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Abstract 

In addition to science citation indicators of journals like impact and immediacy, social 

network analysis provides a set of centrality measures like degree, betweenness, and 

closeness centrality. These measures are first analyzed for the entire set of 7,379 journals 

included in the Journal Citation Reports of the Science Citation Index and the Social 

Sciences Citation Index 2004, and then also in relation to local citation environments 

which can be considered as proxies of specialties and disciplines. Betweenness centrality 

is shown to be an indicator of the interdisciplinarity of journals, but only in local citation 

environments and after normalization because otherwise the influence of degree 

centrality (size) overshadows the betweenness-centrality measure. The indicator is 

applied to a variety of citation environments, including policy-relevant ones like 

biotechnology and nanotechnology. The values of the indicator remain sensitive to the 

delineations of the set because of the indicator’s local character. Maps showing 
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interdisciplinarity of journals in terms of betweenness centrality can be drawn using 

information about journal citation environments which is available online. 
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1. Introduction 

 

Ever since Garfield (1972; Garfield & Sher, 1963) proposed impact factors as indicators 

for the quality of journals in evaluation practices, this measure has been heavily debated. 

Impact factors were designed with the purpose of making evaluation possible (e.g., 

Linton, 2006). Other indicators (e.g., Price’s [1970] immediacy index) were also 

incorporated into the Journal Citation Reports of the Science Citation Index, but were 

coupled less directly to library policies and science policy evaluations (Moed, 2005; 

Monastersky, 2005; Bensman, forthcoming).  

 

Soon after the introduction of the Science Citation Index, it became clear that publication 

and citation practices are field-dependent (Price, 1970; Carpenter & Narin, 1973; Gilbert, 

1977; Narin, 1976). Hirst (1978), therefore, suggested constructing discipline-specific 

impact factors, but their operationalization in terms of discipline-specific journal sets has 

remained a problem. Should such sets be defined with reference to the groups of 

researchers under evaluation (Moed et al., 1985) or rather in terms of the aggregated 

citation patterns among journals (Pinski & Narin, 1976; Garfield, 1998)? How can one 
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disentangle the notion of hierarchy among journals and the juxtaposition of groups of 

journals in the various disciplines (Leydesdorff, 2006)? 

 

Furthermore, as Price (1965) noted, different types of journal publications within similar 

fields can be expected to vary also in terms of their citation patterns. Within each field, 

some journals follow developments at the research front (e.g., in the form of letters), 

while other journals (e.g., review journals) have a longer-term scope. Thirdly, journals 

differ in terms of their “interdisciplinarity,” with Nature and Science as the prime 

examples (Narin et al., 1972), while others include sections of both general interest and 

disciplinary affiliations (e.g., PNAS and the Lancet). In addition to the 

“multidisciplinarity” or “interdisciplinarity” of journals at a general level, 

“interdisciplinarity” can also occur at the very specialized interface between established 

fields of science, as in the case of biotechnology and nanotechnology.  

 

Three indicators of journals were codified in the ISI databases: impact factors, 

immediacy indices, and the so-called subject categories. These indicators are based on the 

Journal Citation Reports, which offer aggregated citation data among journals. However, 

the subject categorization of the ISI has remained the least objective among these 

indicators because the indicator is not citation-based. The ISI-staff assigns journals to 

subjects on the basis of a number of criteria, among which are the journal’s title, its 

citation patterns, etc. (McVeigh, personal communication, 9 March 2006).  
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An unambiguous categorization of the journal set in terms of subject matters seems 

impossible because of the fuzziness of the subsets (Bensman, 2001). In addition to 

intellectual categories, journals belong to nations, publishing houses, and often to more 

than a single discipline (Leydesdorff & Bensman, 2006). The potential 

“interdisciplinarity” of journals makes it difficult to compare journals as units of analysis 

within a specific reference group of “disciplinary” journals. 

 

“Interdisciplinarity” is often a policy objective, while new developments may take place 

at the borders of disciplines (Caswill, 2006; Zitt, 2005). New developments may lead to 

new journal sets or be accommodated within existing ones (Leydesdorff et al., 1994). For 

example, recent developments in nanotechnology have evolved at interfaces among 

applied physics, chemistry, and the material sciences. The delineation of a journal set in 

nanotechnology is therefore not a sine cure, while in the meantime a much more discrete 

set of journals in biotechnology has evolved. Existing classifications may have to be 

revised and innovated from the perspective of hindsight (Leydesdorff, 2002). The U.S. 

Patent and Trade Office, for example, has launched a project to reclassify its existing 

database using “nanotechnology” as a new category at the level of individual patents. 

 

Reclassification at the level of individual articles would mean changing the (controlled) 

keywords with hindsight (Lewison & Cunningham, 1988). However, this is unnecessary 

since scientific articles are organized into journals by a strong selection process of 

submission and peer review. The recursive selection processes lead to very strong 
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structures and correspondingly skewed distributions. Garfield (1972, at p. 476) argued 

that a multidisciplinary core for all of science comprises no more than thousand journals. 

 

The citation structures among journals are updated each year because of changes in 

citation practices. However, in the case of “interdisciplinary” developments the 

classification may be more ambiguous because different traditions and standards are 

interfaced. Cross-links (e.g., citations) provide inroads for change in an otherwise 

(nearly) decomposable system (Simon, 1973).  

 

The development of a measure of interdisciplinarity at the level of journals derived from 

this destabilizing effect on citation structures could be extremely useful as an early-

warning indicator of new developments. In a previous attempt to develop such indicators, 

Leydesdorff et al. (1994) were able to show that new developments can be traced in 

terms of deviant being-cited patterns in various groups of neighboring journals. However, 

the opposite effect, namely that this deviant pattern also indicates new developments, 

could not be shown (Leydesdorff, 1994; Van den Besselaar & Heimeriks, 2001). Cross-

links may have other functions as well. Like most research in the bibliometric field, these 

analyses of interdisciplinarity were based on the assumption that journals can be grouped 

either using the ISI subject categories (e.g., Leeuwen & Tijssen, 2000; Morillo et al., 

2003) or on the basis of clustering citation matrices (Doreian & Farraro, 1985; 

Leydesdorff, 1986; Tijssen et al., 1987).  

 

 5



Before one can delineate groups of journals in “interdisciplinary” fields, one would need 

an indicator of “interdisciplinarity” at the level of individual journals. To what extent do 

articles in a specific journal feed into or draw upon different intellectual traditions? The 

focus on the position of individual agents in networks—in this case journals—has been 

developed in social network analysis more than in scientometrics (Otte & Rousseau, 

2002).  

 

2. Centrality Measures in Social Network Analysis 

 

Social network analysis has developed as a specialty in parallel with scientometrics since 

the late 1970s. In a ground-laying piece, Freeman (1977) developed a set of measures of 

centrality based on betweenness. Freeman stated that “betweenness” as a structural 

property of communication was elaborated in the literature as the first measure of 

centrality (Bavelas, 1948; Schimbel, 1953). In a follow-up paper, Freeman (1978) 

gradually elaborated four concepts of centrality in a social network, which have since 

been further developed (Hanneman & Riddle, 2005; De Nooy et al., 2005):  

 

1. centrality in terms of “degrees:” in- and outgoing information flows from each 

node as a center; 

2. centrality in terms of “closeness,” that is, the distance of an actor from all other 

actors in a network. This measure operationalizes the expected reach of a 

communication;  
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3. centrality in terms of “betweenness,” that is, the extent that the actor is positioned 

on the shortest path (“geodesic”) between other pairs of actors in the network; and 

4. centrality in terms of the projection on the first “eigenvector” of the matrix. 

 

These measures and their further elaboration into relevant statistics were conveniently 

combined in the software package UCINet that Freeman and his collaborators have 

developed since the 1980s (Bonacich, 1987; Borgatti et al., 2002; Otte & Rousseau, 

2002). A number of visualization programs for networks like Pajek and Mage interface 

with UCINet. The visualization and the statistics have become increasingly integrated. 

 

Centrality in terms of degree is easiest to grasp because it is the number of relations a 

given node maintains. Degree can further be differentiated in terms of “indegree” and 

“outdegree,” that is, incoming or outgoing relations. In the case of a citation matrix, the 

total number of references provided by a textual unit of analysis (e.g., an article or a 

journal) can then be considered as its outdegree, and instances of its being cited as the 

indegree. Degree centrality is often normalized as a percentage of the degrees in a 

network. 

 

“Betweenness” is a measure of how often a node (vertex) is located on the shortest path 

(geodesic) between other nodes in the network. It thus measures the degree to which the 

node under study can function as a point of control in the communication. If a node with 

a high level of betweenness were to be deleted from a network, the network would fall 

apart into otherwise coherent clusters. Unlike degree, which is a count, betweenness is 
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normalized by definition as the proportion of all geodesics that include the vertex under 

study. If gij is defined as the number of geodesic paths between i and j, and gikj is the 

number of these geodesics that pass through k, k’s betweenness centrality is defined as 

(Farrall, 2005): 

,
ij

ikj

ji g
g

∑∑  i ≠ j ≠ k 

 

“Closeness centrality” is also defined as a proportion. First, the distance of a vertex from 

all other vertices in the network is counted. Normalization is achieved by defining 

closeness centrality as the number of other vertices divided by this sum (De Nooy et al., 

2005, p. 127). Because of this normalization, closeness centrality provides a global 

measure about the position of a vertex in the network, while betweenness centrality is 

defined with reference to the local position of a vertex. 

 

Eigenvector analysis brings us back to approaches that are familiar from multivariate 

analysis. Principal component and factor analysis decompose a matrix in terms of the 

latent eigenvectors which determine the positions of nodes in a network, while graph 

analysis begins with the vectors of observable relations among nodes (Burt, 1982). How 

can these be grouped bottom-up using algorithms? For example, core-periphery relations 

can be made visible using graph-analytical techniques, but not by using factor-analytical 

ones (Wagner & Leydesdorff, 2005).  

 

Betweenness is a relational measure. One can expect that a journal which is “between” 

will load on different factors because it does not belong to one of the dense groups, but 
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relates them. The factor loadings of such journals may depend heavily on the factor-

analytic model (e.g., the number of factors to be extracted by the analyst). For example, 

one might expect inter-factorial complexity among the factor loadings in the case of 

inter- or multidisciplinary journals (Van den Besselaar & Heimeriks, 2001; Leydesdorff, 

2004). Closeness is less dependent on relations between individual vertices because a 

vertex can be close to two (or more) densily connected clusters. Closeness can thus be 

expected to provide us with a measure of “multidisciplinarity” within a set while 

betweenness may provide us with a measure of specific “interdisciplinarity” at interfaces. 

 

3. Size, impact, and centrality 

 

While the impact factor and the immediacy index are corrected for size (because the 

number of publications in the previous two years and the current year, respectively, is 

used in the denominator; cf. Bensman, forthcoming), centrality measures are sensitive to 

size. A further complication, therefore, is the possibility of spurious correlations between 

different centrality measures. Large journals (e.g., Nature) which one would expect to be 

“multidisciplinary” rather than “interdisciplinary,” might generate a high betweenness 

centrality because of their high degree centrality.  

 

Normalization of the matrix for the size of patterns of citation can suppress this effect 

(Bonacich, personal communication, 22 May 2006). Fortunately, there is increasing 

consensus that normalization in terms of the cosine and using the vector-space model 

provides the best option in the case of sparse citation matrices (Ahlgren et al., 2003; 

 9



Chen, 2006; Salton & McGill, 1983). Using the cosine for the visualization, a threshold 

has to be set because the cosine between citation patterns of locally related journals will 

almost never be equal to zero. However, the algorithms for computing centrality first 

dichotomize this matrix. 

 
Figure 1: Betweenness centrality of 54 journals in the vector space of the citation impact 
environment of Social Networks (cosine ≥  0.2). 
 
Actually, when I was working with visualizations of cosine-based journal maps 

(Leydesdorff, forthcoming-a, forthcoming-b), it occurred to me that the interdisciplinarity 

of journals corresponds with their visible position in the vector space. Figure 1, for 

example, shows the citation impact environment of Social Networks as an example. 

Among the 54 journals citing Social Networks more than once in 2004,1 this journal is on 

                                                 
1 Aggregate values of one are aggregated by the ISI and subsumed under the category of “All others” 
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the shortest path between vertices in 15% of the possible cases, followed by the Journal 

of Mathematical Sociology with a value of 11% on betweenness centrality. The other 

journals have considerably lower values. The visual pattern of connecting different 

subgroups also follows the intuitive expectation of “interdisciplinarity” among these 

journals.  

Figure 2: Betweenness centrality of Social Network in its citation environment before 
normalization with the cosine. 
 

Figure 2 contrasts this finding with the betweenness centrality in the unnormalized 

networks. Social Networks is still the journal with the largest betweenness value (0.07), 

but the Journal of Mathematical Sociology now has a score of 0.01. This is even lower 

than the corresponding value for the American Sociological Review (0.03). The latter is a 

much larger journal with a distinct disciplinary affiliation (that is, sociology). In sum, the 
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visualization using unnormalized citation data can be expected to show neither the cluster 

structure in the data nor betweenness centrality among groups of nodes. One needs a 

normalization in terms of similarity patterns (using a similarity coefficient like the 

Pearson correlation or the cosine) to observe the latent structures in this data.  

 

The research question of this paper is to address the phenomenon of betweenness 

centrality in the vector space systematically. I will first study the different centrality 

measures in the non-normalized matrix, then in the cosine-normalized one, and finally in 

a few applications, including some with obvious policy relevance (nanotechnology and 

biotechnology). 

 

4. Methods and Materials 

 

The data was harvested from CD-Rom versions of the Journal Citation Reports of the 

Science Citation Index and the Social Sciences Citation Index 2004. These two databases 

cover 5,968 and 1,712 journals, respectively. Since 301 journals are covered by both 

databases, a citation matrix can be constructed among (5,968 + 1,712 – 301) = 7,379 

journals. Seven journals are not processed by the ISI in the “citing” dimension, but we 

shall focus below on the “cited” dimension of this matrix. This focus enables us to 

compare the centrality measures directly with well-established science citation indicators 

like impact factors, immediacy, etc. 
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Among the 7,379 vectors of the matrix representing the cited “patterns,” similarities were 

calculated using the cosine. Salton’s cosine is defined as the cosine of the angle enclosed 

between two vectors x and y as follows (Salton & McGill, 1983):  

 

Cosine(x,y) = 1 1

2 2 2 2

1 1 1 1

( )*( )

n n

i i i i
i i

n n n n

i i i i
i i i i

x y x y

x y x y

= =

= = = =

=
∑ ∑

∑ ∑ ∑ ∑
 

 

The cosine is very similar to the Pearson correlation coefficient, except that the latter 

measure normalizes the values of the variables with reference to the arithmetic mean 

(Jones & Furnas, 1987). The cosine normalizes with reference to the geometrical mean. 

Unlike the Pearson correlation coefficient, the cosine is non-metric and does not presume 

normality of the distribution (Ahlgren et al., 2003). An additional advantage of this 

measure is its further elaboration into the so-called vector-space model for the 

visualization (Chen, 2006). 

 

Note that the two matrices—that is, the matrix of citation data and the matrix of cosine 

values—are very different: the cosine matrix is a symmetrical matrix with unity on the 

main diagonal, while citation matrices are asymmetrical transaction matrices with usually 

outliers (within-journal “self”-citations) on the main diagonal (Price, 1981). The 

topography of the vector space spanned by the cosine values is accordingly different from 

the topography of the multi-dimensional space spanned by the vectors of citation values. 
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Subsets can be extracted from the database in order to measure the relations among 

journals that are citing a specific journal. I shall call these subsets the local citation 

impact environments of the journal under study. Betweenness centrality and other 

centrality measures will be different within these local citation environments from their 

values in the global set because each two journals within a local set can also be related 

through the mediation of journals outside the subset.  

 

For the computation of centrality measures I use exclusively the methods available within 

the Pajek environment. This allows for a one-to-one correspondence between the 

visualizations and the algorithmic results. (The normalizations are sometimes slightly 

different between UCINet and Pajek.) Although UCINet is faster and richer in providing 

various computational options, Pajek is currently able to analyze centrality in 

asymmetrical matrices in both directions. Given our interest in asymmetrical citation 

matrices, this can be an advantage. The analysis focuses on degree centrality, 

betweenness centrality, and closeness centrality because eigenvector analysis is used in 

Pajek only as a means for the visualization. When displaying the citation impact 

environments (Leydesdorff, forthcoming-a and forthcoming-b), I shall use the vertical 

size for the relative citation contributions of journals in a specific environment, and the 

horizontal size for the same measure, but after correction for within-journal citations. 

 

5. Centrality at the level of the Journal Citation Reports 

 

5.1 The asymmetrical citation matrix 
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The asymmetrical citation matrix contains two structures, one in the “cited” and another 

in the “citing” dimension of the matrix. Pajek provides options to compute the three 

centrality measures (degree, betweenness, and closeness) in both directions. Thus, six 

indicators can be measured across the file. The values on these six indicators can be 

compared with more traditional science citation indicators like “impact,” “immediacy,” 

and “total citations.” (The values of the six [two times three] centrality measures for the 

7,379 journals are available online at 

http://www.leydesdorff.net/jcr04/centrality/index.htm .) 

 

 Rotated Component Matrix(a) 
 
  Component 
  1 2 3 
Number of issues  .924  .185
Total number of references (citing) .909 .210 .237
Within journal “self”-citations .815 .152  
Betweenness (citing) .740  .103
Total number of citations (cited) .672 .639  
Immediacy  .806 .267
Impact  .802 .295
Indegree (cited) .405 .713 .381
Betweenness (cited) .261 .691 -.240
Closeness (cited)   .776
Closeness (citing) .190 .413 .663
Outdegree (citing) .498 .356 .633

Extraction Method: Principal Component Analysis.  Rotation Method: Varimax with Kaiser 
Normalization. 
a  Rotation converged in 5 iterations. 

 
Table 1: Three-factor solution of the matrix of 7,379 journals versus six centrality 
measures and a number of science (citation) indicators. 
 

Table 1 shows the rotated three-factor solution for the matrix of 7,379 journals versus the 

various science indicators and centrality measures as variables. Three factors explain 
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73.5% of the variance. Factor One (46.9%) can be designated as indicating the size of 

journals, Factor Two (16.4%) registers the effects of citations (“impact,” etc.), and Factor 

Three (10.3%) seems to indicate the reach of a communication through citation. The 

strong relation between immediacy and impact has previously been noted by Yue et al. 

(2004). The further elaboration of the relation between centrality measures and science 

citation indicators would lead me beyond the scope of this study. 

 

In Table 1, the three indicators on which we will now focus our attention are shown in 

boldface. First, one can note the difference in sign for “betweenness centrality” and 

“closeness centrality” on the third factor, but as expected, this negative correlation is 

overshadowed by the commonality between “betweenness centrality” and “indegree” on 

the first two factors.  

 

 Correlations 
 

    Indegree 
Betweenness 

cited 
Closeness 

cited 
Pearson 
Correlation 1 .509(**) .651(**) 

Sig. (2-tailed)  .000 .000 

Indegree 

N 7379 7379 7379 
Pearson 
Correlation .509(**) 1 .210(**) 

Sig. (2-tailed) .000  .000 

Betweenness cited 

N 7379 7379 7379 
Pearson 
Correlation .651(**) .210(**) 1 

Sig. (2-tailed) .000 .000   

Closeness cited 

N 7379 7379 7379 
**  Correlation is significant at the 0.01 level (2-tailed). 
 
Table 2: Correlations among the centrality measures in the cited dimension (N = 7,379).  
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Table 2 provides the correlation coefficients among the three centrality measures. 

Because of the large N (= 7,379) all correlations are significant. However, the correlation 

between closeness and betweenness is considerably lower (r = 0.21; p < 0.01) than the 

other correlations (r > 0.5; p < 0.01). 

 Indegree  Between-
ness 

 Closeness

Science 4904 Science 0.098921 Science 0.538172 
Nature 4555 Nature 0.067541 Nature 0.522138 
P Natl Acad Sci 
USA 

3776 P Natl Acad Sci 
USA 

0.039714 P Natl Acad Sci 
USA 

0.490666 

Lancet 2834 Lancet 0.013324 Lancet 0.456274 
New Engl J Med 2780 JAMA-J Am 

Med Assoc 
0.011943 New Engl J Med 0.453366 

J Biol Chem 2674 New Engl J Med 0.011665 JAMA-J Am Med 
Assoc 

0.442401 

JAMA-J Am 
Med Assoc 

2510 Brit Med J 0.009516 Ann NY Acad Sci 0.441714 

Ann NY Acad Sci 2375 J Am Stat Assoc 0.009486 J Biol Chem 0.440729 
Brit Med J 2228 Ann NY Acad 

Sci 
0.008139 Brit Med J 0.433717 

Biochem Bioph 
Res Co 

2075 J Biol Chem 0.007159 Biochem Bioph 
Res Co 

0.420714 

 
Table 3: Top-10 journals on three network indicators of centrality in the being-cited 
direction. 
 
Table 3 shows the ten journals with highest values on these three indicators. The set for 

the “indegree” overlaps completely with “closeness,” and these two sets differ only by a 

single journal from the list for “betweenness:” the Journal of the American Statistical 

Association is included in the latter set, while Biochemical and Biophysical Research 

Communications is not included in this list. In other words, the three measures may 

indicate different dimensions, but they do not discriminate sufficiently among one 

another to provide us with a measure of “interdisciplinarity” or “multidisciplinarity” at 

the level of the file. 
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5.2 The centrality measures in the vector space 

 

Let us turn now to the vector space of these 7,379 vectors, while continuing to focus on 

the cited dimension. Closeness centrality cannot be computed in the vector space since 

the network is not fully connected. Betweenness centrality and degree correlate at r = 

0.69 (p < 0.01). Table 4 provides the top ten journals on these two indicators. 

 

 Degree  Betweenness 
Science 0.979534 Science 0.2860 
Nature 0.958254 Nature 0.2106 
Sci Am 0.950935 Sci Am 0.1946 
J Am Stat Assoc 0.942667 J Am Stat Assoc 0.1785 
Ann NY Acad Sci 0.935484 Brit Med J 0.1471 
P Natl Acad Sci USA 0.928707 Lancet 0.1469 
Lancet 0.925047 Ann NY Acad Sci 0.1409 
Biometrika 0.921523 Am Econ Rev 0.1366 
New Engl J Med 0.910952 P Natl Acad Sci USA 0.1363 
JAMA-J Am Med Assoc 0.898075 Biometrika 0.1350 

 
Table 4: Top-10 journals in the vector space (being-cited direction). 
 

Seven of the ten journals occur on both lists, and the order of the top four is the same. 

There are important differences from the top-10 lists provided in table 3. However, it is 

no longer clear what we are measuring. Both measures correlate, for example, at the level 

of r = 0.47 (p < 0.01) with the impact factor, but in themselves they don’t have a clear 

interpretation other than the fact that Science and Nature have the highest centrality at the 

global level, no matter how one measures the indicator. 
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6. The local citation impact environments  

 

6.1.  Social Networks as an example 

 

Let us return to our example of the journal Social Networks for a more precise 

understanding of what centrality measures may mean in local citation environments. 

Social Networks is included in the Social Sciences Citation Index, but it relates also to 

journals which are included in the Science Citation Index. In the combined set, Social 

Networks is cited by 54 journals (as against 40 in the Social Sciences Citation Index). 

Figure 3 provides the visualization of these journals with the cosine as the similarity 

measure. The vertical and horizontal axes of the vertices are proportional to the citation 

impact in this environment with and without within-journal citations, respectively. 

 

Eleven journals are grouped in the bottom right corner because they are isolates in this 

context. Social Networks, and to a lesser extent the Journal of Mathematical Sociology, 

are central in relating major clusters such as two groups of social-science journals 

(sociology and management science), a physics group, and a group of computer-science 

journals and statistics. However, the contribution of the two centrally positioned journals 

to the citation impact in this network is extremely small: only 0.41 % for Social Networks 

and 1.07% for the Journal of Mathematical Sociology. 
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Figure 3: Citation impacts of fifty-four journals which cited Social Networks more than 
once in 2004 (N = 7,379; cosine ≥ 0.2). 
 

Visual inspection of Figure 3 suggests that these two journals (Social Networks and the 

Journal of Mathematical Sociology) are central in relating the various clusters. Using 

betweenness as a measure, Pajek enables us to draw the vectors for the various measures 

of centrality and to display the vertices in terms of the values of these vectors. In Figure 1 

above, “betweenness centrality” was thus used as the indicator in this same environment. 
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 Correlations 
 

  Degree 
Between-

ness Closeness
Local 

impact 
Degree Pearson Correlation 1 .724(**) .877(**) -.009 
  Sig. (2-tailed)  .000 .000 .949 
  N 54 54 54 54 
Betweenness Pearson Correlation .724(**) 1 .542(**) -.035 
  Sig. (2-tailed) .000  .000 .801 
  N 54 54 54 54 
Closeness Pearson Correlation .877(**) .542(**) 1 -.001 
  Sig. (2-tailed) .000 .000   .991 
  N 54 54 54 54 
Local impact Pearson Correlation -.009 -.035 -.001 1 
  Sig. (2-tailed) .949 .801 .991   
  N 54 54 54 54 

**  Correlation is significant at the 0.01 level (2-tailed). 
 
Table 5: Correlations among the different centrality measures and the local impact of 54 
journals citing Social Networks in 2004.  
 
 
Table 5 shows that there is no relation between the different centrality measures and the 

local impact. The Pearson correlation coefficients are negative and not significant. 

Among the different centrality measures all relations are positive and significant despite 

the smaller set (N = 54).  

 
 

 Degree  
Between-

ness  Closeness 
Soc Networks 0.3207547 Soc Networks 0.152639 Soc Networks 0.467237 
Acad Manage J 0.2830189 J Math Sociol 0.111096 Annu Rev Sociol 0.427752 
J Math Sociol 0.2641509 Annu Rev Sociol 0.064244 Am J Sociol 0.421811 
Admin Sci Quart 0.2641509 Organ Sci 0.055370 Organ Sci 0.416033 
Am J Sociol 0.2641509 Acad Manage J 0.054492 Am Sociol Rev 0.416033 
Annu Rev Sociol 0.2641509 Am J Sociol 0.040420 Acad Manage J 0.410410 
Organ Sci 0.2641509 Admin Sci Quart 0.039110 Admin Sci Quart 0.404938 
Am Sociol Rev 0.2452830 J Am Soc Inf Sci Tec 0.031328 J Math Sociol 0.394420 
Hum Relat  0.2452830 Am Sociol Rev 0.030103 J Manage 0.370370 
J Manage 0.2264151 Oper Res 0.029685 Sociol Methodol 0.370370 

 
Table 6:  Top-10 journals on the three centrality measures among the 54 journals citing 
Social Networks in 2004.  
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Table 6 provides the top-10 journals using the three centrality measures in this 

environment. The various centrality measures are not unrelated, both numerically and for 

conceptual reasons. A star, for example, with a high degree centrality can be expected to 

have also a high betweenness centrality, because if the star were removed from the 

center, the configuration would fall apart. Closeness is defined at the level of the set, and 

thus less related to betweenness (r = 0.542; p < 0.01). The main difference which is 

visible in Table 6 is the skewness of the distribution for “betweenness centrality” when 

compared with the other two measures. Only a few journals have a high “betweenness 

centrality.” 

 

Figures 4 and 5 below show the degree centrality and the closeness centrality for this 

same set, respectively.  
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Figure 4: Normalized degree centrality of 54 journals in the citation impact environment 
of Social Networks in 2004 (cosine ≥ 0.2). 
 

While Social Networks still has the highest value (0.32) in terms of degree centrality in 

this set—which is probably a consequence of choosing this journal as the seed journal for 

the construction of the network—the Journal of Mathematical Sociology (0.26) is 

surpassed on this indicator by the Academy of Management Journal, which has a value of 

0.28 on the indicator. All journals which interface a specific cluster with Social Networks 

and with the other clusters score high on this indicator because these journals construct 

the coherence of the network. 
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Figure 5: Closeness centrality of 54 journals in the citation impact environment of Social 
Networks in 2004 (cosine ≥ 0.2). 
 

“Closeness centrality” (Figure 5) shows also a highest value for Social Networks, but 

various other journals in the set show similarly high values. In summary, Social Network 

is the most central member of this set on all centrality measures. The Journal of 

Mathematical Sociology was second on betweenness and degree, but much less 

pronounced in the case of “closeness” and “degree centrality.” The specific position of 

the two journals between the other clusters visible on the maps is indicated by the 

measure of “betweenness centrality.”  
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6.2  Multi- and interdisciplinarity 

 

While “betweenness centrality” measures the interrelationships among vertices—albeit 

after normalization because of the possible size effects—“closeness centrality” can be 

expected to provide us with a more global measure of relationships between groups of 

vertices. “Closeness” measures relatedness to the set of other vertices. Unlike 

“interdisciplinarity”, “multidisciplinarity” can perhaps be associated with this 

measurement of different bodies of literature (Klein, 1990). However, as we have seen in 

Figure 5, the closeness centrality in the cited dimension did not provide us with a strong 

indicator. In a local environment, “closeness” seems an insufficient discriminator.  

 

The notion of reading different bodies of literature together raises the question of whether 

perhaps “multidisciplinarity” should be studied using “closeness” as an indicator in the 

citing dimension. Isn’t  it writing and reading from a variety of sources that makes a 

journal multidisciplinary? Figure 6 shows the map with closeness centralities of the same 

54 journals based on the cosines among the citing patterns.  
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Figure 6: Closeness centrality in the citing patterns among the 54 journals cited by Social 
Networks in 2004 (cosine ≥ 0.2). 
 

In this vector space, Social Networks is deeply embedded in a cluster of sociology 

journals which publish methodological contributions. The highest value for closeness 

centrality among these journals (0.55) is for the Journal of Mathematical Sociology. 

Other journals follow with slightly lower values, among them Social Networks with 0.49. 

Closeness centrality seems to be determined more by the embeddedness of the journal 

under study within a cluster than to be interpretable in terms of the “multidisciplinarity” 

of this journal. 
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Figure 7: Betweenness centrality in the citing patterns among the 54 journals citing 
Social Networks in 2004. 
 

How different is the picture for “betweenness centrality”? As before, the highest values in 

Figure 7 are attributed to the journals which function as hubs in the network. For 

example, the Journal of Health Communication in the lower left quadrant relates a cluster 

of journals about social medicine and epidemiology to the core clusters of the field and 

has the relatively high value of 13% betweenness centrality. The highest value, however, 

is again for the Journal of Mathematical Sociology (14%). Social Networks follows in the 

citing dimension with only 2% betweenness centrality. The relatively high value of 7% 

for Physica A relating a cluster of physics journals to the network analysis journals is 

noteworthy. 
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In summary Figures 6 and 7 confirm that “betweenness centrality” can be considered as 

an indicator of “interdisciplinarity,” while the hypothesis that one can use “closeness 

centrality” as an indicator of “multidisciplinarity” has to be discarded. The journals with 

high values on “betweenness centrality” in the citing dimensions are those in which 

authors draw on different litteratures for their citations. These combinations can find their 

origin in the substantive or the mathematical character of the communications. Journals 

that are more deeply embedded in a disciplinary cluster tend to show very low values on 

the betweenness indicator.  

 

Centrality Cited (Hmax – H)/Hmax Citing (Hmax – H)/Hmax 
Degree 5.18 bits 10.0% 5.29 bits  8.0% 
Betweenness 4.11 bits 28.6% 4.65 bits 19.1% 
Closeness 5.36 bits  6.9% 5.59 bits  2.9% 

 
Table 7: Uncertainty in the distribution of the three centrality measures and the reduction 
of maximum entropy. 
 

In Table 7, entropy statistics is used to show the different shapes of the distributions in 

the three measures of centrality (Theil, 1972; Leydesdorff, 1995). The reduction of 

uncertainty in the distribution (when compared with the maximal uncertainty) is 28.6% in 

the cited dimension and 19.1% in the citing dimension for the “betweenness centrality” 

measure, while it is only 6.9% and 2.9%, respectively, in the case of “closeness 

centrality.” Thus, the measure of “betweenness centrality” is specific and therefore 

discriminatory for specific journals, much more than the measure of “closeness 

centrality.” The specificity of “betweenness centrality” is a consequence of its local 

character and the normalization implied by using the vector space. Table 8 shows the 
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same information in terms of the skewness and kurtosis of these distributions.2 

 

N Skewness Kurtosis 
 
 Statistic Statistic Std. 

Error Statistic Std. 
Error 

Degree 54 .301 .325 -1.131 .639 
Betweenness 54 3.073 .325 11.255 .639 
Closeness 54 -.808 .325 -.765 .639 

 
Table 8: Descriptive statistics of the skewness and kurtosis in the distributions of the 
three centrality measures in the vector space. 
 
 
 

6.3  Larger and smaller sets: domain dependency 

 

Of the 54 journals citing Social Networks in 2004, 40 are included in the Social Sciences 

Citation Index. Figure 8 shows that the major interface in this citation impact 

environment of Social Networks is between sociological journals in the top part of the 

screen and organization & management science in the lower half. At this interface, 

however, Social Networks shares its interdisciplinary position with other journals which 

maintain this relationship in their aggregated being-cited patterns. It is surpassed on the 

betweenness indicator by the Annual Review of Sociology and the Academy of 

                                                 

2 Skewness is a measure of the asymmetry of a distribution. The normal distribution is symmetric and has a 
skewness value of zero. A distribution with a significant positive skewness has a long right tail. A 
distribution with a significant negative skewness has a long left tail. As a rough guide, a skewness value 
more than twice its standard error is taken to indicate a departure from symmetry. Kurtosis is a measure of 
the extent to which observations cluster around a central point. For a normal distribution, the value of the 
kurtosis statistic is 0. Positive kurtosis indicates that the observations cluster more and have longer tails 
than those in the normal distribution and negative kurtosis indicates the observations cluster less and have 
shorter tails. (Source: SPSS 13.0, Helpfile.) 
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Management Journal. The reason for this lower value on betweenness is the absence of a 

statistics and computer science cluster in this database. Thus, the interdisciplinarity of 

Social Networks is reduced to 5% in this citation environment. 

 

 
Figure 8: Betweenness Centrality among the 40 journals in the citation environment of 
Social Networks using exclusively the Social Sciences Citation Index as a database 
(cosine ≥ 0.2). 
 

In other words, the interdisciplinarity of a journal is relative to the set of journals used for 

the assessment. Like citation impact, the indicator can only be properly defined with 

reference to a given citation environment. In the environment of each journal or group of 

journals, the specific function of “interdisciplinarity” is expected to be different. 
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In summary, the findings are: 1) betweenness centrality is extremely effective as a 

measure of “interdisciplinarity”; and 2) closeness centrality fails as a measure of 

“multidisciplinarity.”  Betweenness centrality as a measure of “interdisciplinarity” both 

improves and changes as it is applied to sets that are more and more coherently defined.  

Closeness centrality, however, fails at all levels as a measure of “multidisciplinarity.”   

 

7. Further tests and applications 

 

In this section, the betweenness centrality measure in the vector space is applied to three 

more cases. First, Scientometrics is used as a seed journal in order to demonstrate that the 

high value for betweenness centrality in the previous case (of Social Networks) was not a 

consequence of choosing the journal as a seed journal. One can expect the seed journal to 

have a high degree centrality—although not necessarily the highest—in its own citation 

environment, but the normalization using the cosine precisely corrects for the effect of 

degree centrality on betweenness centrality in the vector space.  

 

In the other two cases, I return to policy applications by focusing on biotechnology and 

nanotechnology. In the case of biotechnology, a cluster of journals has been formed 

during the past two decades. Within this cluster some journals on the technological side 

are more “interdisciplinary” than others in terms of the proposed measure. In the case of 

nanotechnology, the set has not yet crystallized. However, the betweenness measure 

highlights the journals at the interface which are most central to the emerging field of 

nanoscience and nanotechnology.  
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7.1 Scientometrics 

 

Let us consider Scientometrics as a seed journal and generate the set of 54 journals which 

cited this journal more than once in the aggregate during 2004. Using the proposed 

indicator, Figure 9 was generated among the 30 of these 54 journals which form a graph 

together above the level of cosine ≥  0.2. The fact that the other 24 journals are not 

related to the core set at this level illustrates the incidental citation relations which 

Scientometrics as a journal maintains with various disciplines. Two of these groups of 

journals are visible in Figure 9 because they are related among themselves. 

 

 
Figure 9: Betweenness centrality in the citation environment of Scientometrics in 2004 
(cosine ≥ 0.2). 
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Although Scientometrics scores with a betweenness centrality of 5% above the other 

information science journals, Research Policy (26%) and Research Evaluation (25%) are 

the two interdisciplinary journals in this environment. The other journals are embedded in 

disciplinary clusters.  

 

7.2 Biotechnology and Bioengineering 

 

For the field of Biotechnology and Bioengineering I used the core journal of this field 

with this same name. This journals was cited in 2004 by 633 journals, of which 16 

contributed to its citation environment to the extent of more than one percent of its total 

citation rate (11,652). Figure 10 shows the local citation impacts of these journals (He & 

Pao, 1986; Leydesdorff & Cozzens, 1993). The journal is central to a cluster of 

biotechnology journals. Its ISI-impact factor is 2.216. 
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Figure 10: Citation impact environment of Biotechnology and Bioengineering in 2004 
(threshold 1%; cosine ≥ 0.2) 
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Figure 11: Betweenness centrality of 16 journals citing Biotechnology and 
Bioengineering in 2004 (threshold 1%, cosine ≥ 0.2). 
 

Figure 11 shows that the betweenness centrality is not distributed equally among the 

cluster of journals which form the central group. The Journal of Chemical Technology 

and Biotechnology has a betweenness centrality of 8%, while Biotechnology and 

Bioengineering has a position on the geodesics among the other journals in only 3% of 

the possible ones. The Biochemical Engineering Journal is second on this indicator with 

a value of 6%. Thus, the focus of the interdisciplinary development of biotechnology is to 

be found on the engineering side of the field. 
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7.3  Nano Letters 

 

Three hundred and five journals constitute the citation environment of Nano Letters, 

which can be considered as a leading journal in the field of nanoscience and 

nanotechnology (Zhou & Leydesdorff, 2006). Nano Letters has an impact factor of 8.449. 

However, Figure 12 shows that the local citation impact among the 17 journals that cite 

Nano Letters to the extent of more than 1% of its total number of citations (7,349) is 

modest at best. The journal is embedded in an ecology of journals which include major 

physics and chemistry journals with considerably higher citation rates in this 

environment. 

 

Figure 12: Citation impact of 17 journals in the environment of Nano Letters 2004 
(threshold 1%; cosine ≥  0.2). 
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Figure 13: Betweenness centrality of 17 journals in the citation impact environment of 
Nano Letters 2004.  
 

The betweenness centrality measure shows that Nano Letters belongs to a group of 

journals with an interdisciplinary position between the surrounding chemics and physics 

journals. However, in terms of betweenness centrality the Journal of Nanoscience and 

Nanotechnology has a higher value (7%) than Nano Letters (4%) despite its much lower 

impact factor (2.017) and total citation rate (489). Figure 13 shows the interdisciplinary 

interface of nano-science journals in terms of the sizes of the nodes. 
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8. Conclusions 

 

The finding of betweenness centrality as a possible indicator of interdisciplinarity was 

originally a serendipitous result of my work on journal mapping. The conclusion that an 

unambiguous classification of the journal sets in terms of their aggregated citation 

patterns is impossible because of the multi-dimensionality of the space and the fuzziness 

of important delineations (Bensman, 2001; Leydesdorff, 2006) led me to consider the 

input information for drawing maps from the perspective of any of the journals included 

in the Science Citation Index online (at http://www.leydesdorff.net/jcr04) so that the user 

can draw maps using Pajek or a similar visualization program (Leydesdorff, forthcoming-

b). One can use the same files and pictures for mapping the betweenness of the 

interdisciplinary journals by choosing the option of this indicator for the visualization. In 

addition to visualizing the nodes in proportion to their respective values on this vector, 

Pajek provides the quantitative information about the vector values.  

 

I should once more emphasize that the betweenness centrality in the vector space is 

computed on a matrix completely different from that used for the computation of 

centrality in the multidimensional data space. The latter measures are computed from the 

asymmetrical citation matrix among the journals and indicate the degree of centrality of 

journals in the cited dimension. The measure for “interdisciplinarity” suggested here, 

however, is based on the symmetrical cosine matrix which was constructed on the basis 

of the cosines among these vectors. This normalization has the advantage of controling 
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for the absolute size of a journal and its consequently higher probability of degree 

centrality.  

 

The analogous expectation that “closeness centrality” might provide us with an indicator 

of “multidisciplinarity” could not be substantiated. In contrast to interdisciplinarity, 

multidisciplinarity would mean, in my opinion, that a journal prints articles from different 

disciplinary backgrounds without necessarily integrating them. The Lecture Notes in 

Computer Science are a case in point since this large collection of proceedings is not 

substantively integrated. The closeness measure, however, remains a global measure 

which loses its discriminating power in a local context when the specific relations are 

already tightly knit. At the level of the global set, the problem of the heterogenity among 

subsets prevails, and therefore conclusions cannot be drawn. 

 

In the specific case of the citation environment of Social Networks elaborated in this 

study, it seemed first in the cited dimension that the choice of the seed journal was 

decisive for centrality on all three measures. However, in the citing dimension Social 

Networks lost this interdisciplinary position; other journals in the field are primary in the 

reconstruction of the structure. The restriction to journals included in the Social Sciences 

Citation Index showed that the measure is domain-specific. In further applications, the 

discriminating power of the betweenness measure could convincingly be shown. 

 

The advantage of the measure is that it can be applied directly to the matrices of cosine 

values that were brought online at http://www.leydesdorff.net/jcr04. One can import 
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these (ASCII) files into Pajek and choose the betweenness centrality option for the 

measurement and visualization. The value of the threshold in the cosine (≥ 0.2) is 

arbitrary, but sufficiently low to show all important connections. (A threshold has to be 

set because the cosine between citation patterns of locally related journals will almost 

never be zero, and the algorithm for betweenness centrality first binarizes the matrix.) I 

intend to bring the matrices based on the Journal Citation Reports 2005 shortly online so 

that one can study interdisciplinarity using this measure for the most recent data.  
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