HJB and Fokker-Planck equations for river environmental management based on stochastic impulse control with discrete and random observation
Abstract
We formulate a new two-variable river environmental restoration problem based on jump stochastic differential equations (SDEs) governing the sediment storage and nuisance benthic algae population dynamics in a dam-downstream river. Controlling the dynamics is carried out through impulsive sediment replenishment with discrete and random observation/intervention to avoid sediment depletion and thick algae growth. We consider a cost-efficient management problem of the SDEs to achieve the objectives whose resolution reduces to solving a Hamilton-Jacobi-Bellman (HJB) equation. We also consider a Fokker-Planck (FP) equation governing the probability density function of the controlled dynamics. The HJB equation has a discontinuous solution, while the FP equation has a Dirac's delta along boundaries. We show that the value function, the optimized objective function, is governed by the HJB equation in the simplified case and further that a threshold-type control is optimal. We demonstrate that simple numerical schemes can handle these equations. Finally, we numerically analyze the optimal controls and the resulting probability density functions.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2020
- DOI:
- arXiv:
- arXiv:2009.00184
- Bibcode:
- 2020arXiv200900184Y
- Keywords:
-
- Mathematics - Optimization and Control;
- Electrical Engineering and Systems Science - Systems and Control;
- Mathematics - Numerical Analysis
- E-Print:
- Accepted manuscript