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Probabilistic Finite-State Machines – Part I

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta and R. C. Carrasco

Abstract

Probabilistic finite-state machines are used today in a variety of areas in pattern recognition, or

in fields to which pattern recognition is linked: computational linguistics, machine learning, time

series analysis, circuit testing, computational biology, speech recognition and machine translation

are some of them. In part I of this paper we survey these generative objects and study their

definitions and properties. In part II, we will study the relation of probabilistic finite-state automata

with other well known devices that generate strings as hidden Markov models and � -grams, and

provide theorems, algorithms and properties that represent a current state of the art of these objects.

Index Terms

Automata (F.1.1.a), Classes defined by grammars or automata (F.4.3.b), Machine learning

(I.2.6.g), Language acquisition (I.2.6.h), Language models (I.2.7.c), Language parsing and under-

standing (I.2.7.d), Machine translation (I.2.7.f), Speech recognition and synthesis (I.2.7.g), Structural

Pattern Recognition (I.5.1.f), Syntactic Pattern Recognition (I.5.1.g).

I. INTRODUCTION

Probabilistic finite-state machines such as probabilistic finite-state automata (PFA) [1],

hidden Markov models (HMMs) [2], [3], stochastic regular grammars [4], Markov chains

[5], � -grams [3], [6], probabilistic suffix trees [7], deterministic stochastic or probabilistic

automata (DPFA) [4], weighted automata [8] are some names of syntactic objects which

during the past years have attempted to model and generate distributions over sets of possible

infinite cardinality of strings, sequences, words, phrases but also terms and trees.
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Their successes in a wide amount of fields ranging from computational linguistics [8]

to pattern recognition [9]–[12], and including language modeling in speech recognition [2],

[3], [13], bioinformatics [14]–[17], music modeling [18], machine translation [8], [19]–[26],

circuit testing [27] or time series analysis [28] make these objects very valuable indeed.

But as more and more researchers have entered this field, definitions and notations have

varied and not enough energy has been spent to reach a common language. For the outsider,

the choice of the best fitting syntactic object to describe the sort of distribution she/he is

working on will seldom depend on anything else than the usual knowledge in the sub-field

or on her/his own background.

There has been a number of survey papers dedicated to one or another of these models

during the past thirty years [8], [29]–[33], but it is not always obvious through reading these

papers how the models inter-relate, and where the difficulties lie. These difficulties have been

theoretically analyzed in the computational learning theory literature [34]–[38]; alas, these

results, highly technical, seem not to have reached the adequate communities. A possible

exception is the very recent article by Dupont et al. [39].

Furthermore, more and more folk theorems appear: HMMs might be equivalent to PFA,

parsing a string in the non-deterministic case by taking the best derivation (instead of

summing up over the possible derivations) could be a good approximation; determinism

might not (as in common language theory) modify the expressive power of PFA. Some of

these results are true, others are not. And even in the case of the true “folk theorems”, most

researchers would not know why they hold.

The complexity of the objects themselves, and moreover of the underlying theories (for

instance probabilities, matrix calculus, rational power series), makes many of the usual results

depend on some exterior theory: For example, consider the question (studied in section IV-C)

of knowing if the mean of two regular deterministic distributions is also regular deterministic.

If this was so, we could merge distributions using DPFA. But this is false and a proof can

be given using results on rational series. We argue that such a proof (albeit simpler than

the one we propose) offers little insight for people working in the field. Knowing how to

construct the counter-example is of much more use: It helps for instance to build hard cases

that can be used for other problems, or to identify a sub-class of distributions where the
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counter-example will not hold.

The above example gives the spirit in which the paper is written. It aims to provide an

up to date theory of PFA, but also a survey where the objects themselves give the answers

to the questions that naturally arise.

Another preliminary question is that of justifying our interest in PFA to describe distri-

butions rather than some other devices, among which the most popular may be the HMMs.

Our choice of centering the survey on PFA instead of HMMs obeys to at least 3 reasons:

� Formal language theory appears to be today a widespread background knowledge to

researchers and engineers in computer science. Adding probabilities to well known

objects as automata permits to build on our intuitions and experiences. On the other hand

HMMs are directly issued from probability theory. This parentage also affects the way the

theory is constructed. PFA are built to deal with the problem of probabilizing a structured

space by adding probabilities to structure, whereas HMMs might rather be considered as

devices that structure probabilistic spaces by adding structure to probabilities. Neither

choice is fundamentally better, but if concerned with a task where one wishes to use

probabilistic devices in order to grasp the structure of the data, the first one seems more

appropriate.

� As we will prove in the second part of our paper [40], PFA can represent the same

distributions class as those modeled by the HMMs defined in that section. Furthermore,

they can do so in at most as much space, and the common algorithms are at least as

simple.

� A third point is that as PFA are finite-state automata with weights that verify some

constraints, then if the underlying automaton is deterministic, we have a deterministic

probabilistic finite-state automaton (DPFA). In formal language theory, there is a key

difference between deterministic and non-deterministic finite-state machines which ex-

tends to the probabilistic case: DPFA are very much favored because parsing with them

is simpler, and also because they admit a minimal object, which in turn makes the

equivalence problem tractable. A probabilistic deterministic machine also exists, which

we will study with special attention. Even if these machines are not as powerful as their

non-deterministic counterpart, they play an important role in a number of applications.
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Our first objective will be to establish correct definitions for the different sorts of proba-

bilistic automata; this will be done in section II. The probabilistic automata we consider in

this paper are generative processes. It should be noted that in the line of [41] probabilistic

acceptors have also been studied.

A simple problem as that of parsing can be upsetting: We provide in section III all

required equations and algorithms dealing with parsing. The goal of the section is to study

the relationship between the PFA and the strings they generate [42], [43].

Section IV is devoted to study the intrinsic properties of PFA. Minimality issues are

discussed in section IV-A. In section IV-B we will prove that there are distributions that

cannot be represented by DPFA, whereas they can by PFA.

Topology over regular distributions will be thoroughly studied in section V. On the one

hand entropy-based measures such as the Kullback-Leibler divergence or the perplexity

can arguably measure the quality of a model. On the other hand, alternative mathematical

distances [16], [17], [44] can be used. Some of them can effectively be computed over the

representants of the distributions, at least when these are deterministic.

Part II [40] of the paper will be devoted to the comparison with other types of models,

learning issues and the presentation of some of the extensions of the probabilistic automata.

In order to make the manuscript more readable the proofs of the propositions and theorems

are left to the corresponding appendixes.

As all surveys this one is incomplete. In our case the completeness is particularly difficult

to achieve due to the enormous and increasing amount of very different fields where these

objects have been used. In advance we would like to apologize to all those whose work on

the subject we have not recalled.

II. DEFINITIONS

Probabilistic finite-state automata are chosen as key syntactic representations of the distri-

butions for a certain amount of reasons:

� Formal language theory appears to be today one of the most widespread background

knowledges to researchers and engineers in computer science.

� PFA can represent the same distributions as those modeled by some HMMs.
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� PFA admit a deterministic version for which most natural problems become tractable;

Even though non-deterministic PFA are not equivalent to their deterministic counter-

parts, these (DPFA) have been studied by a number of authors because of their particular

properties.

� In practice, PFA can be used to implement other finite-state models.

There is a variety of definitions regarding PFA in the literature. The ones we choose to

give here are sufficiently general to cover most cases where the intended distribution is over

the set of all strings (and not just the set of strings of some special length). The cases that

do not fit in this definition will be analyzed in the second part of our paper [40].

In the general definition of such automata the probabilities are real numbers but, as they are

intended for practical use, the probabilities are rather represented as rational numbers. Also,

rational probabilities are needed for discussing about computational properties involving the

concept of size of an automaton. A different line was successfully followed in [8], where the

probabilities are just a special case of abstract weights: The algebra over which the weights

are computed then allows to deal with all cases, whether computable or not.

We now give the formal definitions of probabilistic automata we are going to use in the

rest of the paper.

A. Stochastic languages

Let
�

be a finite alphabet and
���

the set of all strings that can be built from
�

, including

the empty string denoted by � .

A language is a subset of
� �

. By convention, symbols in
�

will be denoted by letters

from the beginning of the alphabet ( �����	��
������� ) and strings in
���

will be denoted by end of

the alphabet letters ( ����������������� ). The length of a string ��� ���
is written � ��� . The set of all

strings of length � (resp. less than, at most � ) will be denoted by
���

(resp.
��� �

,
�"! �

). A

substring of � from position # to position $ will be denoted as �&% �'�'�(�*) . A substring �+% �'��,�*)
with $.-/# is the empty string � .

A stochastic language 0 is a probability distribution over
���

. We denote by 1�2�3�45�&6
the probability1 of a string �7� �8�

under the distribution 0 . The distribution must verify

1As usual, we will use the notation of 9;:=<?>A@ as 9 :=<?BDCE>	@ and 9;:=<?>GFHI@ as 9 :=<?BDCJ>GFKLCEHI@ for any random

variables B and K .
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��������� 1�2(3 4 �&6	� 
 . If the distribution is modeled by some syntactic machine � , the

probability of � according to the probability distribution defined by � is denoted 1�2��45�&6 .
The distribution modeled by a machine � will be denoted 0�� and simplified to 0 in a

non-ambiguous context.

If � is a language over
�

, and 0 a distribution over
� �

, 1�2�3 4���6�� � ����� 182(3�45�&6
A sample � is a multi-set of strings: as they are usually built through sampling, one string

may appear more than once. We will write � ��� to indicate that (all instances of the) string

� is (are) represented in the sample. The size ��� � of sample � , is the total number of strings

in the sample and ����� is the total sum of lengths of the all strings in � . It should be noted

that neither of these measures of sizes corresponds to the actual number of bits needed to

encode a sample. The empirical finite-support distribution associated with � will be denoted

as 0�� ; i.e. 1�2,3�� 4 �&6���� 45�&6! ���� � , where � 45�&6 is the frequency (number of repetitions) of �
in � and 1�2,3�� 45�&6��#" if �$ ��� .

B. Probabilistic automata

We present in this section formal definitions about probabilistic automata. These are

directly inspired by a number of works in machine learning and pattern recognition, including

[1], [4], [13], [45]–[47].

Definition 1: A PFA is a tuple � = %'&(�8� � �*)+���-,+�8�*./���10/�32 , where:

� &4� is a finite set of states;

�

�
is the alphabet;

� )�657&4�98 � 8:&;� is a set of transitions;

� ,+�6<=&4��>@?BA (initial-state probabilities);

� 0C�6<=)��>D?EA (transition probabilities);

� .C�6<=&4��>@?EA (final-state probabilities).

It should be noted that probabilities may be null ( "J�6?FA ) and therefore functions ,G� , ./�
and 0C� can be considered as total. Similarly, for the sake of notation simplification, 0H� is

assumed to be extended with 03��4JI*�����-ILK?6���" for all 4JI*�����-IMK 64N�:)+� .

,+� , 0/� and ./� are functions such that:
O
P ��QSR ,�� 4JI 6H�T
 �
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and �
I �:&4� � ./��4JI 6�� O

� � � � P�� � QSR 0/��4JI*�����-I K 67� 
 �
In what follows, the subscript � will be dropped when there is no ambiguity. A generic

state of & will be denoted by I without subindex, the specific states in & will be denoted

as I��'�-I
	 ��'��-I�� Q � �	 and a sequence of states of length $ will be denoted by 4���	 �����'��'�'���� ) 6 ,
where �% � & for 
��7#�� $ .

As will be seen in the next section, the above automata definition corresponds to models

which are generative in nature. This is in contrast with the standard definition of automata

in the conventional (non probabilistic) formal language theory, where strings are generated

by grammars while the automata are the accepting devices. It is not difficult to prove that

the definition adopted in this article is equivalent to the definition of stochastic regular

grammar [9], [32]. From a probabilistic point of view, the process of (randomly) accepting

a given string is essentially different from the process of generating a (random) string.

Probabilistic acceptors are defined in [9], [41], but they have only seldom been considered

in syntactic pattern recognition or in (probabilistic) formal language theory.

Typically, PFA are represented as directed labeled graphs. Figure 1 shows of a PFA with

four states, & ���LI��'�-I�	 � I��'�-I���� , only one initial state (i.e. a state I with , 4 I 6�� " ), I � , and a

four-symbol alphabet,
� �!�������	��
A��"#� . The real numbers in the states and in the arrows are

the final-state and the transition probabilities, respectively.

PSfrag replacements

I��
I
	

I��

I��
(1/16)

(1/5) (1)

(1)

a (1/2)

a (1/8) b (2/5)
c (1/4)

c (2/5)

a (1/2)

d (1/16)
$&% <('*)=@*C,+-/.C10�2 $&% <('&3�@ C40

Fig. 1. Graphical representation of a PFA.

A particular case of PFA arises when the underlying graph is acyclic. This type of models

are known as acyclic probabilistic finite-state automata (APFA) [48]. On the other hand, a

more general model is defined in the next subsection.



IEEE TRANSACTION PAMI 8

C. � -Probabilistic finite-state automata ( � -PFA)

Definition 2:

A � -PFA � is a tuple %'& � � �*)	�-,+�*.��*0 2 , where & ,
�

, , and . are defined as for PFA, but

) is extended to )��7& 8 4 ��� � � � 6F8:& .

0 and . verify a similar normalization as for PFA with the sum for all �J� �
extended

to include � : �
I �:& ��. 4JI 6�� O

� �������	��
 � P � � Q 0 4JI*�����-I K 67� 
 �

� -PFA appear as natural objects when combining distributions. They are nevertheless not

more powerful than PFA in the sense that they generate the same distributions (see sec-

tion IV-C). � -PFA introduce specific problems, in particular, when sequences of transitions

labeled with � are considered. In section III-C some of these problems are analyzed. When

considering � -PFA a few concepts will be needed:

Definition 3:

For any � -PFA � � %�& � � �-)A� ,��-. �-0�2
� A � -transition is any transition labeled by � ;

� A � -loop is a transition of the form 4 I �����-I 6 ;
� A � -cycle is a sequence of � -transitions from ) : 4��	%� � � ���%���6 �A4��%�� � � ���%���6 �'�'�'�I�A4��%��A� � ���%�(6 ,

where

�
$ <=" - $ -�� 4 �'%�� , � ���%��	� � 6 �:) .

D. Deterministic probabilistic finite-state automata (DPFA)

Even though determinism (as we shall show later) restricts the class of distributions that

can be generated, we introduce deterministic probabilistic finite-state automata because of

the following reasons:

� Parsing is easier as only one path has to be followed.

� Some intractable problems (finding the most probable string, comparing two distribu-

tions) become tractable.

� There are a number of positive learning results for DPFA that do not hold for PFA.

Definition 4:

A PFA ��� %'& � � �*)	�-,+�*.��*0 2 is a DPFA, if:
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��� I��"� & (initial state), such that ,&4 I�� 6�� 
 ;
�

�
I � & �

�
� � � � � �LI K <�4JI*�����-I K 6��:)��.� � 
 .

In a DPFA, a transition 4JI*�����-I K 6 is completely defined by I and � and a DPFA can be

more simply denoted by %'& � � �*)	�-I��'�*.��*0 2 .
A particular case of DPFA is the probabilistic prefix tree automaton (PPTA) where the

underlying graph is a tree rooted at the initial state I � .
E. Size of a PFA

If PFA are to be implemented then we are concerned with two issues. On the one hand all

probabilities have to be encoded and thus the range of functions , , . and 0 should be �(A
instead of ?EA . A second point is that in order to compute the complexity of an algorithm,

we must be able to give the size of a PFA (or DPFA, � -PFA). The complexity should be

polynomially linked with the number of bits needed to encode the PFA in a reasonable way.

It follows that in the case of DPFA a correct measure of the size is the sum of the number �

of states, the size � � � of the alphabet and the number of bits needed to encode all the non null

probabilities in the automaton. In the case of PFA or � -PFA, because of non-determinism,

the number of transitions in the automaton should also appear.

F. Distributions modeled by PFA

PFA are stochastic machines that may not generate a probability space but a subprobability

space over the set of finite-strings
� �

. Given a PFA (or � -PFA) � , the process of generating

a string proceeds as follows:

� Initialization: Choose (with respect to a distribution , ) one state I
� in & as the initial

state. Define I�� as the current state.

� Generation: Let I be the current state. Decide whether to stop, with probability . 4JI 6 , or

to produce a move 4 I �����-IMK 6 with probability 0 4JI*�����-IMK?6 where �.� � � � � � and IMK��:& .

Output � and set the current state to I K .
In some cases, this process may never end; i.e. it may generate strings of unbounded

length (see section II-G). If PFA generates finite-length strings, a relevant question is that of

computing the probability that a PFA � generates a string � � � �
. To deal with this problem,
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let ��� 4 ���'��� K 	 ����	 ��� K � �����'�'�'�'�I�������	��,� K � �����	6 be a path for � in � ; that is, there is a sequence

of transitions 4�� �	�,� K 	 ����	,6 , 4 � 	 �,� K � ����� 6 � �'�'��	4������	 ��� K � �����	6 �6) such that � � � K 	 � K � �'�'��� K � (note

that in general � ��� � � because some � K) can be � ). To simplify the notation, the symbols � K)
in the sequences of transitions will be omitted if not needed.

The probability of generating such a path is:

1�2!� 4�� 6���,&4���� 6�� � ��
)	� 	 0.4 ��)��	��,� K) ��� ) 6�
��L. 4����6 � (1)

Definition 5: A valid path in a PFA � is a path for some � � � �
with probability greater

than zero. The set of valid paths in � will be denoted as ;� .

In general, a given string � can be generated by � through multiple valid paths. Let  ��45�&6
denote2 the set of all the valid paths for � in � . The probability of generating � with � is

1�2 � 45�&6�� O� ��� R�� ��� 1�2 � 4�� 6 � (2)

If
� � 1�2!��45�&6��T
 , then � defines a distribution 0 on

� �
; otherwise the model does not

have much interest. The conditions which guarantee this will be discussed in section II-G.

A probabilistic finite-state automaton is ambiguous if a string � exists such that ��(� 45�&6 � ��
 .
For the PFA of figure 1 there is only one valid path for the string � 
 
I� : � 4 �*
 
 �I6B�!� 4 I��	�����-I
	 ��
A�-I�	���
�� I�	 ���	�-I�� 6�� . The probability of �*
 
 � is :

1�2!� 4 �*
 
 �I6 � ,&4JI�� 6��L0 4JI�������-I�	�6��L0 4JI
	 ��
A�-I�	,6��L0 4JI
	 ��
A�-I�	(6��L0.4 I�	 ���	�-I�� 6��L. 4JI���6
� 
 � "��L" � 
������L" �����L" �����L" ��� � 
 � "
� " � " "�!J�

For the string � , there are two valid paths: 4� 4 �*6(� � 4JI��'�����-I�	(6 �A4 I��	�����-I�� 6�� . Therefore,

the PFA of figure 1 is ambiguous. The probability of � is then:

1�2!��4 �*6 � ,&4JI�� 6��L0.4 I��'���+� I�	,6��L. 4JI
	,6�� ,&4JI�� 6��L0.4 I��'���+� I�� 6��L. 4JI�� 6
� 
 � ""�L" � 
������L" �#� � 
 � "��L" �$����
 � "
� " �#�����E�

2In unambiguous context, % R <'&�@ will be extended in section III to also mean the set of sub-paths that generate a substring& , these sub-paths will be allowed to start or end in states with null initial or final probabilities, respectively.
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The definition of DPFA directly yields:

Proposition 1: No DPFA is ambiguous.

We conclude this section by defining classes of string distributions on the base of the

corresponding generating automata.

Definition 6: A distribution is regular if it can be generated by some PFA.

An alternative definition could be used: A regular distribution is a probabilistic distribution

on a regular language. However, we do not assume this definition because it would present

the following problem: There would exist regular distributions which could not be generated

by any PFA. This result can be easily derived from [32].

Definition 7: A distribution is regular deterministic if it can be generated by some DPFA.

Definition 8: Two PFA are equivalent if they generate the same distribution.

From the definition of PFA and DPFA the following hierarchy follows:

Proposition 2: A regular deterministic distribution is also a regular distribution

The reverse of this proposition is not always true (see proposition 10, section IV).

It is interesting to note that APFA and PPTA only generate distributions on finite sets

of strings. Moreover, given any finite sample � , a PPTA can be easily constructed which

generates the empirical distribution 0 � [4].

G. Consistency of PFA

The question of consistency is “do the probabilities provided by an automaton according

to equation (2) sum up to 1?”. In early papers in the field the question was supposed to

be simple [31] or on the contrary complex when concerned with stochastic context-free

grammars; in that setting the consistency can be checked by analyzing the behavior of the

underlying probability matrix [32], [49].

The conditions needed for a PFA to be consistent are established as follows [39]:

Definition 9: A state of a PFA � is useful if it appears in at least one valid path of (� .

Proposition 3: A PFA is consistent if all its states are useful.

Note that the condition of proposition 3 is sufficient but not necessary: A non useful state is

harmless if it is inaccessible; i.e., if no string can reach it with probability greater than zero.

Once the syntactic models and the corresponding string distributions have been defined, we
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discuss in the next section how to compute the probability of a given string in the distribution

modeled by a given probabilistic automaton.

III. PARSING ISSUES

We understand parsing as the computation of equation (2) in page 10. In the case of

DPFA, the algorithms are simpler than for non-deterministic PFA. In the first case, the time

computation cost of equation (2) (and that of equation (6) in this section) are in � 4 � ��� 6 .
This computational cost does not depend on the number of states since at each step the

only possible next state is computed with a cost in �E4 
A6 . In general, as will be discussed

below, the probability that a string � is generated by a PFA, given by equation (2), can be

computed efficiently by using dynamic programming. Another problem related with parsing

is the computation of the probability of a substring in a PFA [46].

A. Parsing with PFA

The probabilities assigned to the paths in 4� (section II-F) can be used to compute

efficiently 1�2!� 45�&6 . The idea is similar to the one proposed for HMMs [50] by defining

� � 45#��-I 6
�
IL� & and " � # � � ��� as the probability of generating the prefix � 	&�'�'�,��% and

reaching state I :3

� � 4 #,�-I 6H� O��� ) � � � ������� � � 3 � ��� R � � � ����� � 3 �, 4 ��� 6�� %�
)	� 	 0 4���)��	����*)���� ) 6���
 4 I ���'% 6G� (3)

where 
 4JI*�-I K 6�� 
 if I �TI K and 0 if I�N�TI K . In this case, the extended 4� to sub-paths is

used.

Equation (3) can be calculated with the following algorithm:

Algorithm 3.1: Forward algorithm

� � 4J" �-I 6 � ,&4JI 6 �
� � 45#��-I 6 � O

P � � Q �
� 4 #�� 
 �-I K 6��L0 4JI K ����% �-I 6 � 
 �7#�� � ��� �

For a string � � � �
, the following proposition is straightforward:

3It is assumed the notation: � � 3
	 ��� 3 C,+ , if ���� .
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Proposition 4:

1�2 � 4 �&6�� O
P ��Q

� � 4 � ��� �-I 6 �L..4 I 6 � (4)

There is another way of computing 182-� 45�&6 by introducing � � 4 #,�-I 6 as the probability of

generating the suffix �+% A 	 �'�'�(� � � � from the state I :
� � 4 #,�-I 6B� O� � 3 ������� � ��� ��� � ��� R � � 3 � � ����� ��� ��� �
 4JI*���%56�� �� � � ��

) � % A 	 0 4���)��	����*)	����)6	�
 �L. 4�� � � � 6 � (5)

that can be calculated by

Algorithm 3.2: Backward algorithm� � 4�� ��� �-I 6 � . 4JI 6 �� � 4 #,�-I 6 � O
P � ��Q � � 4 #/� 
 �-I K 6��L0.4 I �,��% �-I K 6 � "1�7#�� � ��� �	
 �

And the corresponding proposition:

Proposition 5:

1�2 � 4 �&6�� O
P ��Q ,&4JI 6 ��� � 4�" �-I 6 �

The computation of � and � can be performed with a time complexity of � 4 � ��� � � )�� 6 ,
where � ��� is the length of � and � )+� is the number of transitions in � .

B. Searching for the optimal path for a string in a PFA

In equation (2), the probability of generating � with � is defined as a sum of the

probabilities of all valid paths that deal with � . However, it can be interesting to search

for a valid path �� that generates � with highest probability,��(� argmax� � � R � ��� 1�2 � 4�� 6 � (6)

The probability of this optimal path �� will be denoted as � 1�2 � 4 �&6 . The relation between� 1�2 � 4 �&6 and 1�2!��4 �&6 from equation (2) has been studied in [51] and [52]. When “good”

models are used in practice, the probability given by equation (2) is often mainly distributed

among a few paths close to the optimal one. In that case, the probability of the optimal path

is an adequate approximation to the probability given by equation (2).

The optimal path �� is of practical interest in many pattern recognition applications, since

useful information can be attached to the states and in many cases the problem is to search for
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the information that is in the optimal path. This path is also useful for an efficient estimation

of the parameters of the model from a training sample (see section III-A of part II).

The computation of �1�2 � 45�&6 can be efficiently performed by defining a function �
� 4 #�� I 6�

I � & , " � # � � ��� , as the probability of generating the prefix � 	 ��'�,��% through the best

path and reaching state I :
�
� 4 #�� I 6�� ������ � ) � � � ������� � � 3 � � � R � � � ����� � 3 �,&4���� 6�� %�

) � 	 0.4 � )��	����*)A����) 6���
 4JI*���% 6 � (7)

An algorithmic solution is given by the following algorithm.

Algorithm 3.3: Viterbi algorithm

�
� 4J" �-I 6 � ,&4JI 6 �
�
� 45#��-I 6 � �����P � � Q � � 4 #�� 
 �-I K 6��L0 4JI K ����% �-I 6 � 
 �7#�� � ��� �

with the corresponding proposition:

Proposition 6: � 1�2!��45�&6��������P ��Q � � 4 � ��� �-I 6 �L. 4JI 6 �
The computation of � presents the same time complexity as the computation of � or � ,

but the implementation of the last ones may lead to numerical precision problems, which

can be easily circumvented in the implementation of the first one by using logarithms.

C. Parsing with � � PFA

Given a � � PFA � � %'& � � �*)	�-,+�*.��*0 2 and a string � � � �
, we want to compute the

probability 182!��45�&6 that � generates � .

We can introduce � K� 45#��-I 6 in a similar way as for equation (3) as the probability of

generating the prefix � 	 �'��,��% and reaching state I :
� K� 4 #,�-I 6H� O��� ) � � � ������� � � 3 � � � � R � � � ����� � 3 �,&4���� 6��

% ��
) � 	 0 4���)��	���� K) ����)I6���
 4JI*���% � 6 � (8)

Here,  � denotes the set of sub-paths rather than full paths. On the other hand, � K � � � � � or

�SK � � � � with 
 ��	 �7#��7#�K , 
���	 K �7#JK and �SK 	 ��'�,�SK% � �7� 	 ��'�,��% . In this case the computation

of � K� 4 #,�-I 6 can be performed from � K� 45# � 
 �-ILK?6 through a new function � �� 4 #,� $ �-I 6 , that
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represents the probability of generating (maybe with � � transitions) the prefix � 	&�'�'�,��% of �
and then to use $J� � transitions to reach I (that is, the last $ transitions are ��� transitions).

This function can be defined as:

� �� 4 #��-" �-I 6 �
���� , 4 I 6 if #3��"� P�� � K� 4 # �	
 �-IMK 6��L0 4JILK ����% �-I 6 if # N��" �

(9)

� �� 4 #,� $ �-I 6 � O
P�� � �� 4 #,� $��	
 �-I K 6��L0 4JI K � � �-I 6 if #��7" and $ �	"J� (10)

By successive application of equation (10) ending by equation (9),

� �� 4 #�� $ �-I 6�� O
P�� � �� 4 #,�*" �-I K 6���� )P�� � P � (11)

where � )P�� � P is the 4JILK �-I 6 element in the $ -th power of a matrix � . This matrix is defined

as � P � � P � 0.4 IMK�� � �-I 6 for all I*�-IMK � & . Therefore, � )P�� � P is the probability to reach I from I K
using only $ � � transitions.

From equations (9)-(11) and taking into account the existence of all possible sequence of

� � transitions:

� K� 45#��-I 6H� �O
)	�#� � �� 4 #�� $ �-I 6 � (12)

Finally, by applying equations (11) and (9) in equation (12)

� K� 4 #�� I 6 � O
P�� � � K� 4 #�� 
 �-I K K 6�� O P�� 0 4JI K K ����% �-I K 6�� �O

) �#� � )P � � P �
By taking � � �
	 , the identity matrix, 	 ��� can be inverted in most cases and

� K� 45#��-I 6 � O
P � � � K� 4 #�� 
 �-I K K 6�� O P � 0 4JI K K ����% �-I K 6����	 ����� �	P�� � P �

The probability of generating � by a � � PFA � is:

Proposition 7:

1�2 � 4 �&6�� O
P ��Q

� K� 4 � ��� �-I 6 � ..4 I 6 � (13)

Analogous results can be obtained for the backward and Viterbi algorithms.

The algorithms and propositions presented in the last subsections can also be derived from

some results of the theory of discrete stochastic process [53].
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D. The most probable string problem

In the previous problems a string is given and one wishes to compute its probability or

that of a generating path. Other related interesting problems are the most probable string

and the most probable constrained string in a PFA � [43]. The first problem consists in

searching for the string with highest probability in 0�� :

argmax����� � 1�2!��45�&6 � (14)

The second problem is the search for a string of upper bounded length with highest probability

in 0(� :

argmax��� ���
�
1�2!��45�&6 � (15)

When , , . and 0 are defined over �4A , the following theorem holds.

Proposition 8: The computation of the most probable string and the computation of the

most probable constrained string in a PFA are NP-Hard problems.

The formal proof of proposition 8 can be found in [43]. It should be noted that the

problem is at least NP-complete but that the membership to NP is an open question. A

similar question is proved to be undecidable for PFA acceptors which are different to the

PFA covered in this paper [54].

However the problem of searching for the string associated to the most probable derivation

in a PFA, that is, given a PFA � , compute

argmax����� � � 1�2!��45�&6 � (16)

is polynomial [43].

IV. PROPERTIES

We now turn to study the properties of these models. What are the normal forms? Are

they equivalent one to the other? Which are more expressive? �'�'� . These questions may be

standard in formal language theory [55], but can lead to unexpected results in the probabilistic

case.
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A. A minimal form for DPFA

A central question that arises when considering any finite devices is that of being able

to decide the equivalence between two such devices. This is important for learning, as it is

known [56] that a class is hard to learn if the equivalence problem is not tractable. In terms

of probabilistic automata the question one wishes to answer is: “Given two PFA (resp. two

DPFA), are they equivalent?”.

In the case of probabilistic objects a more natural question may be: Given two PFA

(respectively two DPFA), and � �	" , are they � -equivalent, i.e. is the distance between their

distributions at most � ?

While the second question requires a concept of distance, and then will be discussed in

section V, part of the first question can be answered here.

A Nerode theorem for DPFA: For any DPFA � ��%'& � � �*)	�-I��'�*.��*0 2 the following equiv-

alence relation over
� �

has trivially finite index [57]:

��� �����
�
� � � � < 1�2 K� 4 � � 61�2 K� 45�&6 � 1�2 K� 4 � � 6

1�2 K� 45� 6 � (17)

where 1�2 K� 4 �;6 is the probability of the unique path of states ( ���'����	 ��'�'������ ��� ) for � from the

initial state I��F� � � :
1�2 K� 4 � 6B�

� ����
)	� 	 0.4 ��)��	�����)A��� )I6 � (18)

The construction of a minimal DPFA can be found in [57]. This construction is based on

the definition of an equivalence relation between strings on one hand and between states on

another. Extending the Nerode relation over the states of the automaton goes as follows:

I	� I K �
�
�
����
���

�
�
�:<+4 � �	�,� 	 �'�'�'�I��� � ��� �6 is a path with � � � 	&�'�'�(� � , ���E��I�� and � � � I�
�SK <�4 �GK � ���SK 	 �'�'��I���SK � � ���GK � � 6 is a path with � K � �SK 	 �'�'�(�SK � � , ��K � � I�� and �GK � � ��ILK ,

This relation has finite index, and from it the minimal canonical DPFA can be constructed

by merging equivalent states, unique up to a state-isomorphism. This can be done in poly-

nomial time. In [8] an efficient algorithm that does this is given. Also cases where even

non-deterministic PFA can be put into canonical form (for instance if they are acyclic) are

studied.
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This enables us therefore to test the equivalence between two DPFA: minimize each and

compare. If the corresponding minimal DPFA are isomorphic (a simple relabeling of the states

through their minimum prefixes is enough to test this) then the initial DPFA are equivalent.

In the non-deterministic case Tzeng [45] proposes an algorithm that directly tests if two

PFA are equivalent, but no result concerning a minimal PFA is known.

B. Equivalence of PFA and DPFA

One expects to find standard automata results when dealing with regular stochastic lan-

guages. For instance, that determinism does not imply a loss of expressive power. We prove

here that this is not true. The result is mostly known and sometimes proved elsewhere (for

instance in [8], [39]) but the construction of the counter-example is of use: it informs us that

the mean of two deterministic regular distributions may not be regular deterministic.

We first define the mean of deterministic regular distributions and argue that this distri-

bution is not deterministic.

Definition 10 (Mean of two distributions): Given two distributions 0 	 and 0 � over
� �

,

we denote 0 	�� 0 � the distribution 0 such that:�
� � � � ��1�2,3�45�&6��#" �$���A1�2�3 � 45�&6 �$" �$�"�A1�2,3 �	4 �&6 � (19)

Proposition 9: Given two regular deterministic distributions 0 	 and 0 � , 0 	��G0 � may not

be regular deterministic.

The proof of this proposition is in the appendix A.

Proposition 10: There exist distributions that can be generated by PFA but not by DPFA.

The proof is a simple consequence of proposition 9: Take PFA from figure 2 as counter-

example (see appendix A).

0

1/2

2/3

PSfrag replacements

a

a (1/2)

a (1/2)

a (1/2)

a (1/3)

Fig. 2. A counter-example about distributions that can be generated by PFA but not by DPFA.
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C. Equivalence of � -PFA and PFA

Given a � -PFA, there is an equivalent PFA with no � -transitions [58]:

Proposition 11: Given a � -PFA � , representing distribution 0�� , there exists a PFA
�

with

just one initial state such that 0 � � 0�� . Moreover
�

is of size at most � � size 4J� 6 with at

most � states, where � is the number of states of � . Also,
�

can be constructed from � in

polynomial time.

We illustrate this proposition in figure 3. The first � -PFA has been transformed into the

second one that does not contain � -transitions.

(7/16) (3/8)(1/4) (3/10)

PSfrag replacements

I�� I��I�	 I�	
a (1/4)a (1/4)

b (5/16)

b (5/8)
b (1/2)

�
(1/2)

�
(1/5)

I(0)=1

I(1)=0

I(0)=1

I(1)=0

Fig. 3. A
�

-PFA and its equivalent PFA

V. COMBINING DISTRIBUTIONS: AUTOMATA PRODUCT

There can be many simple ways of combining non-deterministic PFA. But because of the

special interest DPFA represent, it would be of singular use to have some means of modifying

deterministic regular distributions, of combining them. We give two results in this section,

one relating to the product of two automata (the co-emission probability), and the second to

the computation of the weight of a language inside a distribution.

From proposition 9, we know that the mean of two regular deterministic distributions may

not be regular deterministic. Thus combining two DPFA has to be done in a different way.

We can compute the product automaton as follows: Let � 	 � %'& 	 � � �*) 	 �-I �	 �*0�	 �-.�	!2 and

�4�E� %�&��	� � �-)��'�-I �� �*0 �'�*. �2 be two DPFA.

Consider the automaton � � %�&1	 8 &��	�L%JI �	 � I �� 2 � � �*)	�*.��*0 2 where

);�!� 4 %JI�	 �-I��+2I�����L%�I K	 �-I K� 2�6E<�4JI
	 �����-I K 	 6�� )
	 ���	� 4JI��	�����-I K� 6 �:) ��� �
..4!%�I � I K 2�6H�#. 	4JI 6 �L. ��4 I 6 �
0.4!%�I�	 � I��2I���+� %�I K	 � I K� 2�6�� 0�	4JI
	 �����-I K	 6�� 0 �A4 I��	�����-I K� 6G�
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This automaton affects to each string � the following score: 1�2*� � 45�&6���1�2!� � 45�&6 . This product

is called the co-emission probability of � by � 	 and �4� [16]. The score corresponds to the

probability of generating simultaneously � by � 	 and �4� .
The sum over

� �
of these scores defines the co-emission (denoted � ) between �,	 and

�4� . This quantity is of use when computing the distance between two distributions, but is

also of interest as it measures the interactions between two distributions. In [16], it is proved

that this is computable for APFA. Intractability results for more complicated architectures

are proved in [17].

Formally:

��4 �,	 �-�4� 6H� O����� � 1�2 � �I4 �&6��A1�2!� �A45�&6 � (20)

We introduce one variable � % per state in the product automata, with intended meaning:

� % � O
��� � P ) � � � P 3 � � � R 1�2A4 � � � 6 �

Computing � 4J�,	��-�4� 6 can be done through solving the following system:

� % � O
P � ��Q � � ��� � � P � � � � P 3 � ��� � ) � 0.4 I�)	�����-I %56 �

and when #3�#"
� �E�T
 � O

P � ��Q � � ��� � � P � � � � P 3 � ��� � ) � 0.4 I�)A�����-II% 6 �
Solving this system of equations enables us to solve equation (20) by

� 4J�,	��-�4� 6H� O
P 3 � Q � % �L..4 II%56 �

The same sort of techniques allows us to consider the product automaton obtained by taking

a deterministic finite-state automaton4 �,	 and a DPFA �1� : Let � 	 ��%�&4	 � � �*)
	 �-I �	 �*. 	!2 and

�4�E� %�&��	� � �-)��'�-I �� �*. �'�*0 �2 .
Consider the automaton ����%�&1	 8 &��	� � �-)
	 �L%JI �	 � I �� 2 �*.��*0�2 where

)4�!� 4 %�I
	 �-I��+2 �����L%�I K 	 �-I K� 2�6E<�4JI�	������-I K	 6��:) 	 � 4JI��'�����-I K� 6 �:)���� �

. 4 %�I*�-I K 2�6H�
���� . �A4 IMK?6 if I ��.�	
" if I  ��.�	 �

0 4 %�I
	 �-I��2I�����L%�I K	 �-I K� 2�6�� 0 �A4 I��	�����-I K� 6 if 4 I�	 �����-I K	 6 �:)
	 �
4We will not define these formally here, but recommend the reader refers to usual textbooks [55] if needed.
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Note that the construction does not necessarily yield a consistent DPFA: at every state the

sum of probabilities might be less than 1. The construction is nevertheless of interest and

yields the following result:

Proposition 12: 1�2 � � 4�� � � 6�� 1�2 � 4 �8� 6 �
The proof follows from the construction of automaton � .

This enables us to give a direct method of computing the weight of a regular language

for a regular distribution, with a complexity which is linear in the product of the sizes of

the two automata. It should be noted that this problem has been solved for special cases of

the language �H� � by more efficient algorithms in [46].

VI. COMPARING DISTRIBUTIONS: SIMILARITY MEASURES

Defining similarity measures between distributions is the most natural way of comparing

them. Even if the question of exact equivalence (discussed in section IV-A) is of interest, in

practical cases we wish to know if the distributions are close or not. In tasks involving the

learning of PFA or DPFA one wants to measure the quality of the result or of the learning

process. When learning takes place from a training sample, measuring how far the learned

automaton is from a (test) sample can also be done by comparing distributions as a sample

can be encoded as a PPTA.

There are 2 families of distance measures. Those that are true distances, and those that

measure a cross entropy. We study both types.

A. Mathematical distances

All the definitions hereafter are seen as definitions of distances between distributions over
�8�

. In doing so they implicitly define distances between automata, but also between automata

and samples, or even between samples.

The most general family of distances are referred to as the " � distances or distances for

the norm � � :

" � 450E��0 K 6H�
� O����� � � 1�2,3�45�&6 � 1�2,3 � 45�&6	� � 
 �

�

�
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For � =1 we get a natural distance also known as the " 	 distance [36] or distance for the

norm � 	 .
" 	I450E�,0 K 6�� O����� � � 182(3�45�&6 � 1�2,3 � 45�&6A� �

In the special case where � � � we obtain

" �	450E��0 K 6�� O����� � 4 182(3�45�&6 � 1�2,3 � 45�&6�6 � �
The following distance is used in [34] (under the name "�� or distance for the � � norm):

"������ 4 0E��0 K 6H� �������� � � � 1�2,3�4 �&6 � 182(3 � 4 �&6A� �
When concerned with very small probabilities such as those that may arise when an

infinite number of strings have non null probability, it may be more useful to use logarithms

of probabilities. In this way two strings with very small probabilities may influence the

distance because their relative probabilities are very different: suppose 1�2�	45�&6 � 
�" 	� and

1�2 ��45�&6�� 
 " �
 , then the effect for "#	 of this particular string will be of
��� � 
�" �
 whereas

for the logarithmic distance the difference will be the same as if probabilities had been 
 " �	
and 
 "  � .

The logarithmic distance is defined as

"����� 450E��0 K 6H� ���������� � � �����81�2�3 4 �&6��������81�2,3 � 45�&6A���
It should be noticed that the logarithmic distance is infinite when the probability of a

string is null in one distribution and strictly positive in the other one.

B. Entropy based measures

Similar to the ����� distance is the well-known Kullback-Leibler divergence:

"�� � 4 0E��0 K 6H� O��� � � 182(3�45�&6�������� 1�2,3�4 �&6
1�2(3 � 45�&6 �

We set in a standard way that "�������" � " and �� � 
 and assume ����� to represent base 2

logarithms.

It should be noticed that in the case where some string has a null probability in 0 K , but

not in 0 , then the Kullback-Leibler divergence becomes infinite.
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Rewriting the Kullback-Leibler divergence as

"�� � 4 0E��0 K 6�� O����� � 4 1�2�3 4 �&6 � ������1�2,3�45�&6�� 1�2(3 4 �&6 � ������1�2,3 � 45�&6,6 �
one can note the first term is the entropy of 0 and does not depend on 0 K and the second

term is the cross entropy of 0 and 0 K . From the information theory interpretation [59] the

first term measures the optimal number of bits needed to encode 0 and the second one

measures the cost (in number of bits of encoding) one must pay when estimating 0 using

0 K . To fix the ideas a divergence of 1 (i.e. "	� � 450E��0 K 6 � 
 ) will mean that the average

optimal number of bits needed to code a message of
� �

distributed according to 0 using

0 K will be one more than the optimal code obtained using 0 .

Let us now consider the random variables � and � K from
� �

to � " ��
 � such that � 4 �&6B�
1�2(3 4 �&6 and � K545�&6�� 1�2(3 � 45�&6 , the Kullback-Leibler divergence can be expressed as:

"�� � 450E�,0 K 6�� � 3 �
����� �

� K�� � (21)

From this writing, we can see that the Kullback-Leibler divergence has some of the

logarithmic distance properties.

C. Some properties

� " � , "������ , "����� are distances, i.e., they comply with the usual properties.�
0E�,0 K �

�
� � � � � ��� ��� ����� ��<

1) "�� 4 0E��0 K 6B��" ��� 0�� 0 K ;
2) "�� 4 0E��0 K 6B� "�� 450 K ��0 6 ;
3) "�� 4 0E��0 K 6 � "�� 4 0 K ��0 K K 6 � "�� 4 0E��0 K K 6 (for "����� , assume 0 , 0 K and 0 K K are null on

the same subset of
� �

).

� Obviously

�
0E�,0 K < "������ 450E��0 K 6 � " 	I450E��0 K?6 .

� "�� � is not a mathematical distance. It nevertheless verifies the following properties�
0E�,0 K :
1) "�� � 450E��0 K 6 �7"
2) "�� � 450E��0 K 6��#" ��� 0�� 0 K
3) "�� � 450E��0 K 6 � 	� � � � 4 " 	I450E�,0 K 6�6 �
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D. Computing distances

We consider the following problem: given 0 and 0 K , compute the distance " � 450E�,0 K 6
between them.

Main positive results include:

Proposition 13: If 0 and 0 K are given by DPFA, the computation of " �A4 0E��0 K 6 can be

done in polynomial time.

The proof of this proposition is reported in the appendix B.

Proposition 14 ( [44]): If 0 and 0 K are given by DPFA, the computation of "�� � 450E�,0 K?6
can be done in polynomial time.

E. Estimating distances

In some places, it is interesting either to compare a theoretical distribution with the

empirical one, or to compare different distributions with respect to an empirical one. For the

first purpose, we can use the following lemma:

Lemma 1 ( [34], lemma 14): Let 0 be any distribution on
� �

, and � a sample of size

� � � , then for � � 
 ,
1�2
� "������ 4 0E��86���� � ��4 ����� ��� � 6! ���� � � � 
 � � � � �  � �

In case one wants to learn —or estimate— distributions, this result is commonly used to

compare the different learning algorithms: a sample of the target distribution is built and a

distance between the learned distribution and the sample is computed.

In applications such as language modeling [60] or statistical clustering [61], [62], a distance

based on the Kullback-Leibler divergence is commonly used to compare estimators. Let 0 be

the target distribution and � a model. As previously noted this distance can be decomposed

as the entropy of 0 and the cross-entropy of 0�� with respect to 0 , �L450E��0 � 6 :
�L450E�,0 � 67� � O������� 1�2,3�4 �&6 � ������1�2!��45�&6

Since 0 is generally unknown, it is replaced by an adequate empirical estimate 0 � , based

on a sample � . Let � K denote the set which contains the unique elements of the sample �
(removing the repetitions). The corresponding empirical cross-entropy can then be written as:��L4�� ��0 � 67� � O��� � � 1�2�3�� 4 �&6���������1�2!��45�&6	� � O��� � �

� 45�&6
��� � ��������1�2!� 45�&6
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where � 45�&6 is the number of occurrences of � in � . Finally, using “ � � � ” in multi-set

notation, we have: �
� 4�� ��0 � 6 � � 


��� �
O ��� � ����� 1�2 � 4 �&6 � (22)

Another measure often used in the language model community is the perplexity of � for

a given model � . It is computed using equation (22) as:

0(0 4'� � � 6 � � �� � � � 3 R � � (23)

which can be also written as:

0(0.4�� � � 6 �
� ���� � 0C��45�&6 � 

�� � �
� (24)

In practice, rather than the entropy (or perplexity) per string given by the previous

equations, the entropy (or the perplexity) per symbol is often preferred [3]. It can be obtained

approximately by replacing � � � with � � � ��� in equation (22) (or equation (24)).

The properties of the perplexity can be summarized as follows:

� Equation (22) says that the cross-entropy measures the average number of bits one must

pay by using the model � instead of 0 while coding the sample � .

� From equation (23), the perplexity measures the corresponding average number of

choices entailed by this coding.

� From equation (24), the perplexity can be seen as the inverse of the geometric mean of

the probabilities of the sample strings according to the model.

On the other hand, in practical work, the following properties must be carefully taken into

account:

� Perplexity and entropy diverge as soon as one of the probabilities according to � is

zero. In practice, this implies that the perplexity can only be used if � is smoothed;

i.e., it provides a non null probability for every string of
� �

.

� Obviously, perplexity and entropy only make sense if (the smoothed version of) � is

really a probabilistic model; i.e.,
� ����� � 1�2 � 4 �&6�� 
 .

� The perplexity can compare models only using the same sample � .
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VII. CONCLUSION

We have provided in this first part a number of results centered on the probabilistic

automata and distributions themselves. It remains to study the relationships between these

models and other important models that can be found in the literature. Also the important

task of approximating, learning or identifying these models, all central problems to structural

pattern recognition, need to be explored. All this will be done in part II of this paper [40].
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APPENDIX

A. Proof of the Proposition 9

Proposition 9: Given two regular deterministic distributions 0,	 and 0 � , 0 	 �L0 � may

not be regular deterministic.

Proof: Consider distribution 0 	 defined by the following DPFA

4JI��'�����-I�	�6 �:) 	 � 0�	4 I��'���+� I�	�6 � 
 � . 	4JI�� 6 � "
4JI
	 �����-I�	�6 �:) 	 � 0�	4 I�	 ���+� I�	�6 � 	� � . 	4JI�	�6 � 	� �

and distribution 0 � defined by

4JILK� �����-ILK 	 6 �:) �'� 0 ��4 IMK� ���+� IMK	 6 � 
 � . ��4JILK� 6 � "
4JILK	 �����-ILK 	 6 �:) �'� 0 ��4 IMK	 ���+� IMK	 6 � 	� � . ��4JILK 	 6 � �� �

But no DPFA can implement 0 	 � 0 � . Suppose such an automaton exists and call it �
with � � %'& � � �-I��	�*)	�*.��*0�2 ; There would (because of determinism) have to be some � for

which:

4JII% �����-II% A 	�6��:) , for all "1�7#8- �

4 I � �����-I �'6��:) , with "4� � � � �

Denote 	�� � ���1� 
 (the length of the cycle). The automaton (see figure 4) consists of

a string of � states (with eventually � �T" ) followed by a cycle of 	 states (with 	 � " , as

there is an infinity of strings with non null probability).

$k$

$l$

PSfrag replacements

k

l

Fig. 4. The general shape of a DPFA over a one letter alphabet

Let
� < � � � � ��� 1�2!��4 ����6�N��" (such an

�
exists because of consistency).

1�2	4 � � 6���� � �M� � �
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where

� � � � �	�
% �#� 0/� 4JI % �����-I % A 	,6 and � � ��. 4JI � 6

� 
� 4 
� � 6 � 
� 4 �� � 6H� 
� �+A 	 � 
�
�

and 1�2	4 � �+A � 6H� � � � � ������� �M� � �

where � ������� ��0 4JI � �����-I �'6�� � �	�
%'� � 0 4JI % �����-I % A 	,6

and 1�2A4 � �+A � � 6H� � � � � ������� � � ������� �M� � �
It follows that: � ������� � 1�2!��4 ���+A � 6

1�2 � 4 � � 6 � 1�2!� 4 � ��A � � 6
1�2!��4 � � � 	 6 �

Thus 	��� �	��� � � 	��� �
�	��� � � � 	��� �
	��� � � ��� � � 	��� � � �	��� �
��� � � 	��� �	� �

Simplifying:

4 	��� �
��� � � 	��� �
� 6 � � 4 
� �+A � � A 	 � 
�
�+A � � 6��*4 
� �+A 	 � 
�

�
6

� �"� 	� � �
��� � � 	� � �	� � 
� �+A � � A 	 � 
� � � 
� ��A 	 � 
�
�+A � �

� �"� 	� � � 	� � � 
� � � � 
� � �
� � � �	 � � � � � � � � � � � �

If 	 � 
 the right hand side of the equation is odd, and the the left hand side is even, so

we end up to a clear contradiction. And if 	 � 
 we solve and reach 3=13 which is also a

contradiction.

B. Proof of the Proposition 13

Proposition 13: If 0 and 0 K are given by DPFA, the computation of " �	450E��0 K 6 can be

done in polynomial time.

Proof: In the following, � 4�� 	 �� ��6 matches the definition (20) in page 20.
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"���450E�,0 K?6H��� ��� � � � � 1�2,3�4�� 6 � 1�2,3 � 4�� 6A� ��� ��
��� ��� � � � 4 182,3 4�� 6 ��182,3 � 4�� 6�6 � � ��
��� ��� ��� � 1�2,3�4�� 6 �A1�2,3�4�� 6 �/1�2�	 � 4�� 6 �A1�2�3 � 4�� 6 � � 1�2(3 4�� 6 �A1�2(3 � 4�� 6 � ��
��� ��� ��� � 1�2�3 4�� 6 � � ��� ��� � 1�2�3 � 4�� 6 � � � ��� ��� � 1�2,3�4�� 6 �A1�2,3 � 4�� 6 � ��
� 4 ��4 0E��0 6 � �8450 K ��0 K 6 � � �8450E��0 K 6�6 �� �

If 0 and 0 K are given by DPFA the above can be solved in polynomial time.
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