braekers/. The MILP model 

formulated in Pollaris et al. [23] is able to solve instances up to 20 customers. To validate the 

performance on larger size instances, a set partitioning model is used. First, all possible routes are 

enumerated and checked for feasibility. Next, a set partitioning model is solved for all feasible routes in 

CPLEX 12.6. The computation time for the generation of the routes as well to solve the problem for the 

instances with 50 customers is on average 4.5 h. We were not able to find optimal solutions using this 

approach within a reasonable time limit for instances with 75 or 100 customers due to the large number 

of feasible routes. 

 

http://alpha.uhasselt.be/kris.braekers/
http://alpha.uhasselt.be/kris.braekers/


 

 
Table 3 provides a summary of the comparison between the results of the ILS and the optimal solution 

for the CVRP without axle weight constraints. The ILS is able to find the optimal solution in each run for 

92 out of 96 instances of the first instance set (10-20 customers). For the remaining 4 instances, the 

optimal solution is found in at least one run of the ILS. For the instances of size 50 of the second instance 

set, the set partitioning model was able to solve 27 out of 32 instances. The ILS found for 23 instances 

the optimal solution in at least one run. The average optimality gap of the best solution found in the ILS 

is 0.04%. The average optimality gap of all runs is 0.31%. For the CVRP with axle weight constraints, the 

optimal solutions are also found by the metaheuristic in the majority of the instances. In case the 

optimal solution is not found, the optimality gap is very small as well. Table 4 provides a summary of 

the comparison between the results of the ILS and the optimal solution. For the instances with networks 

of 10, 15, and 20 customers, the average optimality gaps are, respectively, 0.34%, 0.35%, and 0.18%. In 

66 out of 96 instances, the optimal solution is found in all runs of the ILS. For 92 instances, the optimal 

solution is found in at least a single run. The set partitioning model for the CVRP with axle weight 

constraints is able to find an optimal solution for the same 27 instances of size 50 as the model for the 

CVRP without axle weight constraints. For 22 out of 27 instances the optimal solution is found in at least 

a single run of the ILS. The average optimality gap for all runs for the instances of size 50 is 1.00%, while 

the average optimality gap of the best run is only 0.07%. The results show that the ILS is able to find a 

set of good quality solutions for both problem types (CVRP with and without axle weight constraints). 

 

4.4. EFFECT OF AXLE WEIGHT CONSTRAINTS 

Tables 5-7 provide the results of the ILS on the instances of set 2, with networks of 50 customers, 75 

customers, and 100 customers, respectively. For both models (CVRP with and without axle weight 

constraints), the average cost and the best cost out of 20 runs is given. For the model without axle weight 

constraints, the number of axle weight violations (# V) and maximum violation (Max V) (in percentage) 

are also reported. The number of violations represents the number of arcs traveled by a vehicle in which 

there is an axle weight violation. The total number of arcs traveled in which the vehicle is loaded equals 

the number of customers in the network. The maximum violation is expressed as a percent- age of the 

weight capacity of the coupling (11.6 t). In all instances, the largest violation that occurs is a violation of 
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the weight limit on the coupling (and thus on the axles of the tractor). Violations of the weight limit on 

the axles of the trailer occur less frequently and are in all instances smaller than the violations on the 

axles of the tractor. This may be explained by the higher weight capacity of the axles of the trailer (21 t) 

in comparison to the weight capacity of the coupling (11.6 t). For the model with axle weight constraints, 

the increase in average cost compared to the average cost in the model without axle weight constraints 

is reported, as well as the increase in best cost compared to the best cost in the model without axle 

weight constraints and the average CPU time. 

 

 

 
 

In the CVRP without axle weight constraints, the number of arcs in which there is an axle weight violation 

for networks of 50, 75, and 100 customers equals 14, 19, and 27, on average, respectively. This means 

that in more than 25% of the arcs that the loaded vehicles pass, there is an axle weight violation. The 



 

extent of the violations is also considerable, with on average a maximum violation of 13%, which would 

lead to a high fine in practice. In all instances, the solution of the ILS for the model without axle weight 

constraints generates axle weight violations. Results show that these violations may be avoided with a 

relatively small cost increase. On average the increase in average cost in the model with axle weight 

constraints compared to the average cost in the model without axle weight constraints is 2.61%, 2.58%, 

and 3.52% for the networks of, respectively, 50, 75, and 100 customers. The average increase in best cost 

compared to the best cost in the model without axle weight constraints is 1.84%, 1.63%, 2.39% for the 

networks with, respectively, 50, 75, and 100 customers. The CPU time for the instances of size 50, 75, 

and 100 is on average, respectively, 70, 260, 334 s. 

 

Table 8 presents a comparison of the results per problem class and number of customers in the 

network. As expected, the number of violations as well as the maximum violation and the cost increase 

are larger in problem class 1 and 2 where only heavy pallets are considered than in problem class 3 

and 4, where a 55% mix of heavy and light pallets are considered. The positive effect of mixing light 

pallets with heavy pallets on the costs can be explained by the fact that this allows for more flexibility 

in the packing process.  
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If lighter pallets are packed first in the truck, the weight of the heavy pallets will mostly be carried by the 

axles of the trailer, which have a higher weight capacity. Heavy pallets are therefore better transported 

together with light pallets even though the total weight capacity of the vehicle is sufficient to transport 

solely heavy pallets. For the instances with a mix between light and heavy pallets, an increase in number 

of violations and maximum violation may be when we move from a low variation (problem class 3) to a 

high variation in number of pallets (problem class 4). 

 



 

 
 

Likewise, for the instances with only heavy pallets, the number of violations and maximum violations 

increase when the variation in number of pallets increases. The highest number of violations and 

maximum violation may therefore be found in problem class 2, while the instances in problem class 3 

have on average the lowest number of violations and maximum violation. An explanation for the effect 

of the variation on the number of violations and the maximum violation may be that a variation between 

1 and 15 pallets per order leads to on average half of the orders consisting of more than 8 pallets which 

is much less flexible than orders between 4 and 7 pallets per customer. The probability for an axle weight 

violation and the extent of this violation is thereby much larger when a high variation of number of 
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pallets is considered. An order of 15 pallets with a pallet weight of 1.4 tonnes, leads to a total weight of 

the order of 21 tonnes, which is less flexible to position on a truck than several smaller orders with a high 

pallet weight. Figure 4 provides for each problem class an overview of the variation of the average cost 

increase for the instances of the second instance set. Problem class 3 clearly has on average the lowest 

cost increase with 75% of the instances with a cost increase lower than 2.5%. In problem class 4, 75% of 

the instances have a cost increase lower than 3.5%. Furthermore, the variation in cost increase between 

the instances is much larger in problem class 4 compared to problem class 3. In problem class 1, the 

variance in cost increase is larger than in problem class 2, although the 25th, 50th, and 75th percentiles 

of both classes are very similar. For both problem classes, 75% of the instances have a cost increase 

lower than 4.6%. The variation in number of pallets per customer therefore appears to only have an 

impact on cost increase for the instances with a mix between light and heavy pallets (problem class 3 

and 4) and not for the instances with only heavy pallets (problem class 1 and 2). 

 

5. CONCLUSIONS AND FUTURE RESEARCH 
In this article, we proposed an iterated local search method for the CVRP with sequence-based pallet 

loading and axle weight constraints. The ILS has proven to produce high-quality solutions, with very 

small optimality gaps on instances with up to 50 customers. The effect of introducing axle weight 

constraints in a CVRP on total routing cost is analyzed in realistic-size instances with networks 

consisting of 50, 75, and 100 customers. Results show that integrating axle weight constraints does not 

lead to a large cost increase, while not including axle weight constraints may induce major axle weight 

violations. 

 

As research on vehicle routing problems with axle weight constraints is very scarce, many research 

opportunities still exist. Future research could integrate other realistic features in the current problem 

such as time windows, a heterogeneous vehicle fleet and legal driving hours. Additionally, other loading 

constraints may be added to the current model. Another line of possible future research could be to 

integrate axle weight constraints in other types of VRPs such as three-dimensional loading VRP, 

multicompartment VRP, and pickup and delivery problems. 
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