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Abstract

An odd graph is a finite graph all of whose vertices have odd degrees. A graph G
is decomposable into k odd subgraphs if its edge set can be partitioned into k subsets
each of which induces an odd subgraph of G. The minimum value of k for which such
a decomposition of G exists is the odd chromatic index, χ′o(G), introduced by Pyber
(1991). For every k ≥ χ′o(G), the graph G is said to be odd k-edge-colorable. Apart
from two particular exceptions, which are respectively odd 5- and odd 6-edge-colorable,
the rest of connected loopless graphs are odd 4-edge-colorable, and moreover one of the
color classes can be reduced to size ≤ 2. In addition, it has been conjectured that an
odd 4-edge-coloring with a color class of size at most 1 is always achievable. Atanasov
et al. (2016) characterized the class of loopless subcubic graphs in terms of the value
χ′o(G) ≤ 4. In this paper, we extend their result to a characterization of all loopless
subdivisions of odd graphs in terms of the value of the odd chromatic index. This larger
class S is of a particular interest as it collects all ‘least instances’ of non-odd graphs.
As a prelude to our main result, we show that every connected graph G ∈ S requiring
the maximum number of four colors, becomes odd 3-edge-colorable after removing a
certain edge. Thus, we provide support for the mentioned conjecture by proving it for
all subdivisions of odd graphs. The paper concludes with few problems for possible
further work.

Keywords: odd graph, odd edge-coloring, odd chromatic index, subdivision.

1 Introduction

1.1 Basic terminology

All considered graphs G = (V (G), E(G)) are undirected and finite, loops and parallel edges
are allowed. We follow [2] for any terminology and notation not defined here. The parameters
n(G) = |V (G)| and m(G) = |E(G)| are called the order and the size of G, respectively. A
graph of order 1 is trivial, and a graph of size 0 is empty. A path or cycle is either odd or
even depending on the parity of its size. A path (resp. an edge) with endvertices x and y
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is referred to as an x-y path (resp. an x-y edge). Given a path P and vertices x, y ∈ V (P ),
the x-y subpath of P is denoted xPy. For every vertex v ∈ V (G), EG(v) denotes the set of
edges incident with v, and the size of EG(v) (every loop being counted twice) is the degree,
dG(v), of v in G. The maximum and minimum vertex degree in G are denoted by ∆(G) and
δ(G), respectively. A graph G is subcubic if ∆(G) ≤ 3. Each vertex v of even (resp. odd)
degree dG(v) is an even (resp. odd) vertex. In particular, if dG(v) equals 0 (resp. 1), we
say that v is an isolated (resp. pendant) vertex of G. Any vertex of degree d is called a
d-vertex. A graph is even (resp. odd) whenever all its vertices are even (resp. odd). The set
of neighboring vertices of v ∈ V (G) is denoted by NG(v). For every u ∈ NG(v), the edge set
EG(u) ∩ EG(v) is the u-v bouquet in G, with notation Buv. The maximum size of a bouquet
in G is its multiplicity, µ(G). A graph G is simple if it is loopless and of multiplicity at most
1.

For X ⊆ V (G)∪E(G), G−X is the subgraph of G obtained by removing X; we abbreviate
G−{x} to G− x. Similarly, given a subgraph H ⊆ G, H +X is the subgraph of G obtained
by adding to H all the vertices and edges from X. A spanning subgraph of G is also called a
factor of G.

To split a vertex v is to replace it by two (not necessarily adjacent) vertices v′ and v′′,
and to replace each edge incident to v by an edge incident to either v′ or v′′ (but not both,
unless the edge is a loop at v), the other end of the edge remaining unchanged. A vertex of
positive degree can be split in several ways, so the resulting graph is not unique in general.
Another local operation on graph G is to suppress a 2-vertex v. The modified graph G%v is
obtained from G − v by adding an edge between the neighbors of v (the new edge is a link
unless NG(v) is a singleton).

The connectivity, κ(G), of a graph G is the minimum size of a subset S ⊆ V (G) such that
G − S is disconnected or of order 1. A graph is said to be k-connected if its connectivity is
at least k. A vertex v ∈ V (G) is a cutvertex of G if G− v has more (connected) components
than G. If V1, . . . , Vk are the vertex sets of all components of G − v, then for i = 1, . . . , k,
the induced subgraph G[Vi ∪ {v}] is called a v-lobe of G. A block graph is a connected graph
without any cutvertices. Given a nontrivial connected graph G, a maximal block subgraph is
a block of G. Thus each block is either 2-connected or a bouquet, and each cycle is entirely
within a single block. For a block B of G, each vertex v ∈ V (B) which is not a cutvertex of
G is an internal vertex of B (and of G). The collection of internal vertices of B is denoted by
IntG(B). If V (B) contains at most one cutvertex of G then B is an end-block. Any connected
graph G is associated with a bipartite graph B(G) having bipartition (B,V), where B is the
set of blocks of G and V the set of cutvertices of G, a block B ∈ B and a cutvertex v ∈ V being
adjacent in B(G) if and only if B contains v. The graph B(G) is connected and acyclic, the
former because G is connected and the latter because a cycle in B(G) would correspond to a
cycle in G passing through two or more blocks. The graph B(G) is therefore a tree, called the
block-tree of G. If V 6= ∅, the end-blocks of G correspond to the leaves of its block-tree. Every
vertex v of a block graph G has a neighbor among the internal vertices of each end-block of
G− v.

For a nonempty subsetX ⊂ V (G), the edge cut ∂(X) is the set of edges with one endvertex
in X and the other endvertex in V (G)\X; in case X is a singleton, we speak of a trivial edge
cut ∂(X). The edge-connectivity, κ′(G), of a nontrivial graph G is the minimum size of a
subset S ⊆ E(G) such that G − S is disconnected; equivalently, κ′(G) is the minimum size
of an edge cut in G. A k-edge cut is an edge cut of size k; a 1-edge cut is also called a
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bridge. If vw is a bridge and the vertex w is not the only neighbor of the vertex v, then v is
a cutvertex of G. A graph is said to be k-edge-connected if its edge-connectivity is at least
k. A k-edge-connected graph is termed essentially (k + 1)-edge-connected if all of its k-edge
cuts are trivial.

1.2 Odd edge-colorings and odd chromatic index

An assignment ϕ : E(G)→ S is an edge-coloring of G with color set S. If |S| ≤ k, we speak
of a k-edge-coloring ϕ. The nature of the colors is irrelevant, and it is conventional to use
S = [k] := {1, 2, . . . , k} for a color set of size k. For each color c ∈ S, Ec(G,ϕ) denotes the
color class of c, that is, the set ϕ−1(c) of edges colored by c. Whenever G and ϕ are clear
from the context, we denote the color class of c simply by Ec. Given an edge-coloring ϕ and
a vertex v of G, we say that a color c appears at v if Ec ∩ EG(v) 6= ∅. Any decomposition
{H1, . . . , Hk} of G can alterably be interpreted as a k-edge-coloring of G for which the color
classes are E(H1), . . . , E(Hk).

An odd edge-coloring of a graph G is an edge-coloring such that each nonempty color class
Ec induces an odd subgraph of G. In other words, at each vertex v, for any appearing color c
the degree dG[Ec](v) is odd. Equivalently, an odd edge-coloring can be seen as a decomposition
of G into (edge-disjoint) odd subgraphs. As usual, we are most interested in the least number
of colors necessary to create such a coloring. An odd edge-coloring of G using at most k colors
is referred to as an odd k-edge-coloring, and if such a coloring exists we say that G is odd
k-edge-colorable. Whenever G admits an odd edge-coloring, the odd chromatic index, χ′o(G),
is defined to be the minimum integer k for which G is odd k-edge-colorable.

It is obvious that a necessary and sufficient condition for odd edge-colorability of G is
the absence of vertices incident only to loops. Apart from this, the presence of loops does
not influence the existence nor changes the value of the index χ′o(G). Therefore, the class of
loopless graphs comprises a natural framework for the study of the odd chromatic index.

Figure 1: The wheel W4 is a simple graph with χ′o(W4) = 4.

As a notion, odd edge-coloring was introduced by Pyber in his survey on graph cover-
ings [8]. The mentioned work concerns simple graphs and (among other results) contains a
proof of the following.

Theorem 1.1 (Pyber, 1991). For every simple graph G, it holds that χ′o(G) ≤ 4.

Pyber observed that the established upper bound is realized by the wheel on four spokes
W4 (see Figure 1). However, this upper bound of four colors does not apply to the class of
all looplees graphs G. For instance, Figure 2 depicts four graphs with the following charac-
teristic property: each of their odd subgraphs is of order 2 and size 1, that is, a copy of K2.
Consequently, for each of these graphs the odd chromatic index equals the size.
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(1,1,1) (2,1,1) (2,2,1) (2,2,2)

Figure 2: Four Shannon triangles (the smallest one of each type).

As defined in [4], a Shannon triangle is a loopless graph on three pairwise adjacent vertices.
And if p, q, r are parities of the sizes of its bouquets in non-increasing order, with 2 (resp.
1) denoting an even-sized (resp. odd-sized) bouquet, then G is a Shannon triangle of type
(p, q, r). Figure 2 depicts (from left to right) the smallest, in terms of size, Shannon triangle
of type (1, 1, 1), (2, 1, 1), (2, 2, 1), and (2, 2, 2), respectively. It is straightforward that if G is
a Shannon triangle of type (p, q, r), then

χ′o(G) = p+ q + r . (1.1)

The main result of [4] tells that six colors suffice for an odd edge-coloring of any loopless
graph. Furthermore, it characterizes when six colors are necessary.

Theorem 1.2. For every connected loopless graph G, it holds that χ′o(G) ≤ 6. Moreover,
equality is attained if and only if G is a Shannon triangle of type (2, 2, 2).

Recently, the following improvement of Theorems 1.1 and 1.2 has been shown in [6].

Theorem 1.3. Let G be a connected loopless graph that is not a Shannon triangle of type
(2, 2, 1) or (2, 2, 2). Then G admits an odd edge-coloring with color set {1, 2, 3, 4} such that
the color class E4 satisfies two additional conditions:

(i) |E4| ∈ {0, 1, 2}, and if |E4| = 2 then the pair of edges colored by 4 are at distance 2
(i.e., are second-neighbors in the line graph);

(ii) if Bxy ∩ E4 6= ∅ then another common color (besides 4) appears at x and y.

1
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4

1
4

2

3

1

1

1
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3

Figure 3: Two odd edge-colorings of W4 that satisfy conditions (i) and
(ii) from Theorem 1.3. In the coloring depicted on the left, |E4| = 2 and
at both endvertices of any edge colored by 4 either the color 2 or the color
3 appears. In the coloring depicted on the right, |E4| = 1 and at both
endvertices of the only edge colored by 4 each of the colors 2 and 3 occurs.

It is not known whether there exists a connected graph G with χ′o(G) = 4 that does not
admit an odd 4-edge-coloring with a color class of size 1. In this regard, the following has
been conjectured in [7].
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Conjecture 1.4. Every connected graph G with χ′o(G) = 4 becomes odd 3-edge-colorable by
removing a particular edge.

Regarding odd 2-edge-colorability of graphs, Kano et al. [3] have shown the following.

Theorem 1.5. The decision problem whether a given graph G is odd 2-edge-colorable is
solvable in polynomial time. Moreover, in the affirmative case, such a coloring can be found
in polynomial time.

In view of Theorem 1.3, the decision problem whether a given graph G is odd 4-edge-
colorable is also solvable in polynomial (in fact, linear) time. Moreover, its proof can be
used as an efficient algorithm for exhibiting such a coloring. The analogous complexity ques-
tions regarding odd 3-edge-colorability of general graphs are still open. Nevertheless, these
questions have been answered (in the affirmative) for subcubic graphs. Namely, a complete
characterization of the class of loopless subcubic graphs in terms of their odd chromatic index
was obtained in [1] through the following:

Theorem 1.6. Let G be a connected loopless subcubic graph. Then

χ′o(G) =



0 if G is empty ;

1 if G is odd ;

2 if G has 2-vertices, with an even number of them on each cycle ;

4 if G is obtainable from a cubic bipartite graph by a single edge subdivision ;

3 otherwise .

In this paper we focus on loopless subdivisions of odd graphs, which are in some sense
the least non-odd graphs among all. Let us denote this collection by S, and similarly, let O
be the class of loopless odd graphs, with the understanding that O ⊂ S. Our main result,
Theorem 4.3 at the very end of Section 4, is a characterization of the members of S in terms
of the value of their odd chromatic index. Thus, we achieve a generalization of Theorem 1.6,
and at the same time answer a question raised by the end of [6]. Our findings here also provide
support for Conjecture 1.4 over the class S.

The rest of the article is divided into four sections. In the next, preliminary one, we
collect several ‘easy’ results (most of them previously known). Sections 3 and 4 are devoted
to a derivation of our main result - a characterization of S in terms of the value of the odd
chromatic index. The final section briefly conveys some possible directions for further related
study.

2 Preliminaries
The edge-complement, Ĥ, of a subgraph H ⊆ G is the spanning subgraph Ĥ = G−E(H). A
co-forest in G is a subgraph whose edge-complement is a forest. For a graph G, let T be an
even-sized subset of V (G). Following [2], a spanning subgraph H of G is said to be a T -join
of G if dH(v) is odd for all v ∈ T and even for all v ∈ V (G) \ T . For instance, if P ⊆ G is
a nontrivial path with endvertices x and y, the spanning subgraph of G with edge set E(P )
is an {x, y}-join of G. As another example, every even spanning subgraph is an ∅-join of G.
Observe that the symmetric difference of an S-join and a T -join is an S ⊕ T -join. (We shall
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use ⊕ to denote both the symmetric difference operation on spanning subgraphs and on sets.)
Hence, the symmetric difference, H⊕K, of a T -join H and a spanning even subgraph K of G
is again a T -join. In particular, the removal (resp. addition) of all edges of an edge-disjoint
cycle from (resp. to) a T -join, produces another T -join. Therefore, if a T -join of G exists,
there also exists such a forest (resp. co-forest). By the handshake lemma, necessary for the
existence of a T -join is that the intersection of T with the vertex set of every component of G
is even-sized, and a straightforward implementation of the above mentioned facts (see [9]) is
that this condition also suffices. Consequently, given a connected graph G and an even-sized
subset T of V (G),

(1) there exists a T -join of G that is a forest;

(2) there exists a T -join of G that is a co-forest;

(3) additionally, if G is of even order, then it contains a spanning odd co-forest.

An edge-coloring ϕ is said to be odd (resp. even) at a vertex v if each color appearing at
v is odd (resp. even). Similarly, we say that ϕ is odd (resp. even) away from v if ϕ is odd
(resp. even) at every vertex w ∈ V (G)\{v}, without any assumptions about the behavior of
ϕ at v being made. The following useful result appears in [5, 6].

Proposition 2.1. Let v be a vertex of a forest F . Any local coloring of EF (v) which uses at
most two colors extends to a 2-edge-coloring of F that is odd away from v. In particular, F
is odd 2-edge-colorable.

An immediate consequence of Proposition 2.1 is the result below, which concerns a graph
all of whose cycles (if any) share a vertex.

Proposition 2.2. If v is a vertex of a graph G such that G − v is a forest, then G admits
a 2-edge-coloring that is odd away from v. Additionally, if dG(v) is odd, then G admits an
edge-coloring with color set {1, 2} that is odd away from v and the color 1 (resp. 2) is odd
(resp. even) at v.

Proof. We may assume that G is loopless. It suffices to prove the first part. Split v into
k = dG(v) pendant vertices v1, . . . , vk in order to obtain a forest F . By Proposition 2.1, F
admits an odd 2-edge-coloring. Re-identify v1, . . . , vk into v while keeping the colors on all
edges. We thus regain G along with a required edge-coloring.

As observed in [8], the odd 2-edge-colorability of forests implies odd 3-edge-colorability for
all connected graphs of even order, which in turn yields odd 3-edge-colorability for all graphs
with edge-connectivity 1. The following proof comes from [6].

Proposition 2.3. If G is a connected graph such that n(G) is even or κ′(G) = 1 then
χ′o(G) ≤ 3.

Proof. Let n(G) be even and let H be a spanning odd co-forest of G. Take an odd edge-
coloring of the forest Ĥ with color set {1, 2} and extend to E(G) by coloring E(H) with 3.
This gives an odd 3-edge-coloring of G.

Assume now that n(G) is odd. First we consider the case when the minimum degree
δ(G) = 1. Select a pendant vertex u and take a spanning odd co-forest H of G − u. As
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F = G − E(H) is a forest, combine an odd 2-edge-coloring of F with a monochromatic
coloring of E(H) that uses a third color.

So suppose that there are no pendant vertices in G, but nevertheless κ′(G) = 1. Let vw
be a bridge in G. Denote by Gv and Gw, respectively, the components of G−vw containing v
and w. By the previous case, the subgraphs G′ = G[V (Gv)∪ {w}] and G′′ = G[V (Gw)∪ {v}]
admit respective odd 3-edge-colorings ϕ′ and ϕ′′ with the same color set. Moreover, by
permuting colors if necessary, we can achieve that ϕ′(vw) = ϕ′′(vw). Then ϕ′ ∪ ϕ′′ is an odd
3-edge-coloring of G.

The next result may be used to characterize odd 2-edge-colorability of unicyclic graphs.

Proposition 2.4. Let G be a unicyclic loopless graph, and let C ⊆ G be the (unique) cycle.
Then χ′o(G) ≤ 3. Moreover, the upper bound is attained if and only if the following two
conditions hold simultaneously:

(i) {v ∈ V (C) : dG(v) = 2} is odd-sized;

(ii) {v ∈ V (C) : dG(v) 6= 2 and dG(v) is even} = ∅.

Proof. Let us first show that G is odd 3-edge-colorable. Since G is unicyclic, Proposition 2.1
allows for the assumption that G is connected. Moreover, in view of Proposition 2.3, we may
further assume that G is bridgeless. However, from all assumed it readily follows that G = C.
Hence χ′o(G) = χ′(C) ≤ 3.

Now we show that fulfilment of the conditions (i) and (ii) is both necessary and sufficient
for the equality χ′o(G) = 3 to hold. If G = C then condition (ii) is clearly met, and the
characterization is trivially true (as by then the notions ‘odd edge-coloring’ and ‘proper edge-
coloring’ become equivalent). Assuming G 6= C, let S = {v ∈ V (C) : dG(v) 6= 2} and
Ŝ = V (C)\S. Denote by S ′ and S ′′, respectively, the subsets of S comprised of those vertices
v for which the degree dG(v) is odd or even. Observe that for every v ∈ S ′, a coloring of EC(v)
extends to an odd 2-edge-coloring of EG(v) if and only if it is monochromatic. Otherwise, for
every v ∈ S ′′ each coloring of EC(v) extends to an odd 2-edge-coloring of EG(v). Consequently,
in view of Proposition 2.1, a given 2-edge-coloring of C extends to an odd 2-edge-coloring of
G if and only if the coloring is dichromatic at each v ∈ Ŝ and monochromatic at each v ∈ S ′.

So, if condition (ii) fails to hold, then χ′o(G) ≤ 2. Indeed, simply select a vertex v ∈ S ′′,
take a 2-edge-coloring of C that is monochromatic at each vertex from S ′ and dichromatic at
each vertex from V (C)\(S ′∪{v}); by the above observation, such a coloring of E(C) extends
to an odd 2-edge-coloring of G.

On the other hand, assuming (ii), odd 2-edge-colorability ofG is equivalent to the existence
of a 2-edge-coloring of C that is dichromatic precisely at each vertex of Ŝ. The latter is clearly
equivalent to the requirement that the set {v ∈ V (C) : dG(v) = 2} is even-sized.

Corollary 2.5. Let G be a connected unicyclic loopless graph, C ⊆ G be the (unique) cycle
and let {v ∈ V (C) : dG(v) is odd} = ∅. Then χ′o(G) ≤ 2 unless G = C is an odd cycle.

We end the preliminaries with two more already known results (proofs can be found in [6]).

Proposition 2.6. In a connected loopless graph G, let v be an internal vertex and e ∈ EG(v).
If T ⊆ V (G) is even-sized, then there exists a T -join H of G which is a co-forest such that
EĤ(v) ⊆ {e}.
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If additionally the graph G from Proposition 2.6 is of even order, we derive the following
by setting T = V (G).

Corollary 2.7. In a connected loopless graph G of even order, let v be an internal vertex and
e ∈ EG(v). Then there exists a spanning odd co-forest H of G such that EĤ(v) ⊆ {e}.

3 Subdivisions of odd graphs
Recall that S denotes the class of all loopless subdivisions of odd graphs. The following
proposition is an overture to our subsequent study of S in terms of the value of the odd
chromatic index. The final product of the study, our main result, shall be formulated by the
end of Section 4. As a warm-up, we commence by showing that four colors always suffice for
an odd edge-coloring of any member of S. Moreover, the fourth color can be reduced to at
most one appearance per component.

Proposition 3.1. Let v be a 2-vertex of a connected graph G ∈ S, and let e ∈ EG(v). Then
G admits an odd edge-coloring with color set {1, 2, 3, 4} such that the color class E4 ⊆ {e}.
Moreover, if χ′o(G) = 4 then it holds that:

(i) Every 2-vertex is internal;

(ii) No 2-vertices are adjacent.

Proof. If there exists a cutvertex u in G such that dG(u) = 2, then u must be incident with
two bridges. Consequently, Proposition 2.3 yields odd 3-edge-colorability of G. Assuming
(i), the vertex v is internal. Therefore, the graph G− e is connected and of minimum degree
δ(G−e) = 1, so it admits an odd edge-coloring with color set {1, 2, 3}. By assigning the color
4 to the edge e we obtain the promised coloring of E(G). This proves the first part and, in
addition, confirms that (i) is necessary for χ′o(G) = 4.

As for (ii), still assuming χ′o(G) = 4, suppose there is an edge f whose endvertices u and w
are 2-vertices. Let gu and gw be the other edges (besides f) incident with u and w, respectively.
Since gu and gw are pendant edges in the (connected) graph G−f , Proposition 2.3 guarantees
that there is an odd edge-coloring ϕ of G − f with color set {1, 2, 3}. Extend ϕ to E(G) by
assigning f with a color from {1, 2, 3}\{ϕ(gu), ϕ(gw)}. This completes an odd 3-edge-coloring
of G, a contradiction.

Note that the first part of Proposition 3.1 supports Conjecture 1.4. For our intended
characterization of all members of the class S in terms of their odd chromatic index, let us
denote by Si (i = 1, 2, 3, 4) the subclass consisting of those G ∈ S having χ′o(G) = i. Clearly,
S1 comprises the class of loopless odd graphs, O. At the other end of the spectrum, the second
part of Proposition 3.1 gives a pair of necessary conditions for membership in S4; equivalently,
it describes two sufficient conditions for odd 3-edge-colorability of a loopless subdivision of
an odd graph. The following result provides another such condition (which shall be useful on
more than one occasion later on in this section).

Proposition 3.2. Let G ∈ S be a connected graph, and let C ⊆ G be a cycle passing through
a 2-vertex v of G. If the cycle C is even or it passes through another 2-vertex of G, then
χ′o(G) ≤ 3.
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Proof. We argue by contradiction, that is, suppose G is not odd 3-edge-colorable. Then, by
Proposition 2.3, the order n(G) is odd. So, in view of Proposition 3.1, we have that the graph
G− v is connected and of even order. Let H be the collection of all spanning odd co-forests
of G − v. Thus H 6= ∅. As dG(v) = 2, the neighborhood NG(v) is either a 1-set or a 2-set.
We show it is the latter.

Claim 1. |NG(v)| = 2.

Otherwise, the cycle C is of length 2 (namely, E(C) = EG(v)). Consider a member H ∈ H,
along with its edge-complement in regard to G: the former subgraph (the odd co-forest H) is
odd 1-edge-colorable, whereas the latter is a unicyclic graph (the unique cycle is C) and its
component containing the cycle satisfies all assumptions of Corollary 2.5. Hence, G admits
an odd edge-coloring that uses at most 1 + 2 = 3 colors, a contradiction. �

Let NG(v) = {u,w}. By Proposition 3.1 (ii), the degrees dG(u), dG(w) are odd. Let
P = C − v and observe that (by the initial assumptions) P is a u-w path in G − v which is
even or it passes through a 2-vertex of G. For any H ∈ H denote Ĥ = G− v − E(H). Since
H is a (spanning odd) co-forest of G − v, the graph Ĥ is a forest. We show next that there
is a particular component in Ĥ.

Claim 2. For every H ∈ H, a component of Ĥ is an odd u-w path Q = Q(Ĥ). Moreover,
Q 6= P .

Note that the vertices of odd degree in Ĥ are precisely u,w and all 2-vertices of G that are
within G− v. Thus, looking at G−E(H) = Ĥ + {uv, vw}, the odd vertices of this graph are
precisely the 2-vertices of G that are 6= v; moreover, each such vertex is pendant in regard
to G − E(H). There are two possibilities for G − E(H): either it is a forest (if u,w do not
share a component of Ĥ), or it is a unicyclic graph such that no vertex of the cycle has an
odd degree. Therefore, in view of Corollary 2.5, the graph G−E(H) is odd 2-edge-colorable
(and consequently G is odd 3-edge-colorable), unless it is always the case that a component
of Ĥ is an odd u-w path, say Q. As we are supposing χ′o(G) > 3, we have thus established
the existence of the path-component Q. Let us show that Q 6= P . If the cycle C is even, then
P and Q are of different parities, and hence cannot be the same. And if C passes through a
2-vertex of G contained within G− v, then so does P but not Q (because every such 2-vertex
of G is a pendant vertex of Ĥ). �

Let Qu and Qw be, respectively, the components of u and w in P ∩ Q. (Here P and Q
are seen as spanning subgraphs of G − v with respective edge sets E(P ) and E(Q).) Since
Q 6= P , the paths Qu and Qw are disjoint. The former has u, whereas the latter has w as an
endvertex. Notice that Qu ∪ Qw ⊂ P . Say eu and ew are, respectively, the first and the last
edge lying outside Qu ∪Qw on a traversal of P from u to w (it is not excluded that eu = ew).

Take the symmetric difference H ⊕ P ⊕ Q. The obtained graph is clearly another odd
factor of G− v, though not necessarily a co-forest. Let H ′ be a maximal odd factor of G− v
subjected to the condition H ⊕ P ⊕Q ⊆ H ′. Then obviously H ′ ∈ H. According to Claim 2,
an odd u-w path Q′ constitutes a component of the forest Ĥ ′ = G− v − E(H ′). Let Q′u, Q′w
be defined analogously as before, that is, let Q′u and Q′w be the respective components of u
and w in P ∩Q′.

Claim 3. Qu ⊂ Q′u and Qw ⊂ Q′w.
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u w
Qu Qw

eu

ew

Q

P

Figure 4: The path P and the components of the forest Ĥ. Apart from
the path-component Q, the rest of the components of Ĥ are shaded. The
edges of P are depicted as heavier, and those of Qu ∪ Qw are fat. On a
traversal of P from u to w, the arrows notify the first embarkment and the
last disembarkment of P − E(Q). Since this happens precisely along the
edges eu and ew, respectively, these two cannot be cycle edges of Ĥ⊕P ⊕Q.
The same is obviously true for any edge of Qu ∪Qw.

Begin by observing that H ′ − E(H ⊕ P ⊕ Q) is an even subgraph of Ĥ ⊕ P ⊕ Q, the edge-
complement of H ⊕ P ⊕ Q with respect to G − v. Also note that Qu ∪ {eu} ∪ {ew} ∪ Qw

is fully contained in Ĥ ⊕ P ⊕ Q. Moreover, for any vertex x ∈ V (Qu ∪ Qw) it holds that
dĤ⊕P⊕Q(x) = dP (x) ≤ 2. In particular, dĤ⊕P⊕Q(u) = dĤ⊕P⊕Q(w) = 1. Therefore, no edge
from Qu∪{eu}∪{ew}∪Qw belongs to a cycle contained entirely in Ĥ⊕P ⊕Q. Consequently,
H ′ is edge-disjoint from Qu∪{eu}∪{ew}∪Qw. Equivalently, Qu∪{eu}∪{ew}∪Qw ⊆ P ∩Q′.
It follows that Qu ∪ {eu} ⊆ Q′u and Qw ∪ {ew} ⊆ Q′w. �

So for any H ∈ H, there exists another H ′ ∈ H such that Qu ∪Qw ⊂ Q′u ∪Q′w ⊂ P . This
is the desired contradiction.

Our next result concerns odd 2-edge-colorability of subdivisions of odd graphs, and thus
yields a structural characterization of S2.

Proposition 3.3. The following statements are equivalent for every graph G ∈ S:

(i) χ′o(G) ≤ 2;

(ii) For every cycle C of G the set {v : v ∈ V (C) and dG(v) = 2} is even-sized.

Proof. We may assume that G is connected. Notice that a 2-edge-coloring of G is odd if and
only if every edge set EG(v) is monochromatic or dichromatic depending on whether v is an
odd vertex or a 2-vertex of G.

Now (i)⇒ (ii) follows easily as moving around any given cycle C ⊆ G, there must occur
an even number of color changes; in other words, C must contain an even number (possibly
0) of 2-vertices of G.

To show (ii)⇒ (i), select a spanning tree T rooted at an odd vertex v0. First we color E(T )
as follows. Assign ET (v0) with the color 1, and repeatedly apply the following procedure until
E(T ) becomes fully colored: choose a vertex v 6= v0 that has just one incident edge already

10



colored, say by a color c ∈ {1, 2}; color the rest of ET (v) by the color c (resp. 3− c) if dG(v)
is odd (resp. equal to 2). This gives a 2-edge-coloring ϕ of T that is dichromatic precisely at
the 2-vertices of G which are not pendant in regard to T .

Let us extend ϕ to E(G). Consider an edge e ∈ E(G)\E(T ), say x and y are its endvertices.
Denote by ex and ey the (not necessarily distinct) edges of the x-y path P in T that are incident
with x and y, respectively. Note that the equality ϕ(ex) = ϕ(ey) holds if and only if an even
number (possibly 0) of internal vertices of P are 2-vertices in G. Therefore, since P + e is a
cycle, ϕ(ex) = ϕ(ey) if and only if an even number (both or neither) of the vertices x, y are
2-vertices in G. So, we assign one of the colors 1, 2 to e as follows: (1) if both x, y are 2-vertices
in G, then set ϕ(e) 6= ϕ(ex); (2) if neither x, y are 2-vertices in G, then set ϕ(e) = ϕ(ex);
if just one of the vertices x, y is a 2-vertex in G, say such is x, then set ϕ(e) = ϕ(ey). The
resulting ϕ is an odd 2-edge-coloring of G since on every edge set EG(v) it is monochromatic
or dichromatic depending on whether v is an odd vertex or a 2-vertex.

The above proof shows that the given characterization of odd 2-edge-colorability within
S is good and, in the affirmative, such a coloring can be found in polynomial time.

Corollary 3.4. Let G ∈ S. Then χ′o(G) = 2 if and only if G /∈ O and for every cycle C of
G the set {v : v ∈ V (C) and dG(v) = 2} is even-sized.

In the remainder of the paper we provide a structural characterization of the class S4. The
next result shall allow us to confine to 2-connected graphs.

Proposition 3.5. If G ∈ S is a connected graph, then χ′o(G) = 4 if and only if every block
of G belongs to S4 and for every cutvertex v there is a unique block B such that dB(v) is odd.

Proof. The essential part of our proof is to establish property (P ) below, which sheds some
light on the structure of graphs G ∈ S of connectivity κ(G) = 1 that require four colors for
an odd edge-coloring.

(P ) Let v be a cutvertex of a connected graph G ∈ S. If G1, . . . , Gk are the v-lobes of G, then
the following statements are equivalent:

(i) {G1, G2, . . . , Gk} ⊆ S4 and there is a unique j such that dGj
(v) is odd; in particular,

dGi
(v) = 2 for every i 6= j.

(ii) G ∈ S4.

Notice that, once the equivalence stated in (P ) is verified, the proposition may be derived
by inducting on the number t of cutvertices in G. Namely, the case t = 0 is trivial, and
the case t = 1 follows immediately from (P ). For t > 1, consider a cutvertex v which is an
internal leaf of the block-tree B(G); in other words, v is such that all but one of the blocks
containing it are end-blocks of G. Let G1, . . . , Gk be an enumeration of the v-lobes of G, so
that G2, . . . , Gk are end-blocks of G. Notice that the blocks of G1 are precisely the blocks of
G that are 6= G2, . . . , Gk, whereas the cutvertices of G1 are the cutvertices of G distinct from
v. In particular, the number of cutvertices of G1 is t − 1. Within the graph G1, the vertex
v is an internal vertex of some block B1, and thus dG1(v) = dB1(v). By applying (P ) to the
pair G, v we deduce that G ∈ S4 if and only if G1, G2, . . . , Gk ∈ S4 and there is a unique j
such that dGj

(v) is odd, where it may happen that j 6= 1. Combine this equivalence with the
inductive hypothesis applied to G1, and we are done.
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In what follows, we verify the property (P ) by proving the implications (i) ⇒ (ii) and
(ii) ⇒ (i). First we show the easy part, which is the direction (i) ⇒ (ii). Arguing by
contradiction, suppose that both (i) and ¬(ii) hold. Consider an odd 3-edge-coloring ϕ of G.
For every i = 1, . . . , k, let ϕi be the restriction of ϕ to E(Gi), that is, ϕi = ϕ|E(Gi). Clearly,
each ϕi is odd away from v. Moreover, since χ′o(Gi) = 4, the edge-coloring ϕi is not odd at v.
Consequently, whenever dGi

(v) = 2 the edge set EGi
(v) is monochromatic under ϕi. However,

then ϕj must be an odd 3-edge-coloring of Gj, a contradiction.

Now let us prove direction (ii) ⇒ (i). Assuming (ii), note that degree dG(v) is odd by
Proposition 3.1. We break the argument into several claims which eventually lead to (i).

Claim 1. If G′∪G′′ = G and G′∩G′′ = {v}, then both orders n(G′), n(G′′) are odd. Moreover,
if dG′(v) is even then any 3-edge-coloring of G′ which is odd away from v must be even at v;
in particular, G′ is not odd 3-edge-colorable.

By Proposition 2.3, n(G) is odd. Hence, n(G′), n(G′′) are of the same parity. Suppose
n(G′), n(G′′) are even. Then there exist spanning odd co-forests H ′ and H ′′ of G′ and G′′,
respectively. Denote F = G − E(H ′ ∪ H ′′). Note that F is a forest and dF (v) is odd. This
enables construction of an odd 3-edge-coloring of G as follows: color E(H ′) by 1 and E(H ′′)
by 2; color EF (v) by 3; extend the coloring of EF∩G′(v) to an edge-coloring of the forest F ∩G′
with color set {2, 3} that is odd away from v; similarly, extend the coloring of EF∩G′′(v) to an
edge-coloring of the forest F ∩G′′ with color set {1, 3} that is odd away from v. The obtained
contradiction shows that n(G′), n(G′′) are both odd.

Suppose that dG′(v) is even and G′ admits a 3-edge-coloring ϕ′ which is odd away from v
so that at least one, and hence two, of the colors are odd at v. Assume the color set of ϕ′ is
{1, 2, 3} and the colors 1 and 2 are odd at v. Since dG′(v) is even, it follows that the color 3 is
even at v. We construct an accompanying edge-coloring ϕ′′ of G′′. In order to do so, consider
an auxiliary graph G∗ = G′′ + vv∗, where v∗ is a new vertex. Since G∗ is a connected graph
of even order and the degree dG∗(v) is even, Proposition 2.3 yields an odd edge-coloring of G∗
with color set {1, 2, 3} such that EG∗(v) is colored by 2 and 3 with the edge vv∗ colored by
2. Let ϕ′′ be the restriction to E(G′′) of this coloring of E(G∗). However, then ϕ′ ∪ ϕ′′ is an
odd 3-edge-coloring of G. The obtained contradiction proves our point. �

From the first part of Claim 1 it follows that every v-lobe of G has an odd order. Next
we use the last part of Claim 1 to show that the degree of v is odd in regard to precisely one
v-lobe.

Claim 2. There is a unique j ∈ {1, 2, . . . , k} such that dGj
(v) is odd.

Since dG(v) is odd, so is dGj
(v) for some j. Suppose there are at least two such indices, say

j = 1 and j = 2. It follows that k ≥ 3. Let G′ = G1 ∪G2 and G′′ =
⋃
{Gi : i = 3, . . . , k}. As

both G1 − v,G2 − v are connected graphs of even order, there exist spanning odd co-forests
H1 and H2 of G1 − v and G2 − v, respectively. By Proposition 2.2, take an edge-coloring of
Ĥj = Gj − E(Hj) with color set {1, 2} which is odd away from v and so that the color j is
odd at v in Ĥj, j = 1, 2. Extend to E(G′) by coloring E(H1 ∪H2) with 3. This furnishes an
odd 3-edge-coloring of G′. However, as dG′(v) is even, the obtained coloring contradicts the
last part of Claim 1. �

Proceed by showing that each v-lobe is a subdivision of an odd graph.
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Claim 3. Gi ∈ S for every i = 1, 2, . . . , k.

Supposing the opposite, there is a v-lobe Gr such that dGr(v) is even and dGr(v) ≥ 4. First
we show that there exists of an even cycle C ⊆ Gr with v ∈ V (C). For this we may assume
that every bouquet of Gr incident with v is a singleton (otherwise, there is a 2-cycle through
v). Since dGr(v) ≥ 4, consider a triplet x, y, z ∈ NGr(v). If there is an even x-y path in Gr−v,
we are obviously done. So, as Gr − v is connected, let Q be an odd x-y path. We exhibit an
even path in Gr− v going from z to the set {x, y}. In view of the connectedness of Gr− v, let
P be an odd z-x path. On a traversal of P from z to x, say w is the first vertex that belongs
to Q. Then zPw ∪ wQx and zPw ∪ wQy are paths (by the choice of w). Because wQx and
wQy are of opposite parities, we have found an even z-{x, y} path in Gr − v, which in turn
yields an even cycle C ⊆ Gr passing through v.

Next, we use the presence of the even cycle C to show that there exists a 3-edge-coloring ϕr

of Gr which is odd away from v, and at v two of the colors are odd. Consider the following local
modification of Gr that consists of splitting out v entirely into 2-vertices and then suppressing
all of them except one: create a 2-vertex v′ incident to the two edges forming EC(v); then
arbitrarily split out the rest of v into 2-vertices and suppress them all (except v′). Every even
vertex of the resulting connected graph G′r is a 2-vertex, and C is an even cycle (properly
contained) in G′r that passes through its 2-vertex v′. By Proposition 3.2, G′r admits an odd
3-edge-coloring. Returning to Gr, we obtain the desired ϕr. However, since dGr(v) is even,
the edge-coloring ϕr contradicts with the second part of Claim 1. �

The final piece of our argument is showing that no v-lobe is odd 3-edge-colorable.

Claim 4. χ′o(Gi) = 4 for every i = 1, 2, . . . , k.

By Claim 1, no v-lobe Gi with dGi
(v) = 2 is odd 3-edge-colorable. Suppose that the (unique)

v-lobe Gj having odd dGj
(v) is odd 3-edge-colorable. Take an odd edge-coloring ϕj of Gj with

color set {1, 2, 3} such that the color 1 appears on EGj
(v). Consider now an arbitrary Gi with

i 6= j. Letting v∗ be a new vertex, the graph Gi + vv∗ is connected and of even order, hence
it admits an odd 3-edge-coloring with color set {1, 2, 3} under which the pendant edge vv∗
receives the color 1. Denote by ϕi the restriction to E(Gi) of the constructed edge-coloring of
Gi + vv∗. Note that ϕi is odd away from v and colors EGi

(v) with 1, for otherwise Gi would
be odd 3-edge-colorable. However then the union ϕ1 ∪ · · · ∪ ϕk is an odd 3-edge-coloring of
G, a contradiction. �

This completes the verification of (ii) ⇒ (i), and thus settles the property (P ) and the
proposition.

A straightforward implication of Propositions 3.2 and 3.5 is that each connected member
of S4 must have precisely one vertex of degree 2.

Corollary 3.6. If G ∈ S4 is connected, then the set of its 2-vertices is a singleton.

Proof. We prove the corollary by induction on n(G). Assume first that G has a cutvertex v.
Then by the induction hypothesis, every Gi with dGi

(v) = 2 in (P ) has the unique 2-vertex
v. So the unique 2-vertex of Gj with dGj

(v) odd is the unique 2-vertex of G. Hence we may
assume that G is a block graph. Since G ∈ S4, its order is odd (by Proposition 2.3), and
there is a 2-vertex v ∈ V (G). Hence, G is 2-connected, that is, every pair of its vertices lie
on a cycle. Therefore, by Proposition 3.2, v is the only 2-vertex in G.
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In view of Proposition 4.1 and Corollary 3.6, we are left with the task of determining which
2-connected loopless graphs with a single 2-vertex belong to S4. We proceed to describe a
construction which shall enable us to narrow down the search to essentially 3-edge-connected
graphs.

G

X �X

G0 G00

X �X

Figure 5: A 2-connected graph G (left), and graphs G′, G′′ (right). The
fat edges form the symmetric difference E(G)⊕ (E(G′) ∪ E(G′′)).

Consider a 2-connected loopless graph G that is obtainable from an odd graph by a single
edge subdivision. Thus κ(G) = κ′(G) = δ(G) = 2. Assume G is not essentially 3-edge-
connected, that is, let there be a nontrivial 2-edge cut ∂(X). Say the unique 2-vertex of G
falls in X, and consider the graphs G′ and G′′ constructed as follows (see also Figure 5):

(i) G′ is derived from G[X] by adding an edge between the two endvertices of ∂(X) in X;

(ii) G′′ is obtained from G[X] by introducing a new vertex and joining it with the two
endvertices of ∂(X) in X = V (G)\X; (equivalently, G′′ is derived from G by shrinking
X to a single new vertex, i.e. G′′ = G/X).

Notice that both G′, G′′ are 2-connected and obtainable from odd graphs by single edge
subdivisions. Reversing the process, let G′, G′′ be disjoint 2-connected loopless graphs that
are obtained from odd graphs by single edge subdivisions. Break a selected edge of G′ into two
half-edges, then remove the 2-vertex of G′′ along with its incident half-edges, and finally pair
up and glue the half-edges emanating from G′ with the corresponding half-edges emanating
from G′′ so that two new (whole) edges are created. Call this process gluing of G′ and G′′ (with
respect to a selected edge of G′). The resulting graph G is also 2-connected and obtainable
from an odd graph by a single edge subdivision, moreover it has a nontrivial 2-edge cut.

We point out here that the result of gluing such a disjoint pair G′, G′′ is not unique,
because of an apparent 2-fold freedom involved in the process: first, there is a freedom of
choice due to the arbitrariness of the selected edge from G′; and second, there is freedom
concerning the pairing the half-edges emanating from G′ with the half-edges emanating from
G′′ (cf. Figure 6).

The importance of transforming G into the pair G′, G′′ and vice versa comes from the
following.

Proposition 3.7. Let G be a 2-connected loopless graph that is obtained from an odd graph
by a single edge subdivision, and let ∂(X) be a nontrivial 2-edge cut in G such that the unique
2-vertex is in X. With G′, G′′ as described above, the following equivalence holds:

χ′o(G) = 4 if and only if χ′o(G
′) = χ′o(G

′′) = 4 .
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G

X �X

G0 G00

X �X

G

X �X

Figure 6: Graphs G′, G′′ (left), and the two ways to obtain a graph G
(right) by gluing G′, G′′ in respect of a selected edge of G′ (depicted as fat).

Proof. Assuming χ′o(G) = 4, we argue by contradiction that χ′o(G′) = χ′o(G
′′) = 4. In view

of Proposition 3.1, more than four colors are never required. Let e ∈ E(G′)\E(G). Suppose
χ′o(G

′) ≤ 3 and consider an odd 3-edge-coloring ϕ of G′. Extend the restriction ϕ|E(G[X]) to
E(G) by using the color ϕ(e) for E(G)\E(G[X]). This gives an odd 3-edge-coloring of G, a
contradiction.

Suppose now that χ′o(G′′) ≤ 3. We already know from Corollary 3.6 (or from Proposi-
tion 2.3) that the graph G′ ∗ e, obtained from G′ by introducing a 2-vertex on the edge e,
is odd 3-edge-colorable. However then an odd 3-edge-coloring of G arises by combining an
odd 3-edge-coloring of G′ ∗ e and an odd 3-edge-coloring of G′′ with the same color set (after
possibly permuting colors in the latter). This contradiction settles the issue that χ′o(G) = 4
implies χ′o(G′) = χ′o(G

′′) = 4.
Let us show the reversed implication by contrapositive. Assume an odd 3-edge-coloring of

G exists and consider its restrictions over the 2-edge cut ∂(X). If the two edges forming this
cut are colored the same, then we have an odd 3-edge-coloring of G′. Otherwise, if the two
edges are colored differently, then an odd 3-edge-coloring of G′′ readily appears.

We end this section with a property shared by all 2-connected members of S4.

Proposition 3.8. If G ∈ S4 is a block graph, then G can be obtained from a bipartite block
odd graph by a single edge subdivision.

Proof. Since G ∈ S4, from Corollary 3.6 it follows that there is a single 2-vertex v ∈ V (G).
Our task is to prove that the graph G%v, obtained from G by suppressing v, is a bipartite
block odd graph. The graph G is 2-connected. Hence, as v is the only 2-vertex of G, we have
that G%v is a block odd graph. Concerning the bipartiteness of G%v, by Proposition 3.2,
every cycle of G passing through v is odd. We are left to show that every cycle of G that
avoids v is even.

Letting NG(v) = {u,w}, suppose there is an odd cycle Co in G−v. By the 2-connectedness
of G, there exist two disjoint {u,w}-V (Co) paths, say a u-u′ path P and a w-w′ path Q. Let
R denote the u′-w′ path along Co which is even (resp. odd) if P and Q have same (resp.
opposite) parities. Then P ∪R ∪Q is an even u-w path in G− v. However, we have already
established that no cycle through v is even. This contradiction proves our point, that is, the
graph G%v is a bipartite block odd graph.

15



1 2

2

2

1

1

3

1

1

1

2

3

3

2

2

1

Figure 7: An odd 3-edge-coloring of the graph obtained from K3,5 by a
single edge subdivision.

Not every graph which can be obtained from a bipartite block odd graph by a single edge
subdivision belongs in S4. For example, it can be readily seen from Figure 7 that the graph
obtained from K3,5 by a single edge subdivision is odd 3-edge-colorable. On the other hand,
in view of Theorem 1.6, this is not the case for the analogous graph obtained from K3,3.

Note in passing that if G′, G′′ are disjoint 2-connected graphs each obtainable from a
bipartite odd graph by a single edge subdivision, then the result of any gluing of G′, G′′
is another such graph. In the section we resolve the question which 2-connected graphs
obtainable from a bipartite odd graph by a single edge subdivision belong to the class S4.

4 Characterization of S4

As a result of Proposition 3.5, we may confine to 2-connected graphs. Let us denote by F
the family defined inductively as follows:

(a) every Shannon triangle of type (2, 1, 1) and minimum degree 2 belongs to F ;

(b) every graph that can be obtained by a single edge subdivision from a 3-edge-connected
bipartite cubic graph of order at least 4 belongs to F ;

(c) every other graph G in F can be constructed by taking disjoint members G′, G′′ ∈ F ,
and gluing them together.

We point out that the condition δ = 2 is included in (a) in order to stay within S. Clearly,
F ⊆ S and every member of F is a 2-connected graph. Note in passing that parts (a),(b)
and (c) of the above constructive definition of F are pairwise disjoint: every graph from (a)
is of order 3 whereas every graph from (b) or (c) is of odd order at least 5; every graph from
(b) is essentially 3-edge-connected whereas every graph from (c) has a nontrivial 2-edge cut
(cf. Figure 8). The family F happens to be vital for our desired characterization. Namely, it
turns out that a block graph G belongs to S4 if and only if it belongs to F , which we prove
next.

Theorem 4.1. Let G ∈ S be a block graph. Then the following statements are equivalent:

(i) G ∈ F ;

(ii) G ∈ S4.
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(c)

(a) (b)

Figure 8: (a) A Shannon triangle of type (2, 1, 1) with δ = 2; (b) A
single edge subdivision of K3,3; (c) Disjoint graphs G′, G′′ ∈ F (left) and a
graph G (right) obtained by gluing G′, G′′ (the fat edges form the symmetric
difference (E(G′) ∪ E(G′′)⊕ E(G)).

Proof. We shall establish both (i)⇒ (ii) and (ii)⇒ (i). Since F ⊆ S, the former implication
consists of showing that every graph G ∈ F has odd chromatic index χ′o(G) = 4. So, in
view of the equality (1.1) and Proposition 3.7, we only need to use the following fact: Every
graph that can be obtained from a bipartite cubic graph by a single edge subdivision is not odd
3-edge-colorable. The proof of this is a straightforward double-counting argument (see [1] for
the details).

The key ingredient for proving the implication (ii)⇒ (i) is provided by the next auxiliary
result.

Lemma 4.2. Let G ∈ S be a 2-connected and essentially 3-edge-connected graph such that
both the order n(G) and the maximum degree ∆(G) are greater than 3. Then χ′o(G) ≤ 3.

Proof. Arguing by contradiction, let G be a minimal counter-example. By Proposition 3.8
and assuming v is the unique 2-vertex of G, the graph G%v is bipartite; that is, every cycle
through v is odd and every cycle avoiding v is even. Since, apart from v, every other vertex
in G is of odd degree we have the following.

Claim 1. No connected even subgraph H ⊆ G satisfies that v ∈ V (H) and n(H) is even.

Arguing by contradiction, note that in the edge-complement Ĥ = G− E(H), the vertex v is
isolated whereas every other vertex has an odd degree. Take an odd factor K of H, and color
E(K) by 1, E(H)\E(K) by 2 and E(G)\E(H) by 3. This gives an odd 3-edge-coloring of G,
a contradiction. �
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In particular, it follows from Claim 1 that there is no pair of cycles C,C ′, one of which
passes through v, such that V (C) ∩ V (C ′) is a singleton, say {z}; call this formation a
forbidden cycle pair at z (cf. Figure 9). Several structural constraints arise from the absence
of forbidden cycle pairs.

C

C 0

v

z

Figure 9: A forbidden cycle pair at a vertex z.

Let NG(v) = {u,w}. Since G ∈ S4, both n(G) and ∆(G) are odd and ≥ 5. Consider an
arbitrary ‘large’ vertex z, that is, a vertex of degree dG(z) ≥ 5. By the 2-connectedness of G,
there exists a cycle C ⊆ G such that v, z ∈ V (C) and |V (C)| ≥ 5. Indeed, if z 6= u,w then
any cycle through v and z works; otherwise, select a vertex from V (G)\{u, v, w} and use a
cycle passing through v and that vertex. Let P = C − v be the u-w path that goes through
z and is contained within C (it is not excluded that z is an endvertex of P ). We consider the
collection Pz of paths Q in G− v such that Q connects z and another vertex of P and P ∩Q
consists of these two vertices. Let us refer to the other endvertex of Q ∈ Pz as its ending. We
denote by In(Q) the set of internal vertices of the path Q, those that are not its endvertices.1

Claim 2. There is a mapping from EG(z)\EC(z) to Pz, sending e 7→ Qe, such that e ∈ E(Qe).
Moreover, for every such mapping it holds that

e 6= e′ ⇒ Qe and Qe′ are internally disjoint, i.e., In(Qe) ∩ In(Qe′) = ∅ .

Let x be the other endvertex of e (besides z). If x ∈ V (P ), all of the claimed is trivially true.
Indeed, by then the path Qe is uniquely determined and In(Qe) = ∅ since Qe is the 1-path
with edge set {e}. Otherwise, if x /∈ V (P ), then x falls into a component, Ke, of G− V (C).
Note that then e 6= e′ implies Ke 6= Ke′ , for otherwise a forbidden cycle pair at z (that
includes C) is present (cf. Figure 10); in particular, e and e′ are not parallel edges. From
this readily it follows that Qe exists in this case as well. Namely, every edge in ∂(V (Ke)) has
an endvertex in Ke and an endvertex on P ; moreover, |∂(V (Ke))| ≥ 3 since G is essentially
3-edge-connected. Let us note in passing that neither Qe nor its ending are no longer uniquely
determined (as we already established that no two edges from the edge cut ∂(V (Ke)) can have
the same endvertex on P ). Observe that In(Qe) ⊆ V (Ke). Therefore, since e 6= e′ implies
Ke 6= Ke′ , we have that e 6= e′ ⇒ In(Qe) ∩ In(Qe′) = ∅. �

Any subsequent use of notation Qe is to be understood in the context of Claim 2. We
study next the following situation: e, e′ ∈ EG(z)\EC(z) are distinct edges and Qe, Qe′ have
endings on the same side of P in respect of z.

1Not to be confused with ‘internal vertices of a block’.
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Figure 10: A forbidden cycle pair at z if Ke = Ke′ . Letting x and x′

be the other endvertices (besides z) of e and e′, respectively, any x-x′ path
within the shared component combines with e and e′ to produce a cycle.

Claim 3. Let Q′, Q′′ ∈ Pz be internally disjoint, and have their respective endings lying on
the same side of z along P . Then Q′, Q′′ are 1-paths and their shared ending is in NP (z).

First we show that Q′ and Q′′ share the same ending. Arguing by contradiction, suppose
their respective endings, say z′ and z′′, differ. Without loss of generality, let z′ be an internal
vertex of the subpath zPz′′. Denote C ′ = zPz′ ∪Q′ and C ′′ = zPz′′ ∪Q′′. Then C ⊕C ′′ and
C ′ constitute a forbidden cycle pair at z (cf. Figure 11). The obtained contradiction confirms
that Q′, Q′′ have the same ending, say z∗. Note in passing that z∗ is another large vertex
along P .

P

z z′ z′′

Q′′

Q′

Figure 11: A detour from P that yields a forbidden cycle pair at z.

Next we prove that Q′, Q′′ are actually 1-paths. For argument’s sake, suppose In(Q′) 6= ∅.
Then In(Q′) is contained within a single component K of G − V (C). Note in passing that
V (K) ∩ In(Q′′) = ∅, by the proof of Claim 2. Consider the edge cut ∂(V (K)). The essential
3-edge-connectedness of G and Claim 2 together guarantee that there is a V (P )-V (K) edge
f /∈ E(Q′) such that the endvertex of f on P is neither z nor z∗. However, such an edge f
would contradict the already established feature of shared path endings. Indeed, let x and y
be the respective endvertices of f in V (P ) and V (K), and let Q be a y-In(Q′) path within K,
say y′ is the other endvertex of Q′. Then each of the paths zQ′y′ ∪Q+ f and z∗Q′y′ ∪Q+ f
is internally disjoint with Q′′; moreover, zQ′y′ ∪ Q + f ∈ Pz and z∗Q′y′ ∪ Q + f ∈ Pz∗ .
Hence, depending on the position of x along P , at least one of the pairs zQ′y′∪Q+f,Q′′ and
z∗Q′y′ ∪Q + f,Q′′ yields the mentioned contradiction (either in regard to the large vertex z
or to the large vertex z∗; see Figure 13). Consequently, both Q′ and Q′′ are z-z∗ edges.
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Figure 12: A pair of internally disjoint paths z∗Q′y′ ∪ Q + f,Q′′ ∈ Pz∗
with distinct endings (x and z, respectively) on the same side of z∗ along
P .

Finally, let us show that z∗ ∈ NP (z), that is, z∗ is a neighbor of z along P . Once again we
argue by contradiction and evoke essential 3-edge-connectedness. Suppose In(zPz∗) 6= ∅, and
let H be the component of G − (V (C)\In(zPz∗)) that includes In(zPz∗). Since |∂(H)| ≥ 3
there exists an edge h ∈ ∂(H)\E(P ). It cannot be that h has an endvertex within {z, z∗}.
Indeed, for otherwise, h would contradict the feature of shared path endings in regard to its
endvertex in {z, z∗} (see Figure 13). Thus, without loss of generality, assume h meets P on
the side of z not including z∗. If x is the endvertex of h on P , then there is a path R that
starts at x along h and goes through H until it reaches P again, say at a vertex y ∈ In(zPz∗).

z z∗

h

Q′′

Q′

x y

RP

H

Figure 13: A detour from P along R yielding a forbidden cycle pair at z∗.

Define C = xPy ∪R and C = Q′ ∪Q′′. Then C ⊕C and C form a forbidden cycle pair at z∗.
The obtained contradiction settles the claim. �

Since z is a large vertex, we have that |EG(z)\EC(z)| ≥ 3. Consequently, on at least
one side along P the vertex z is incident with a 3+-bouquet Bzz∗ (see Figure 14); call it a
large bouquet. Thus, every large vertex lying on P is incident with at least one large bouquet
(shared with an adjacent large vertex along P ). Moreover, every large bouquet incident with
a vertex of P is of this kind, for otherwise a forbidden cycle pair occurs. From Claims 2 and 3
it also follows that for each e ∈ EG(z)\EC(z), all the paths Qe have endings on the same side
of P with regard to z.

z z
�

Bzz
�

P

Figure 14: A large bouquet at z (and at a neighbor z∗) along P .
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Claim 4. The multiplicity µ(G) = 3 whereas the maximum degree ∆(G) = 5. Moreover,
every 5-vertex on P is incident with a 3-bouquet, which it shares with a neighboring 5-vertex
along P .

We already noted prior to this claim that every large vertex along P is incident with a large
bouquet (shared with a large neighbor on P ). Let us first show that µ(G) = 3. Consider
in G a bouquet B of maximum size. Thus |B| ≥ 3, implying that its endvertices are large
vertices, say z′ and z′′. So (by taking z = z′) we may assume that B is a large bouquet along
P . Select two edges e, f ∈ B\E(P ). Now it is important to observe that in case |B| ≥ 4 the
graph G− {e, f} satisfies all assumptions of the lemma. We proceed with clarifying this.

If |B| ≥ 5 then it is obvious that G − {e, f} ∈ S is a 2-connected and essentially 3-
edge-connected graph having both order and maximum degree greater than 3. On the other
hand, supposing |B| = 4, the sets EG(z′)\(E(P )∪Bz′z′′) and EG(z′′)\(E(P )∪Bz′z′′) are even-
sized. If neither of the vertices z′, z′′ is incident with another large bouquet along P , then (by
Claims 2 and 3) the sets EG(z′)\(E(P )∪Bz′z′′) and EG(z′′)\(E(P )∪Bz′z′′) are actually empty.
However, that would imply |∂({z′, z′′})| = 2, contradicting the essential 3-edge-connectedness
of G. So, at least one of z′, z′′ must be incident with a 3-bouquet along P . This yields
the same conclusion that G − {e, f} satisfies all the assumptions of the lemma. Indeed, the
2-connectedness, order and degree assumptions are clearly preserved. As for the essential 3-
edge-connectedness of G−{e, f}, suppose there is a nontrivial 2-edge cut. Then z′, z′′ must be
on different sides of this cut, and hence the cycle C must have at least two edges in common
with the cut. We have thus detected at least three edges in a 2-edge cut, a contradiction.

Therefore, G − {e, f} is odd 3-edge-colorable (by the minimality choice of G). But such
a coloring of E(G)\{e, f} readily extends to an odd 3-edge-coloring of G by using for both
e, f one color already appearing on B\{e, f}, a contradiction. Hence, it must be that |B| = 3,
confirming µ(G) = 3 and also showing that every large vertex along P is incident with a
3-bouquet.

Finally, suppose there is a large vertex z of degree greater than 5. It is incident with a
3-bouquet Bzz∗ along P , and has |EG(z)\(E(P )∪Bzz∗)| ≥ 3. In view of Claims 2 and 3, this
inequality grants a 4+-bouquet along P which is incident with z and lies on the other side
of z∗. However, such a bouquet contradicts with the already established equality µ(G) = 3.
Consequently, ∆(G) = 5. �

So the 5-vertices along P come in pairs, each pair consisting of two neighbors on P which
are the endvertices of a 3-bouquet. Two such pairs (z, z∗) and (z̄, z̄∗) are said to be successive
if the vertices z, z∗, z̄, z̄∗ are in that relative order on a traversal of P from u to w and
Pz∗ ∩ Pz̄ 6= ∅ (cf. Figure 15).

z�u z �z w�z�

Q

Figure 15: Successive pairs z, z∗ and z̄, z̄∗. A z∗-z̄ path Q (depicted as
fat) is internally disjoint from P , that is, it holds that Q ∈ Pz∗ ∩ Pz̄.

Consider a maximal sequence Z : (z1, z
∗
1), (z2, z

∗
2), . . . , (zn, z

∗
n) of pairs (of 5-vertices along

P ) subjected to the condition that the pairs (zi, z
∗
i ) and (zi+1, z

∗
i+1) are successive, for each
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i = 1, 2, . . . , n − 1. Select a path Qi ∈ Pz∗i
∩ Pzi+1

, for each i = 1, 2, . . . , n − 1. Also take
paths Q0 ∈ Pz1\Pz∗1

and Qn ∈ Pz∗n\Pzn . If x and y are the other endvertices of Q0 and
Qn, respectively, besides z1 and z∗n. By the maximality choice of Z, the vertices x and y are
3-vertices of G. Moreover, the vertices x, z1, z

∗
1 , z2, z

∗
2 , . . . , zn, z

∗
n, y are in that relative order on

traversal of P from u to w. Consider the subgraph H of G defined as follows (cf. Figure 16):

H = C ∪
⋃
{Qi : i = 0, . . . , n} ∪

⋃
{Bziz∗i

: i = 1, . . . , n} .

u
zi+1 z�

i+1

Qi

w

v

H

P

x z1 z�1

Q0

Q1 Qi�1

zi z�
i

Qi+1 Qn�1

zn z�
n y

Qn

Figure 16: A sketch of the subgraph H ⊆ G.

Denote Z = {x, z1, z
∗
1 , . . . , zn, z

∗
n, y}. Observe that every vertex from Z has the same

degree in regards to both H and G. Thus, every vertex from Z is isolated in the edge-
complement Ĥ = G−E(H). Every other vertex of H has degree 2. Moreover, the set E(H)
has the following important features: (i) it contains at least one 3-bouquet (surely Bz1z∗1 is
such), and (ii) if all 3-bouquets are to be removed from H, then all that remains is the path
xPuvwPy and a collection of even pairwise disjoint cycles C0, C1, . . . , Cn−1, Cn, where the
cycle Ci consists of the path Qi and a suitable portion of P .

The above mentioned features of E(H) enable the following construction of a particular
edge-coloring ϕH of H with color set {1, 2, 3}: start by taking a proper edge-coloring of the
path xPuvwPy with color set {1, 2}; for the remaining two uncolored edges at x (belonging
in C0) use the already appearing color (1 or 2), and then extend to an edge-coloring of C0

with color set {1, 2} which is proper at each vertex 6= x, z1; similarly, for the remaining two
uncolored edges at y (belonging in Cn) use the already appearing color (1 or 2), and extend
to an edge-coloring of Cn with color set {1, 2} which is proper at each vertex 6= y, z∗n; proceed
by using all three colors 1, 2, 3 on each of the 3-bouquets Bz1z∗1 , . . . ,Bznz∗n ; finally, to each of
the remaining uncolored (even and disjoint) cycles C1, C2, . . . , Cn−1 apply an edge-coloring
with color set {1, 2} which is proper at each vertex outside Z (i.e., alternate here between the
colors 1 and 2), whereas the coloring is improper at each vertex from Z (i.e., repeat here the
same color). Notice that the color 3 occurs only on edges having both endvertices in Z\{x, y}.
Moreover, ϕH is monochromatic (and thus odd) at each of the vertices x, y.

Now extend the above constructed ϕH from E(H) to E(G) by coloring E(G)\E(H) with 3.
Since every vertex from Z is isolated in Ĥ, the described extension is an odd 3-edge-coloring
of G. This contradiction settles Lemma 4.2.

The freshly proved Lemma 4.2, combined with Propositions 3.7 and 3.8, yields the im-
plication (ii) ⇒ (i). Indeed, arguing by contradiction, let G ∈ S4\F be a block graph of
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minimum order n(G). Taking into account Proposition 3.7, it is implied by part (c) of the
construction of F that G is essentially 3-edge-connected, besides being 2-connected. Conse-
quently, by Lemma 4.2, it holds that n(G) = 3 or ∆(G) = 3. However, if n(G) = 3 then G
must be a Shannon triangle of type (2, 2, 1) with δ(G) = 2; hence G ∈ F (due to part (a) of
the construction). Otherwise, if ∆(G) = 3 then Proposition 3.8 assures that G ∈ F (due to
part (b) of the construction). The obtained contradiction settles the implication (ii) ⇒ (i),
which completes the proof of Theorem 4.1.

Finally, we arrive at the main result, which succinctly summarizes our findings.

Theorem 4.3. Let G ∈ S be a connected graph. If (B,V) is the bipartition of the block-tree
B(G) of G, where B is the set of blocks and V the set of cutvertices of G, the following holds:

χ′o(G) =


1 if G is odd ;

2 if G has 2-vertices, with an even number of them on each cycle ;

4 if B ⊆ F and for every v ∈ V there is a unique B ∈ B with odd dB(v) ;

3 otherwise .

Proof. Straightforward from Corollary 3.4, Proposition 3.5 and Theorem 4.1.

5 Further work
It is implied by Theorem 4.3 that the problem of determining the odd chromatic index of a
subdivision of an odd graph is solvable in polynomial time. In view of Theorems 1.3 and 1.5,
the complexity questions concerning the value of the odd chromatic index of general graphs
amount to deciding on their odd 3-edge-colorability. As already mentioned in Section 1.2, this
question is still open. Let us propose the study of a related set of questions arising from the
following line of reasoning. The class S can be captured by using the notion of maximum even
degree, defined as follows. Let ∆even(G) denote the maximum even value among the vertex
degrees of G. Thus S = {G : G is a loopless graph with ∆even(G) ≤ 2}, and Theorem 4.3
tells that the problem of determining χ′o(G) whenever ∆even(G) ≤ 2 can be efficiently solved.
For every k = 0, 1, 2, . . ., let S(2k) = {G : G is a loopless graph with ∆even(G) ≤ 2k}. So,
by ignoring isolated vertices, S(0) = O; and obviously S(2) = S. We find the next question
interesting.

Question 5.1. Is the decision problem whether a graph G ∈ S(4) has χ′o(G) ≤ 3 solvable in
polynomial time?

A positive answer to Question 5.1 would open the door for considering the following more
general problem.

Question 5.2. Given a positive integer k, is the decision problem whether a graph G ∈ S(2k)

has χ′o(G) ≤ 3 solvable in polynomial time?

Another possible field of study is to consider S(2k)-edge-colorability of graphs for a fixed
positive integer k (instead of odd edge-colorability); that is, define a new type of edge-coloring
by requiring that each color class is a member of S(2k) (rather than of O = S(0)). Say the
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Figure 17: A Shannon triangle of type (2, 2, 2) that requires three colors
for an S-edge-coloring. The edges falling in distinct color classes of an
optimal coloring are respectively depicted as dashed, normal and heavier.

corresponding index (representing the minimum sufficient number of colors) is χ′S(2k)(G). For
example, it is readily observed that χ′S(W4) = 2 as opposed to χ′o(W4) = 4. Similarly, if G is
a Shannon triangle of type (2, 2, 2), then χ′S(G) ≤ 3 in contrast to χ′o(G) = 6 (cf. Figure 17).
Note that there are graphs requiring at least four colors for an S-edge-coloring. Namely, every
Shannon triangle G of type (2, 2, 1) and multiplicity µ(G) ≥ 3 has χ′S(G) = 4 (cf. Figure 18).

Figure 18: A Shannon triangle of type (2, 2, 1) that requires four colors
for an S-edge-coloring. Its bouquets are of size 4, 4 and 3, respectively.

We are tempted to end our discussion here with the following.

Conjecture 5.3. If G is a connected loopless graph that is not a Shannon triangle of type
(2, 2, 1) and multiplicity µ(G) ≥ 3, then χ′S(G) ≤ 3.

One wonders whether the bound 3 in Conjecture 5.3 may drop to 2 if S is replaced with a
certain S(2k) of sufficiently large k. Understandably, the list of excluded graphs might become
longer.

Acknowledgements. This work is partially supported by ARRS Program P1-0383 and
ARRS Projects J1-1692 and J1-3002.

References
[1] R. Atanasov, M. Petruševski, R. Škrekovski, Odd edge-colorability of subcubic graphs,

Ars Math. Contemp. 10 (2016), 359–370.

[2] J. A. Bondy, U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, Springer,
New York 244 (2008).

[3] M. Kano, G. Y. Katona, K. Varga, Decomposition of a graph into two disjoint odd
subgraphs, Graphs and Combin. 34(6) (2018) 1581–1588.

24



[4] B. Lužar, M. Petruševski, R. Škrekovski, Odd edge coloring of graphs, Ars Math. Con-
temp. 9 (2015) 277–287.

[5] T. Matrai, Covering the edges of a graph by three odd subgraphs, J. Graph Theory 53
(2006) 75–82.

[6] M. Petruševski, Odd 4-edge-colorability of graphs, J. Graph Theory 87(4) (2018) 460–474.

[7] M. Petruševski, R. Škrekovski, Odd decompositions and coverings of graphs, European J.
Combin. 91 (2021) 103225.

[8] L. Pyber, Covering the edges of a graph by..., Sets, Graphs and Numbers, Colloquia
Mathematica Societatis János Bolyai 60 (1991), 583–610.

[9] A. Schrijver, Combinatorial optimization. Polyhedra and efficiency. Vol. A, Algorithms
and Combinatorics, Springer-Verlag, Berlin (2003).

25


	1 Introduction
	1.1 Basic terminology
	1.2 Odd edge-colorings and odd chromatic index

	2 Preliminaries
	3 Subdivisions of odd graphs
	4 Characterization of S4
	5 Further work

