N

N

Search and Aggregation in Big Graphs
Abdelmalek Habi

» To cite this version:

Abdelmalek Habi. Search and Aggregation in Big Graphs. Databases [cs.DB]. Université de Lyon,
2019. English. NNT': 2019LYSE1259 . tel-02397103

HAL Id: tel-02397103
https://theses.hal.science/tel-02397103v1
Submitted on 6 Dec 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-02397103v1
https://hal.archives-ouvertes.fr

UNIVERSITE
DE LYON

€l

N°d’ordre NNT : 2019LYSE1259

THESE de DOCTORAT DE L’UNIVERSITE DE LYON

Opérée au sein de :

I’Université Claude Bernard Lyon 1

Ecole Doctorale N° 512
Informatique et Mathématiques (InfoMaths)

Spécialité de doctorat : Informatique

Soutenue publiquement le 26/11/2019, par :

Abdelmalek HABI

Search and Aggregation in Big Graphs

Devant le jury composé de :

Zoubida Kedad Rapporteure
MCF, HDR, Université de Versaille
Olivier Togni Rapporteur

Professeur, Université de Bourgogne

Angela Bonifati Examinatrice
Professeur, Université Lyon 1

Mohand Boughanem Examinateur
Professeur, Université de Toulouse

Hamamache Kheddouci Directeur de these
Professeur, Université Lyon 1

Brice Effantin Co-Directeur de these

MCF, Université Lyon 1

To my mother & father.
To my wife & daughter.

To my sisters & brothers.

Acknowledgements

It would not have been possible to achieve this thesis and write this manuscript
without the help and support of the kind people around me, to only some of whom

it is possible to give particular mentions here.

First, I wish to express my sincere gratitude to my supervisors M. Hamamache
Kheddouci and M. Brice Effantin, for their excellent guidance, caring, patience,
and providing me with an excellent atmosphere for doing research. I thank them
for their continuous support and encouragement on both my research and other
matters of life during my Ph.D. study. As advisors, they taught me practices and
skills that will benefit my future academic career. It has been a great fortune for

me to work under their supervision.

Many thanks go to Mme. Zoubida Kedad and M. Olivier Togni for the time they
spent for reviewing my thesis manuscript, and for their valuable comments and

constructive suggestions on the thesis.

I am grateful to the members of the defense committee: Mme. Angela Bonifati,
M. Mohand Boughanem, Mme. Zoubida Kedad and M. Olivier Togni for their

friendship and wisdom.

I express my love and gratitude to my parents, my wife, my sisters, my brothers
and all my family for their continuous moral support and encouragement with

their best wishes. Their love accompanies me wherever I go.

Finally, I especially thank all my lab friends, whose wonderful presence made it a
convivial place to work. I warmly thank all my friends who were always supporting

and encouraging me with their best wishes.

iii

Abstract

Recent years have witnessed a growing renewed interest in the use of graphs as
a reliable means for representing and modeling data. Thereby, graphs enable to
ensure efficiency in various fields of computer science, especially for massive data
where graphs arise as a promising alternative to relational databases for big data
modeling. In this regard, querying data graph proves to be a crucial task to explore

the knowledge in these datasets.

In this dissertation, we investigate two main problems. In the first part we address
the problem of detecting patterns in larger graphs, called the top-k graph pattern
matching problem. We introduce a new graph pattern matching model named
Relazed Graph Simulation (RGS), to identify significant matches and to avoid the
empty-set answer problem. We formalize and study the top-k matching problem
based on two classes of functions, relevance and diversity, for ranking the matches
according to the RGS model. We also consider the diversified top-k matching
problem, and we propose a diversification function to balance relevance and diver-
sity. Moreover, we provide efficient algorithms based on optimization strategies to
compute the top-k£ and the diversified top-k matches according to the proposed
model. The proposed approach is optimal in terms of search time and flexible in
terms of applicability. The analyze of the time complexity of the proposed algo-
rithms and the extensive experiments on real-life datasets demonstrate both the

effectiveness and the efficiency of these approaches.

In the second part, we tackle the problem of graph querying using aggregated
search paradigm. We consider this problem for particular types of graphs that are
trees, and we deal with the query processing in XML documents. Firstly, we give
the motivation behind the use of such a paradigm, and we explain the potential
benefits compared to traditional querying approaches. Furthermore, we propose

a new method for aggregated tree search, based on approximate tree matching

v

algorithm on several tree fragments, that aims to build, the extent possible, a
coherent and complete answer by combining several results. The proposed so-
lutions are shown to be efficient in terms of relevance and quality on different

real-life datasets.

Keywords: graph matching, graph pattern matching, graph simulation, re-
laxed graph simulation, top-k, diversified top-k, aggregated search, tree matching

Résumé

Ces dernieres années ont connu un regain d’intérét pour l'utilisation des graphes
comme moyen fiable de représentation et de modélisation des données, et ce, dans
divers domaines de l'informatique. En particulier, pour les grandes masses de
données, les graphes apparaissent comme une alternative prometteuse aux bases
de données relationnelles. Plus particulierement, le recherche de sous-graphes

s’avere étre une tache cruciale pour explorer ces grands jeux de données.

Dans cette these, nous étudions deux problématiques principales. Dans un pre-
mier temps, nous abordons le probleme de la détection de motifs dans les grands
graphes. Ce probléme vise a rechercher les k-meilleures correspondances (top-k)
d’un graphe motif dans un graphe de données. Pour cette problématique, nous
introduisons un nouveau modele de détection de motifs de graphe nommé la Sim-
ulation Relaxée de Graphe (RGS), qui permet d’identifier des correspondances de
graphes avec un certain écart et ainsi éviter le probleme de réponse vide. Ensuite,
nous formalisons et étudions le probleme de la recherche des k-meilleures réponses
suivant deux criteres, la pertinence (la meilleure similarité entre le motif et les
réponses) et la diversité (la dissimilarité entre les réponses). Nous considérons
également le probleme des k-meilleures correspondances diversifiées et nous pro-
posons une fonction de diversification pour équilibrer la pertinence et la diver-
sité. En outre, nous développons des algorithmes efficaces basés sur des stratégies
d’optimisation en respectant le modele proposé. Notre approche est efficiente en
terme de temps d’exécution et flexible en terme d’applicabilité. L’analyse de la
complexité des algorithmes et les expérimentations menées sur des jeux de données

réelles montrent D'efficacité des approches proposées.

Dans un second temps, nous abordons le probleme de recherche agrégative dans
des documents XML. Pour un arbre requéte, 'objectif est de trouver des motifs

correspondants dans un ou plusieurs documents XML et de les agréger dans un

vi

seul agrégat. Dans un premier temps nous présentons la motivation derriere ce
paradigme de recherche agrégative et nous expliquons les gains potentiels par rap-
port aux méthodes classiques de requétage. Ensuite nous proposons une nouvelle
approche qui a pour but de construire, dans la mesure du possible, une réponse
cohérente et plus complete en agrégeant plusieurs résultats provenant de plusieurs
sources de données. Les expérimentations réalisées sur plusieurs ensembles de
données réelles montrent 'efficacité de cette approche en termes de pertinence et

de qualité de résultat.

Mots clés: appariement de graphes, recherche de motifs de graphe, simula-
tion de graphes, simulation relaxée de graphes, top-k, top-k diversifiés, recherche

agrégative dans les graphes,

Contents

Acknowledgements

Abstract

Résumé

List of Figures

List of Tables

1

Introduction
1.1 Thesisscope o e
1.2 Thesis organization L

Graph search methods
2.1 Basic definitions o
Graph.
Degree and Neighborhood.
Subgraphs. oo oo
2.2 Querying data grapho o
2.2.1 Exact graph matching
2.2.1.1 Exact subgraph matching methods
2.2.1.2 Other methods and techniques
2.2.2 Inexact graph matching
2.2.2.1 Graph edit distance based techniques
2.2.2.2 Tree search-based techniques
2.2.2.3 Other techniques
2.2.3 Graph simulation 0oL
2.3 Top-k queries
Top-k Relational Queries.
Top-k graph search.
2.4 Result diversification

iii

iv

vi

xii

xiii

2.5 Chapter summary 22
3 Diversified top-k search with relaxed graph simulation 23
3.1 Introduction 24
3.2 Preliminaries 27
3.3 Relaxed Graph Simulation 28
3.4 Ranking Pattern Matches 29
3.4.1 Top-k ranking for RGS problem 29
Reached nodes. 30

Relevance function. 31

3.4.2 Match diversity 32
3.4.3 Diversified top-k matches 33

3.5 Top-k graph pattern matching algorithms 34
3.5.1 Finding top-k matches 34
3.5.1.1 Cuckoo filter 35

Insertion.o 35

Lookup. 36

False Positive Probability. 36

3.5.1.2 Finding top-k Matches with cuckoo filter 36

Complexity. o 40

3.5.2 Finding diversified top-k matches 41
Algorithm. 41

3.6 Experiments Lo 42
3.6.1 Experimental setting 42
3.6.1.1 Datasets oo 42

3.6.1.2 Pattern generating 43

3.6.1.3 Evaluation method 43

3.62 Results. 46
3.6.2.1 Failurerate oL 46

Casestudy. 47

3.6.22 Top-ksearch 47

Varying query size. 47

Varying k.o 48

3.6.2.3 Diversified top-k search 48

Casestudy. 49

3.7 Chapter summary 49
4 Aggregated search: Definition and overview 50
4.1 Aggregated search o 51
4.1.1 Motivationo 52
4.1.2 Definition o 53

4.2 Aggregated search: related research and IR disciplines. 57
4.2.1 Federated Search 57

4.2.2 Cross-Vertical Aggregated search 58

4.2.3 Natural Language Generation 58

4.2.4 Question answering 59
4.2.5 Composite retrieval L. 59

4.3 Aggregation search in graphs L. 60
4.4 Relational aggregated search 61
4.4.1 Relational aggregated search framework 61
4.4.1.1 Query Dispatching 62

4.4.1.2 Relationsearch 62

4.4.1.3 Result Aggregation 63

4.5 Chapter summaryo 63
Tree Matching and XML Retrieval 65
5.1 Introduction oL 65
5.2 Querying XML data 66
5.2.1 Backgrounds on XML documents 67
5.2.2 Query languages 68

5.3 Algorithms for tree matching 69
5.3.1 Exact tree matching 0oL 70
5.3.2 Approximate tree matching algorithms 72

5.4 Tree matching for XML retrieval 76
5.4.1 Exact tree-matching algorithms for XML retrieval 76
5.4.1.1 Structural join approaches 7

5.4.1.2 Holistic twig join approaches 7

5.4.1.3 Sequence matching approaches 78

5.4.1.4 Other important exact tree algorithms 78

5.4.2 Approximate tree matching algorithms for XML retrieval . . 79
5.4.2.1 Approaches based on graph matching algorithms . 80
5.5 Chapter summary L 82

A new Approximate XML Retrieval based on Aggregation Search 84

6.1 Querying XML data using aggregated search 85
6.1.1 Definition Lo 86
6.1.2 Motivation 87

6.2 Preliminaries 88

Query. 89
Target trees. oo 89
Aggregate. 89
Postorder Queues. 89

6.3 Approximate query processing based on aggregated search 89
6.3.1 Retrieval process 90
6.3.2 Aggregation process 95

6.3.2.1 Step 1: Selection. 95
Base fragment: 0oL 95

6.3.2.2 Step 2: Construction of the aggregate. 96

6.3.3 Complexity 97

6.4 Experiments 98
6.4.1 Test collection 98

6.4.2 Evaluation method 99

6.4.3 Result discussions 100

6.5 Conclusion 101
7 Conclusion and Perspectives 103
7.1 Conclusion 103
7.2 Further workso 104

Bibliography 106

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
2.3
5.4
9.5
5.6
2.7
5.8

6.1
6.2

6.3
6.4
6.5
6.6

Example of graphs. o 8
Example of induced and partial subgraphs. 9
A data graph and a query graph oL 26
[ustration of the insertion process in cuckoo filter 35
Failure rate of Relaxed Graph Simulation and Graph Simulation . . 44
Search time for the top-k search problem (Varying |Q]) 44
Search time for the top-k search problem (Varying k) 45
Search time for the diversified top-k search problem (Varying |@Q]) . 45
Aggregated search result in Google web search engine 54
Aggregated search framework 55
An example of XML document 67
XML tree associated with the document of Figure 5.1 68
INEX topic expressed as an XML fragment. 69
An example of exact tree pattern matching. 71
Tree edit distance operations 73
Recursive formula for Tree Edit Distance. 74
An example of tree inclusion matching. 74
Tree Alignment Distance: (A) tree F, (B) tree G, (C) an alignment

of Fand G. 75
Aggregated tree search 87
Example of query and its relevant subtrees returned by top-k ap-

proximate subtree matching algorithm, with k =4. 94
Recall for the three algorithms on IMDb dataset. 99
Recall for the three algorithms on DBLP dataset. 99
Precision for the three algorithms on IMDDb dataset. 100
Precision for the three algorithms on DBLP dataset.. 100

xii

List of Tables

3.1 Covered satisfaction sets in G (G given in Figure 3.1)
3.2 Reached nodes in G (G given in Figure 3.1)

3.3 Graph dataset characteristics

xiil

Chapter 1

Introduction

Contents
1.1 ThesisS SCOPE . . & v v v v v i e e e e e e e e e e e e e 2
1.2 Thesis organization 4

Graphs are a useful and powerful paradigm for formalizing problems and mod-
eling complex and heterogeneous data with their relationships. They consist of
a set of vertices, which represent objects, and a set of edges, which represent
relations between these objects. They have attracted the interest of the whole
scientific community, allowing their use in a wide range of problems in intelligent
information processing such as pattern recognition [1], information retrieval [2],
knowledge discovery [3], dynamic network traffic [4], social network analysis [5],

protein interactions [6] and so on.

With the advent of recent applications, data graphs are growing in size exponen-
tially, with millions of nodes and billions of edges. Graph search is a primordial
task to identify the occurrences of the information sought. In fact, graph search is
a challenging issue. It describes the act of searching for given information, usually
in the form of a query graph, in a given graph, often called the target graph. This
process can be performed by searching for subgraphs using graph matching and
more generally graph comparison. Typically, this problem is defined as the process
of finding a mapping between components of two graphs that provides the best
alignment of their (sub)structures. Graph matching solutions are classified into
two broad categories: exact approaches and inexact approaches. Exact match-

ing approaches return (sub)graphs that match exactly the given query. Inexact

matching approaches look for results even if they are structurally different, to some

extent, from the query.

1.1 Thesis scope

In this thesis, inexact graph matching and its applications for querying data graphs
are investigated. Thus, the thesis is divided into two main parts: the graph match-
ing problem in large graphs and the distributed tree querying problem, also known

as aggregated tree search.
Part I: The graph matching problem

Graphs are powerful mathematical structures constituting universal modeling and
representation tools used in a wide range of real-world applications. Actually,
the success of such graph-based applications depends on the performance of the
underlying graph query processing. In this context, finding graph matching so-
lutions that guarantee optimality in terms of accuracy and time complexity is a
challenging issue. Thus, various types of graph matching have been widely inves-
tigated. Graph pattern matching (GPM) is among the most important challenges
of graph processing and plays a central role in various emerging applications. Usu-
ally, GPM is defined in terms of subgraph isomorphism [7], which seeks subgraphs
that are exactly isomorphic to the query graph, or graph simulation [8], which has
been adopted for graph pattern matching to cope with restrictions of exact graph

matching approaches.

However, the actual sheer increase in data introduces new challenges to graph
pattern matching, from its definition to corresponding processing methods. The
main problem in nowadays real-life graphs is the volume of information to be
processed, and the vast search space in which the search process is performed. For
instance, Facebook amounts to 1.562 million daily active users [9] and Twitter
totals up to 330 million active users [10]. It is prohibitively expensive to query
such large graphs. The subgraph isomorphism is an NP-complete problem [11]
and the main issues are that the search process is too costly, too restrictive and
does not scale well [12]. Whereas graph simulation has a quadratic time, this
notion is often too restrictive to match queries in newly emerging fields such as

social network analysis [13].

Dealing with such a massive size of data gives rise to other problems such as the
excessive number of returned results. Using the subgraph isomorphism, the set
of matches may contain exponentially many subgraphs of the target graph [14].
Besides, the size of the result set, using graph simulation, depends on the size of
the target graph and the query [8]. Inspecting all the results to find what users are
looking for is a daunting task. Thus, users are generally interested in responses

that satisfy their preferences, which are usually relevance and diversity [15].

In the first part of this work, we define and formalize the graph pattern matching
problem using a new notion of graph simulation, called Relaxed Graph Simulation
(RGS), based on query relaxation, which allows reaching more significant matches
and coping with the empty-set answer problem. We also investigate the top-k
matching problem based on two function classes, relevance and diversity, for rank-
ing the matches with respect to the proposed model. Furthermore, we study the
diversified top-k matching problem, and we propose a diversification function to
balance relevance and diversity. Nonetheless, we provide efficient algorithms based
on optimization strategies to compute the top-k and diversified top-k matches ac-

cording to the RGS model.
Part II: Aggregated tree search

Information retrieval can be defined as the process that links some information
material, from a large collection of information resources, to an information need
expressed by the user [16]. Nowadays, XML (eXtensible Markup Language) stan-
dard [17] is one of the most used formats for representing and exchanging infor-
mation. The simple nature, the self-description and the ability to describe a wide
range of data brought XML to greater importance. The sheer increase in the
generation and use of XML documents leads to the need for appropriate retrieval
approaches that can exploit the specific features of this kind of documents. Nu-
merous approaches have been proposed to deal with XML retrieval. They usually
use the tree representation of documents and queries to process them [18]. Indeed,
the retrieval process can be considered as a tree matching problem between the

query tree and the document trees.

Currently, information retrieval systems have evolved from the document-level
access to the in-depth search methods, i.e., seeking specific required document

components (i.e., documents parts) instead of entire documents. Their purpose

is then to return a ranked list of answers that are deemed relevant to the query.
However, returning and presenting results in this way are often not appropriate to
the user’s expectations [19-21]; especially when the expected needs are scattered
across several data sources and/or several documents. Thus, there is a need for
more focus, more organization, and more diversity in the returned results. Besides,
approaches that process information with finer granularity and build a response by
combining multiple contents that may be useful to the user are needed. Aggregated

search addresses these tasks of searching and assembling results.

Several paradigms of graph querying have been proposed in the literature, but only
a few of them have tackled the problem of aggregated search. In the second part
of this thesis, we introduce and develop approaches and techniques to deal with
this problem. We consider this problem for trees, which are a particular class of
graph, and we propose a framework for XML querying based on aggregated tree
search. This problem becomes more challenging when considering the complex
representation of data in graph form. However, it is more difficult for distributed

graphs.

1.2 Thesis organization

The remaining of this thesis contains six chapters: The first part of this thesis,
Chapters 2 and 3, is devoted to the graph matching problem. While the second
part of the thesis, from Chapter 4 through 6, is about the aggregated tree search.

In Chapter 2 'Graph search methods’, we first give some preliminaries and we
introduce some notations needed in the rest of this thesis. Then, we highlight the

most important research directions related to the graph querying problem.

In Chapter 3 'Dwersified top-k search with relazed graph simulation’, we present
our first contribution in which we propose a new notion of graph pattern matching

and we study (diversified) top-k graph pattern matching problem.

In Chapter 4 "Aggregated search: Definition and overview’, we give an overview of

the general aggregated search concept and its related work.

In Chapter 5 "Tree matching and XML retrieval’, we outline and compare the most

important approaches for XML retrieval using tree matching.

In Chapter 6 A new approximate XML retrieval based on aggregation search’, we
present our proposed framework for performing aggregated tree search in XML

documents.

Finally, in Chapter 7, we conclude the manuscript by summarizing the major
contributions of this thesis and raising important future work directions and per-

spectives.

Chapter 2

Graph search methods

Contents
2.1 Basicdefinitions 0000000 7
2.2 Querying datagraphc..... 9
2.2.1 Exact graph matching 10
2.2.2 Imexact graph matching 14
2.2.3 Graph simulation 0000000 16
2.3 Top-kqueries i i i i i ittt 18
2.4 Result diversification 0000 20
2.5 Chapter summary« « « ¢ ¢ v v v v o o v o o s 0 o o 22

Graphs are efficient data structures that model items with their relationships. An
item, called node or vertex, represents an object (data), and a link between two
items, called edge, models a relationship between two objects (data). Graphs
represent an effective way of formalizing problems and representing objects used
to represent complex and heterogeneous data in numerous domains. The flexible
nature of graphs allows adding new relationships and even new objects without
affecting existing application functionalities and queries. This flexibility brought
graphs to greater importance, especially for massive data. They are more and more
used with the advent of modern applications ranging from scientific databases or
biological networks to connected world with social networks. In many of these
applications, graphs are huge, with millions of nodes and billions of edges, and it
is difficult to mine their data. In this context, the graph querying (or the graph

search) is usually used to identify the occurrences of a query. Thus various types

6

of matchings have been widely investigated. In this chapter, we discuss graph
querying and survey some efficient and recent graph search methods. We first
introduce some useful definitions related to graphs and we present some common
concepts and typical classes of graphs. We also give definitions of some theoretical
terms and concepts used in the context of graph search. Then, we highlight the

most important research directions related to the graph querying problem.

2.1 Basic definitions

In this section, we introduce and define some key concepts and notations relating

to graphs.

Graph. A graph G is a four-tuple G = (V(G), E(G), 1, %), where (1) V(G) is a
finite not empty set of nodes (also called vertices), (2) E(G) C V(G) x V(G) is the
set of edges in which (u,v) denotes an edge from u to v, (3) [: V(G)UE(G) — X
is a labeling function on the nodes and edges, such that for each node (edge)
v € V(G) (resp. e € E(G)), l(v) (resp. l(e)) is a label from the finite set of
labels 3. The cardinality of the node set V' (G) is called the order of G, commonly
denoted by |V (G)|, and the cardinality of the edge set E(G), denoted |E(G)|, is
the size of G.

Graphs are used to formalize and to represent complex data where nodes and
edges represent respectively items and relations between these items. A graph is
said directed if the edges have a direction associated with the nodes, i.e., edges are
ordered pairs (u,v) connecting the source node u to the target node v, otherwise
the graph is undirected, i.e., edges are unordered pairs {u, v} and connect the two
nodes in both directions. In an undirected graph G, two distinct nodes v and v
are adjacent (or neighbors) if there exists an edge (u,v) € E(G) that connects
them. An edge (u,v) is said to be incident to the nodes u and v. A graph is said
labeled if for its components there is a labeling assignment, i.e., nodes and/or edges
are labeled by assigning one or more values (symbolic or numeric); otherwise the
graph is non-labeled. However, non-labeled graphs can be considered as a special
case of labeled graphs where the labels of all nodes and edges are identical or null.

Figure 2.1 shows some graph examples.

a) Non-oriented non-labled graph

¢) Oriented non-labled graph ¢) Oriented labled graph

FiGURE 2.1: Example of graphs.

Degree and Neighborhood. The set of all neighbors of a node v € G is
denoted N(v). The degree of a node wu, denoted deg(u), is the number of its
neighbors. If deg(v) = 0 then the node v is an isolated node, i.e., v is not adjacent
to any other vertex. A node of degree one (deg(v) = 1) is called an endpoint or
pendant node. The minimum degree of a graph G is §(G) = min{deg(v) : v €
V(G)} and the maximum degree of a graph G is A(G) = max{deg(v) : v € V(G)}

Subgraphs. A graph that is contained in another graph is called a subgraph. A
graph G' = (V(G"), E(G"),l',¥) is a subgraph of G = (V(G), E(G), [,), denoted
by G' C G, if V(G') C V(G), E(G") C E(G), I'(x) = l(z)Vz € V(G), and
I'(e) = l(e)Ve € E(G). A graph G’ is a spanning subgraph of G if G’ contains
all the nodes of G. For a subgraph G’, if F(G’) contains all the edges of F(G)
that have endpoints in V(G’), then G’ is an induced subgraph of G. Otherwise
G' is a partial subgraph. Figure 2.2 illustrates the concepts of induced and partial

subgraphs.

We refer the interested reader to [22-24] and references therein for more back-

ground information on graph theory.

b) A partial subgraph of G ¢) An induced subgraph of G

FicUrE 2.2: Example of induced and partial subgraphs.
2.2 Querying data graph

Graphs are a universal and flexible paradigm for representing and modeling data
and their relationships. Thus various real applications such as protein interactions
and social networks use graphs as a model of representation and searching. Usually,
the success of such an application depends mainly on the efficiency and the quality
of the underlying graph query processing. Graph querying (or graph search) is the
task of searching for given information, usually in the form of a query graph, in a
given graph, often called the target graph. Talking about graph querying problem
leads directly to one of the most prevalent problems in the field of graph theory,
which is graph matching. Typically, the problem of graph matching is defined as
the process of finding a mapping between the nodes of two graphs that provides

the best alignment of their structures.

In most real-world applications, data graphs are enormous, with millions of nodes
and billions of edges, and it is difficult to mine their data. In this context, a query
graph is usually used to identify the occurrences for the given information. Thus

various types of matchings have been widely investigated. Graph pattern matching

10

is being one of the fundamental tasks on which are based the search, the querying,
and the analysis of data graph. Typically, graph pattern matching methods are
classified into two broad categories according to their results. The first category
represents exact matching approaches, which return graphs or subgraphs that
match exactly the given query. The second category concerns inexact matching
approaches, in which the returned results may be structurally different from the
query to some extent. In Section 2.2.1 and Section 2.2.2, we present respectively
exact and inexact graph pattern matching algorithms.Then, in Section 2.2.3, we
present graph simulation, which has been adopted for graph pattern matching to

cope with restrictions of existing paradigms.

2.2.1 Exact graph matching

Exact graph matching methods aim to find out an exact mapping between the
nodes and the edges of the compared graphs or at least between subparts of them.
In other words, with exact graph matching, edge-preserving must be ensured,
i.e., if two nodes in the first graph are linked by an edge, their correspondents
in the second graph are also linked by an edge. Graph isomorphism represents
the most stringent form of graph matching, in which the mapping is a bijective

correspondence and the edge-preserving is satisfied in both directions.

Definition 1. Let G = (V(G), E(G),,X) and G' = (V(G'), E(G"),l',¥) be two
graphs. G and G’ are isomorphic if there exists a bijective function h: V(G) —
V(G") such that: (1) Vu € V(G) : l(u) = U'(h(u)), (2) V(u,v) € E(G) : (h(u),h(v)) €
E(G") and I((u,v)) = U'((h(u),h(v))) and (3) V(h(u),h(v)) € E(G') : (u,v) €
E(G) and I'((h(u), h(v))) = I((u,v)).

Subgraph isomorphism [7] can be considered as a weaker form of the exact graph
matching, in which an isomorphism holds between one of the two graphs and a
subgraph of the other graph. Other forms of exact graph matching exist, in which
subgraph isomorphism is used in a slightly weaker sense as in [25]. In other words,
the constraint of edge-preserving in both directions is dropped. We give in the

following a brief description of some of these approaches.

Graph monomorphism [26] is a relaxation of subgraph isomorphism where the
mapped subgraph may have both extra nodes and extra edges. In other words,

additional edges are allowed between nodes in the larger graph. Another variant

11

is graph homomorphism, in which there is a mapping f from the node set of the
first graph G to the node set of the other graph G’ such that (u,v) € F(G) implies
(f(u), f(v)) € E(G") but not vice versa. Finally, the maximum common subgraph
(MCS) [27] is another interesting matching variant. MCS is defined as the problem
of mapping a subgraph of one graph to an isomorphic subgraph of the other graph.
Typically, the problem is to find the largest part of two graphs that is identical in

term of structure.

It is important to highlight that all the forms of exact graph matching, that we
cited before, belong to the NP-complete class. However, the graph isomorphism
has not yet been demonstrated if it belongs or not to NP class [1]. For some special
classes of graph, polynomial isomorphism algorithms have been developed (planar
graphs [28], trees [29]). Recently, the author of [30] shows that graph isomorphism
can be solved in quasi-polynomial time (exp((logn)°")). However, no polynomial

algorithms are known for the general case.

Hence, the exact graph matching has exponential time complexity in the worst
case. Consequently, using exact methods to deal with small graphs can be still
acceptable. In the following, we briefly review some typical exact graph matching

methods.

2.2.1.1 Exact subgraph matching methods

The problem of graph querying has been well studied and it has a rich history in
various scenarios, among which protein interactions, social network analysis and
graph database management play an important role. Typically, it can be handled
by exact and approximate approaches. So in this section, we describe some graph

querying approaches that are based on exact subgraph matching.

Tree search-based techniques have attracted much attention since the first proposal
of Ullmann’s algorithm [7] that addresses all forms of exact graph matching. These
techniques represent the central pillar of the most existing algorithms for exact
graph matching. Usually, they use a backtracking process in addition to some

heuristics.

Using Ullmann’s algorithm [7], the search process can be performed in two main
steps: tree-search and refinement procedure. Firstly, for each query node, the

algorithm seeks a set of candidate nodes. Then, it invokes a recursive subgraph

12

search subroutine to find a potential mapping between a query node and a data
node. All mapped data nodes are stored as the output of the first step, and they
will be exploited in the refinement procedure. This latter aims to reduce the
search space in order to minimize the computation time required for the subgraph
isomorphism testing. To this end, the algorithm filters out candidate nodes that
have a smaller degree than its correspondent node in the query graph. For each
incident edge of a node kept as a candidate, the algorithm checks if there is a

corresponding edge in the data graph.

A significant number of exact graph matching improvements have been proposed
since the first proposition of Ullmann [7]. The VF algorithm [31] is designed to deal
with both isomorphism and subgraph isomorphism. This algorithm describes a fast
heuristic which analyses the nodes adjacent to the ones already added in the partial
matching. After some years, the same authors propose a new algorithm called
VF2 [32], which is an improved version of the previous one. The VF2 algorithm
reduces the space complexity from O(n?) to O(n), where n represents the number
of nodes in the graphs. This algorithm defines a new concept s, called the state
space representation, which represents a partial solutions of the correspondence
between two graphs. The transition from the state s to its successor s’ in the set
of the partial solution M corresponds to a new pair of matching nodes. By the
way, the algorithm starts with the first node, selects a connected node from the set
of matched query nodes, looks for a subgraph match and backtrack if and when
the need arises to do that. The main difference from the Ullman’s algorithm is in
the refinement step, where VF2 algorithm requires two kinds of rules: syntactic

feasibility rules and semantic feasibility rules.

More recent interesting algorithms have been proposed. The Spath algorithm [33]
uses paths as patterns of comparison. It looks for matching paths instead of sin-
gle nodes. It uses a path-signature function to minimize the search space. For
each graph node and query node, Spath computes a neighborhood signature which
makes it possible to decide if a given candidate node must be pruned or not. The
authors introduce in [34] an algorithm, called GADDI, which firstly computes a
neighborhood discriminating structure distance between pairs of adjacent nodes of
the data graph. After that, the algorithm invokes a subgraph matching subroutine,
which performs a two-way pruning, based on the above distance, and incorporates
a dynamic matching schema. Ullmann in his new proposal [35] presents an im-

portant enhancement of his isomorphism algorithm [7]. The main idea of this new

13

algorithm is based on the Binary Constraint Satisfaction Problem. Turbo-iso [36]
is one of the most efficient algorithms that deal with the subgraph isomorphism
problem. It focuses on solving the matching order selection problem. Proposers
of Turbo-iso algorithm introduce two novel concepts, candidate region exploration
and the combine and permute strategy. The candidate region exploration identi-
fies candidate regions, which are subgraphs of the data graph where there is more
chance to find embeddings for the query graph. Next, it computes a matching
order for each candidate region explored. The combine and permute strategy ex-
ploits the novel concept of the neighborhood equivalence class (NEC). Each query
node in the same NEC has identically matching data nodes. Finally, according
to the obtained matching order and using the candidate data nodes of the NEC
nodes, a recursive subroutine is processed for the subgraph search. In [37], the
authors propose the CFL-match algorithm by postponing the Cartesian products
based on the structure of a query to minimize the redundant Cartesian products.
Based on the spanning tree of the query graph, the latter is decomposed into sub-
structures by a Core-forest Decomposition method. Then, the subgraph matching
is performed on each of these substructures. Briefly, the algorithm uses first the
neighborhood label frequency filter to ensure that a data node is a deemed candi-
date. Then, it applies a second filter based on the maximum Neighbor-Degree to

reduce the time processing of the first filter.

2.2.1.2 Other methods and techniques

Other methods addressing the problem of subgraph isomorphism search have been
proposed in the literature. In the following, we give an overview of some of them.
Nauty’s algorithm [38] is one of the most efficient approaches, which is not based
on tree search techniques. Nauty’s algorithm constructs an automorphism group
of each graph. Using transformation rules, it reduces graphs to canonical forms
that may be checked relatively quickly for isomorphism. Two graphs are said
isomorphic if their canonical forms are equal. The authors propose in [39] an
isomorphism approach based on Random Walks. In [40], the authors propose
algorithms to deal with graph isomorphism and subgraph isomorphism for graphs
having unique node labels. TMODS [41] algorithm uses a set of genetic algorithms
to find exact and inexact pattern matches in directed attributed graph. The study
given in [42] presents a technique for speeding up the subgraph isomorphism on

large graphs.

14

2.2.2 Inexact graph matching

The stringent conditions imposed by the exact graph matching paradigm and the
high computational complexity make it too restrictive for graph querying. In many
real-world applications, graphs are subject to deformations due to several causes,
such as the noise in the acquisition process, the missing or incomplete information,
or the errors introduced by the modeling processes. So, the obtained result graphs

(subgraphs) are likely different from the query graph and its expected answers.

So, the matching process should be able to consider correspondences that do not
satisfy, to some extent, all the requirements imposed by the query graph. Besides,
the matching process must be able to reach a good approximate solution in an
acceptable time, even without a guarantee to give the best solution. These reasons
highlight the need for approximate (inexact) graph matching algorithms [43], also
known as error-correcting matching [44] or error-tolerant matching [45]. Contrary
to the exact graph matching approaches, the aim for inexact graph matching
approaches is not to make a strict interpretation of structural constraints, but to
select and rank subgraphs according to their probability to match the query graph.
In other words, algorithms of this category aim to find a matching that minimizes

the dissimilarity between the query graph and the subgraphs of the data graph.

Inexact graph matching algorithms can be classified into optimal and approximate
algorithms. Optimal inexact matching algorithms can be considered as a gener-
alization of the exact graph matching algorithms. They seek an exact solution
achieving the global minimum of the matching cost if it exists. Generally, the al-
gorithms of this class are not suitable for most applications due to their excessive
processing costs. Approximate or suboptimal matching algorithms seek for a local
minimum of the matching cost, which is not far from the global one. In such a
class, there are no guarantees to reach the exact solution even if it exists. However,
the main advantage of these algorithms is their shorter matching time, which is
usually polynomial. In the following, we present and overview some important

inexact graph matching approaches.

2.2.2.1 Graph edit distance based techniques

There are numerous approaches for inexact graph matching in the literature of

querying data graphs. As we said above, the aim of these approaches is not to

15

make a strict interpretation of structural constraints, i.e., they do not impose the
edge-preservation constraint used on exact matching. Typically, the inexact graph
matching problem can be formulated as the problem of calculating the dissimilarity
between two graphs. This problem can be reduced to the Graph Edit Distance
(GED) problem [46, 47], where the matching cost is defined as a set of graph edit
operations (node/edge insertion, node/edge deletion, etc.) between two graphs.
Each edit operation has a predefined cost that contributes to the calculation of
the edit distance between the two compared graphs. The edit distance is defined
by the minimum cost sequence of edit operations that transform a graph into
another [48].

Seeking the exact value of editing distance is not easy and can usually be expensive.
This problem is NP-Complete [48] for general graphs and induces exponential
computation time complexity [49]. Recently, several approximate methods have
been proposed to deal with this issue [50]. They approach the exact value of GED
in polynomial time, using different techniques, such as dynamic programming and
bipartite assignment. In the following, we give an overview of two approximate
formulations: bipartite assignment [51, 52] and quadratic assignment formulation
[53, 54].

Bipartite based GED approaches have shown their efficiencies to solve error-
tolerant matching [49, 51, 55, 56]. Mainly, they partition the compared graphs into
smaller substructures and approximate the GED by a linear assignment problem.
The latter can be solved efficiently via for instance the Hungarian algorithm [57]

or the Jonker-Volgenant algorithm [58].

The quadratic-assignment-formulation [59] based GED methods show a significant
improvement over the bipartite based GED methods. Using the definition of fuzzy
paths, the authors show in [53] that the formulation based on the quadratic as-
signment programming problem (QAP) is suitable for the approximation of GED.
In [54], the authors argue that this problem is mainly related to weighted graph
matching problem [60], and they give a further formal and more general analysis
on the transformation rules of GED to QAP form.

Further details about the problem could be found in [50] as well as references

therein.

16

2.2.2.2 Tree search-based techniques

Inspired by the exact graph matching approaches, some works in the literature
propose tree search-based techniques with backtracking to deal with the inexact
graph matching. The search process is mainly based on heuristics that use the cost
of the current partial matching and the estimated cost of the rest of the nodes.
Thus, the resulting cost is used to prune unfruitful paths or to specify the traversal
order in the search tree, as in the A* algorithm [61]. Several works based on tree
search have been proposed, for example, but not limited to [26, 62, 63]. In this
research area, the A* algorithm has shown its effectiveness, as presented in some
works such as [64-66].

2.2.2.3 Other techniques

Given the importance of the graph matching problem and its involvement in a wide
range of real-world applications, a significant number of inexact graph matching
improvements have been proposed. Continuous optimization algorithms [1] is one
of the most studied approaches in this field. Typically, methods based on contin-
uous optimization problems are performed in three main steps: (1) transforming
the graph matching problem to a continuous problem, (2) using an optimization
algorithm to solve the resulting problem and (3) recasting the continuous solution
to the initial discrete domain. These approaches can be classified into two broad
categories: probabilistic relaxation labeling [67-70] and weighted graph matching
problem [71-74].

2.2.3 Graph simulation

Graph pattern matching has been widely used in a broad spectrum of real appli-
cations. This problem has been studied with respect to subgraph isomorphism for
several applications, such as pattern recognition, dynamic network traffic, knowl-
edge discovery, intelligence analysis, etc [1, 75, 76]. In recent years, several studies
have been done to cope with the limitations of the traditional matching paradigm
and to catch sensible matches in large graphs. Graph simulation provides an effi-
cient alternative to subgraph isomorphism matching by relaxing some restrictions

on matches. The first proposal of graph simulation is in [8], where authors give a

17

quadratic time algorithm for the refinement and verification of reactive systems.
Graph pattern matching with graph simulation becomes widely needed in actual
applications, such as web site classification, social position detection, plagiarism

detection, process calculus, drug trafficking and so on [77-80].

We say that a data graph G' matches a pattern graph Q(V,, E,), via graph sim-
ulation denoted by @ <y, G, if there exists a binary relation R C V, x V(G)
which verifies (1) for each (u,v) € R, v and v have the same label, (2) for each
query node u, there exists a graph node v such that (u,v) € R, and (3) for each
(u,v) € R and for each edge (u, ') in @, there is an edge (v,v') in G such that
(u',v") € R.

Several studies, such as [81-84], revise the notion of graph simulation and its
computation methods for graph pattern matching. In the following, we give an

overview of recent studies in revising graph pattern matching.

Authors introduce in [81] bounded simulation model, which extends graph simu-
lation by allowing bounds on the number of hops. In other words, it imposes a
weaker structural constraint: (1) it tolerates edge-to-path mapping, i.e., a query
edge may be mapped to paths of various bounds in a data graph, and (2) as in
graph simulation and in contrast to bijective functions in subgraph isomorphism,
bounded simulation seeks a binary relation defined on the nodes of () and the nodes
of G. A variant of the previous proposal, which incorporates regular expressions

as edge constraints, is proposed in [82].

In [83], authors present strong simulation model that extends simulation by im-
posing two additional conditions. The first one is the duality that aims to preserve
upward mappings, and the second one is the locality, which helps to eliminate ex-
cessive matches.

Dual simulation. We say that a data graph G matches a pattern graph @, via
dual simulation denoted by @) <p G, if there exists) <;,, G with a binary match
relation R C V, x V(G), and for each pair (u,v) € R and each (ug,u) in @), there
exists an edge (vq, v) in G such that (us, v2) € R. One can see that dual simulation
extends graph simulation by preserving both child and parent relationships.
Locality. Authors argue in [85] that the closeness of relationships decreases and the
relationships may become irrelevant with the increase of social distance. Keeping
potential candidate matches that are in a well-chosen perimeter, bounded by the

diameter of the query, can help maintain the meaning of their relationships. Thus,

18

it often suffices, to some extent, to consider only those matches that fall in a small

subgraph.

Both of bounded simulation and strong simulation approaches have a cubic-time
complexity, which makes the graph pattern matching process infeasible, especially
with massive graphs. Authors highlight in [12] three main approaches to cope
with this issue without compromising the accuracy of matches: (1) incremental
graph pattern matching approaches, (2) query preserving graph compression and

(3) distributed graph pattern matching.

Other approaches addressing the problem of graph pattern matching, based on
graph simulation, have been proposed. Based on strong simulation, authors in [86,
87] use graph compression to improve the time of graph querying. These previous
works have a cubic complexity in terms of search time. A recent study, given
in [84], extends graph simulation by allowing the absence of nodes with one hop.
However, it is not a straightforward task to search matches for approximate queries
which allow missing nodes and edges. This proposal loses the notion of simulation
and loses the quality of matches for queries with leaf nodes. Another recent study

is given in [88], which combines a label taxonomy with graph simulation.

2.3 Top-k queries

The top-k query answering problem has drawn a great deal of attention for all
data representations, such as relational data, XML and graph. We give in the
following a brief overview of the top-k search methods in the literature. We first
present some important approaches in the context of relational search. Then we
highlight and give a taxonomy of the most important works and methods related

to the top-k graph search.

Top-k Relational Queries. In [89], authors give a survey about the top-
k query answering in relational database systems. This problem is to find the
top-k tuples ranked by a scoring function [89]. The most popular algorithm for
top-k querying is the Threshold Algorithm (TA) [90, 91]. Given a monotonic
scoring function and lists of data item sorted by their local scores, the authors of
[92] introduce an optimal algorithm with a high probability for some monotonic

scoring function. This algorithm reads the item value from the lists and builds

19

complete tuples until & complete tuples are found from the top-ranked attributes
that have been seen. Then, it conducts random access to find missing scores. In
[90], authors improve the previous algorithm by the early termination property
and supporting all monotonic scoring function. The main difference is that the
access to find missing scores, in the improved algorithm, is guided by predicting

the maximum possible score in the unseen ones.

Other algorithms addressing the top-k£ query answering problem in relational
database systems have been proposed. Among them we can cite, ranked join
queries over relation data [93-95], ranked join queries over NoSQL databases [96],
distance join index [79] and hybrid indexing method [97]. We refer the readers to
[89, 98], in which the authors present a survey of top-k query answering problem

in database systems.

Top-k graph search. The problem of top-k ranking has also been studied for
keyword queries [99, 100], twig queries [14, 101] and subgraph isomorphism [13,
102-105]. It this latter, the problem is about finding the top-k ranking subgraphs

that match a query graph, according to given criteria.

The problem of top-k search has attracted much interest on relation data, XML
documents and RDF graphs [99, 100, 106-108]. Looking closely, one can find that
most of the existing approaches, based on keyword search, use simple ranking
functions such as TF/IDF and do not consider the topologies of the returned
answers. As against these approaches, the authors of [107] consider, to some
extent, the structure of responses. They introduce the XFinder system which
aims to find the top-k approximate matches of small queries in large documents.
This system uses a revised Prufer sequences [109] to transform the query and
document into strings and the tree edit distance is approximated by the longest

subsequence distance between the resulting strings.

Answering top-k queries over XML document is an active research area. The
work given in [99] aims to find the top-k subtrees induced from a set of keywords.
Authors propose in [110] a top-k approximate subtree matching algorithm based
on tree edit distance. We will consider this research field in Section 5.4.2.1 of
Chapter 5.

For data graphs, the top-k queries problem is to identify the k subgraphs, that
match the query graph, ranked by a score function [14, 104, 111], e.g., the total

20

node similarity scores [104]. Generally, the common practice of most of top-k graph
query approaches is the early termination property using a Threshold Algorithm
style test. Authors address in [112] the problem of finding best-effort subgraph
patterns in attributed graphs. In this study, the algorithm seeks for exact, as well
as approximate matches, and it returns them in a defined order. However, this
algorithm does not guarantee the k answers with the smallest/largest scores over

all answers are returned.

Authors introduce in [113] a neighborhood-based similarity search in graphs, which
combines the topological structure and content information together during the
search process. This latter is based on a set of rules to identify approximate
matches based on their neighborhood structure and labels, where a query graph
is also used. Moreover, a similarity function such as graph edit distance is used
to measure the similarity of the answer and the query. Another interesting work
[114] studies the problem of top-k graph pattern matching with on-the-fly ranked
lists based on spanning trees of the cyclic graph query. In this work, the authors
propose a multidimensional representation for using multiple ranked lists to answer
a given query. Under this representation, they propose a cost model to estimate
the least number of tree answers to be consumed in each ranked list. Based on
graph simulation, the authors of [115] investigate top—k graph pattern matching.
The study presented in [116] deals with the top-k knowledge graph search. In
this study, the authors present first a top-k algorithm for start queries. Then
they present an assembling algorithm for general graph queries. The assembling
algorithm uses start query as a building block and iteratively sweeps the star
match lists with dynamically adjusted bound. Recently, authors address in [117]
the top-k querying on dynamic graphs.

2.4 Result diversification

Result diversification, which aims to compute the top-k relevant results by con-
sidering the diversity [118-121], has been widely studied in a large variety of
spectrum, such as diversified keyword search in documents [122] and structured
databases [123]. Diversity is a general term used to catch the quality of a collec-
tion of items with regards to the variety of its constituent elements [121]. Query

result diversification can be classified into three main categories [124]. The first

21

category is content-based diversification, also known as similarity-based diversi-
fication [15, 125]. Approaches of this category aim to present the dissimilarity
between each pair of items. The second category is intent-based diversification,
also known as coverage-based diversification [124, 126, 127]. It addresses the user’s
ambiguous queries where a set of responses covering likely all the different interpre-
tations should be returned. The third category is novelty-based diversification. In
this category, objects that contain new information different from ones previously
retrieved are privileged in order to improve user’s query satisfaction [128, 129].
We encourage readers interested in more details about this classification and the

methods within to consult [120] as well as references therein.

In [130], the authors formalize the problem of diversified top-k search. They
extend two known algorithms, the incremental top-k algorithm and the bounded
top-k algorithm, to solve the diversified top-k search problem by applying three
functions, namely, a sufficient stop condition denoted as sufficient(), a necessary
stop condition denoted as necessary(), and a diversity search function denoted as
div-search-current(). Then, they prove that the div-search-current() is an NP-
hard problem and it is hard to be approximated. Thus, they propose three new
algorithms, div-astar, div-dp, div-cut, to find the optimal solution for div-search-

current().

The study given in [131] focuses on diversification in Keyword search over rela-
tional databases. In this study, a formal model is first provided to integrate user
preferences into the final ranking. Then, four properties, which are the relevance,
the degree of preference of each result, the user interest coverage and the con-
tent diversity, are combined to evaluate the quality of returned results. Based on
this combined criterion, authors provide efficient algorithms that compute top-k

representative results.

The result diversification is a crucial problem in graph querying. In [115], the
authors focus on the graph pattern matching using graph simulation by supporting
a designated output node. They revise graph pattern matching and then they
introduce two functions (relevance and distance functions) to rank matches based
on their structure and diversity. In this study, authors provide two algorithms
with early termination property, i.e., finding the top-k matches without computing
all matches. This latter improves the search time and performs better than the

traditional algorithms.

22

In [132], the authors tackle the problem of extracting redundancy-aware top-k
patterns. They first examine two problem formulations: Maximal Average Signif-
icance (MAS) and Maximal Marginal Significance (MMS). Then, they present a
greedy algorithm that approximates the optimal solution with performance bound
O(log(k)) for MMS.

Authors study in [133] the problem of top-k diversified subgraph isomorphism that
asks for a set of up to k subgraphs isomorphic to a given query, and that covers
the largest number of nodes. The authors propose a level-based algorithm for this
problem with early termination and an approximation guarantee. A recent study

[134] formalizes the top-k shortest paths with the diversity problem.

Other methods for result diversification have been proposed. Among them we can
cite, graph feature selection in graph classification [135], node ranking in large
graphs [136, 137], diversification in search over unstructured data [127, 138, 139],

diversification in querying streaming data [140-143].

2.5 Chapter summary

In this chapter, we tackled the problem of graph querying or graph search. We
presented and discussed the state of the art related to graph matching problem and
we described the different classes of graph matching algorithms. We focused on the
more recent and interesting methods but we also reviewed general approaches. We

also presented and discussed the top-k querying and result diversification problems.

In the next chapter, we introduce and present our model for graph pattern match-
ing called relaxed graph simulation, and our algorithms for computing top-k and

diversified top-k matches with respect to the proposed model.

Chapter 3

Diversified top-k search with

relaxed graph simulation

Contents
3.1 Introduction0..000 0000, 24
3.2 Preliminaries 00000, 27
3.3 Relaxed Graph Simulation 28
3.4 Ranking Pattern Matches 29
3.4.1 Top-k ranking for RGS problem 29
3.4.2 Match diversity oo 32
3.4.3 Diversified top-k matches 33
3.5 Top-k graph pattern matching algorithms 34
3.5.1 Finding top-k matches 34
3.5.2 Finding diversified top-k matches 41
3.6 Experimentst 42
3.6.1 Experimental setting 42
3.6.2 Results 46
3.7 Chapter summary ¢« c v v v v v vt v o o v oo 49

Graph pattern matching is being one of the fundamental tasks on which are based
the search, the querying, and the analysis of data graphs. This problem has been

widely used in a broad spectrum of real-world applications and it has been the

23

24

subject of several investigations, mainly of its importance and use. In this con-
text, different models along with their appropriate algorithms have been proposed.
However, in addition to the excessive processing costs, most of the existing models
suffer from the failing query problem due to their limitations on finding meaning-
ful matches. Also, in some scenarios, the number of matches may be enormous,
making the inspection a daunting task. In this chapter, we introduce a new model
for graph pattern matching, called Relazed Graph Simulation (RGS), allowing the
relaxation of queries to identify more significant matches and to avoid the empty-
set answer problem. We then formalize and study the top-k£ matching problem
based on two function classes, relevance and diversity, for ranking the matches
with respect to the proposed model. We also formalize and investigate the diversi-
fied top-k matching problem, and we propose a diversification function to balance
relevance and diversity. Nonetheless, we provide efficient algorithms based on
optimization strategies to compute the top-k and the diversified top-k matches
according to the RGS model. Our experimental results, on four real datasets,

demonstrate both the effectiveness and the efficiency of the proposed approaches.

3.1 Introduction

Graphs are a very useful paradigm for representing and modeling data and their
relationships. They consist of a set of nodes representing objects and a set of edges
representing relations between these objects. Thus, various real applications, such
as protein interactions [6, 144] and social networks [5, 145], use graphs as a model
of representation and searching. The flexible nature of graphs allows adding new
relationships and even new objects without affecting existing application func-
tionalities and queries. This flexibility brought graphs to greater importance,

especially for massive data [146].

In many of these applications, graphs are enormous, with millions of nodes and
billions of edges, and it becomes extremely challenging to mine their data. In
this context, graph search (or graph querying) is usually used to identify occur-
rences for a given query. Thus, various types of graph matching have been widely
investigated. Graph pattern matching (GPM) is being one of the most widely
used operations for a variety of emerging applications. Typically, it can be defined
in terms of subgraph isomorphism [7] or graph simulation [8]. Subgraph isomor-

phism search is the problem of finding all the exact occurrences of a query in the

25

graph. Graph simulation has been adopted for graph pattern matching to cope

with restrictions of exact graph matching.

As data graphs are growing in size, the number of matches can be excessively
large. Inspecting all the results is a daunting task. Thus, the users are generally
interested in responses that satisfy their preferences, which are usually relevance
and diversity [15]. In many real-world applications, such as social networks, the
matching algorithms use query focus, which aims to find matches of a desired node
(output node) instead of the entire match [147]. Furthermore, graphs are subject
to deformations due to several causes, such as the noise in the acquisition process,
the missing or incomplete information and the errors introduced by the modeling
processes. So, the obtained results (subgraphs) are likely different from the query
graph and its expected answers. That is why the matching process should be able
to consider correspondences that do not satisfy, to some extent, all the require-
ments imposed by the query graph. Besides, the matching process must be able to
reach a good approximate solution in an acceptable time, even without a guarantee
to give the best solution. These reasons highlight the need for approximate graph
matching algorithms. Thus, several approaches have been proposed by extending
the traditional graph simulation in order to reach more meaningful matches (see,
eg., [12] for a survey). Despite conditions and structural relaxations given by graph
simulation and its variants, and since it is almost impossible to know the graph
structure, we find that these approaches are restrictive since they do not accept
matches with content relaxations, i.e., matches with missing nodes and without
affecting the quality of results. In real applications, this kind of relaxation is very

useful.

These highlight the need to find the top-k matches of a desired node by allowing
relaxation in terms of content (or missing nodes). Let G be a data graph and @
be a pattern graph with the desired node u,. The top-k£ graph matching aims to

find the k£ best matches of the desired node u, in G according to given criteria.

FExample 1. A fraction of a collaboration network is shown as G in Figure 3.1b. In
this graph, a vertex v; represents a person with his/her job (label of vertex) and
an edge (v;,v;) indicates a supervision relationship; e.g., (vs,v12) indicates that
the node vs with job A supervises the node v15 with job D. A company issues a
query to find potential matches and the requirements are given by the query graph
@ in Figure 3.1a. Here, ug labeled with A and indicated with ” % ” is the desired
node of the query (). It means that only the matches of this node are asked for.

26

(a) Pattern Q (b) Part of the data graph G

FIGURE 3.1: A data graph and a query graph

In this example, subgraph isomorphism fails to identify matches for the query Q).
Using graph simulation, one can verify that the matching M (Q, G) contains { (ug,vs),
(ubUlO): (U27U13), (U37U7), (Us,Ulz), (U4,’U5), (U4,U9), (U4,’019), (U5,’U6), (U5,U11), (U5,U14),
(us,015), (us,v16), (us,v18), (ug,v8), (ug,v17)}. The result of this matching includes
most of the graph nodes. However, if one looks for matches of the desired node,
the result is only the node vy. Furthermore, one can verify that in such a case, the
nodes v, and v3 can be evaluated as deemed matches since it is possible that the
supervisor of a person with job C' can also be a supervisor of persons supervised by
C, i.e., {E, F,D}. However, traditional graph simulation is often too restrictive

to identify this kind of relationship.

Since the user does not have an idea about the content and the structure of the
graph, graph search defined in term of graph simulation (including extended graph
simulation approaches) may be failing, e.g., the previous case where the relation-
ship (A, ') is missing in the subgraphs induced by v; or vs. In practice, extending
graph simulation, by supporting both structural relaxation and content relaxation,
provides a good alternative to cope with the drawbacks of traditional matching
paradigms. In such a situation, the matching algorithm may benefit from a more

general notion of graph simulation, but it may throw away its search efficiency.
Thus, the main contributions in this part of thesis are summarized as follows:
e We propose a new notion of graph simulation, called Relazed Graph Simu-

lation (RGS), in order to avoid the failing query problem and to reach more

significant results.

e We define the graph pattern matching in terms of RGS, and we revise this

notion to support the query focus by designating a desired node wu,.

27

e We introduce two classes of functions to rank matches of the desired node
u,. The first one is relevance function €(), which measures the relevance of
a given match. The second one is distance function 6(), which measures the
dissimilarity of two given matches. Based on both, we define diversification
function F(), which aims to return diversified answers while maintaining

high relevance as much as possible.

e We develop algorithms that calculate the top-k matches and the diversified
top-k matches and provide a fast search time. For this, all information
around a node are distilled in a probabilistic data structure that makes the

search efficient.

e Using real-life data, we conduct extensive experiments to attest the effec-

tiveness and efficiency of the proposed approaches.

The remainder of this chapter is organized as follows. In Section 3.2, we give
some definitions that are used throughout this chapter. Section 3.3 is devoted to
the description of the relaxed graph simulation. Section 3.4 describes the ranking
functions. After that, the search processes are presented in Section 3.5, which are

evaluated in Section 3.6. Finally, Section 3.7 concludes this chapter.

3.2 Preliminaries

We investigate the graph pattern matching for directed and unweighted labeled
graphs. Without loss of generality, our method could be extended to weighted

labeled graphs. In this section, we present some general definitions.

Data graph. Data graphs are used to represent objects and their relationships
using nodes and edges. A data graph (or simply a graph) is a directed graph
G = (V(G), E(G),1,%), where (1) V(G) is the set of nodes (also called vertices),
(2) E(G) C V(G) x V(G) is the set of edges in which (v, ") denotes an edge from
v to v', (3) [is a labeling function such that for each node v € V(G), l(v) is a
label from the finite set of labels ¥. We use |V| and |E| to denote the number of
nodes and the number of edges in the graph G, respectively. A node v’ is a child
of a node v if (v,v") € E(G). We use deg(v) to denote the degree of the node v,

i.€., the number of children of the node v.

28

Pattern graph. A pattern graph is a directed vertex-labeled graph @ = (V,, E,, f.),
where (1) V, is the set of query nodes, (2) E, is the set of query edges, and (3) f,
is a labeling function such that for each node u € V,, f,(u) is a label from the set
of labels .

Graph pattern matching can be defined in terms of subgraph isomorphism or graph

simulation. In this thesis, we focus on graph simulation, which is defined as follows:

Definition 2. let G = (V(G), E(G),[,X) be a data graph and Q = (V,, E,, f,) be a
pattern graph. The graph G matches the pattern) via graph simulation, denoted
by the matching set M (Q, G), if there exists a binary relation R C V,, x V(G) that
verifies (1) for each (u,v) € R, l(u) = f,(v), (2) for each query node u € V there
exists a graph node v € V(G) such that (u,v) € R, and (3) for each (u,v) € R and
for each edge (u,u') € E,, there is an edge (v,v") € E(G) such that (v/,v") € R.

The authors in [115] give an overview of pattern graphs extended by desired nodes.
Based on the study given in [147], they focus on a single desired node. Let Q* =
(Vy, By, fo, us) be a pattern graph with the desired node u, € V. The matches of
Q* in G are given by M(Q*, G, u,) = {v|(u.,v) € M(Q,G)}.

3.3 Relaxed Graph Simulation

In this section, we introduce and we describe the Relaxed Graph Simulation (RGS)
model. We first define the notion of satisfaction set, which should be satisfied if
two nodes match to each other. A satisfaction set of a query node u, denoted by
Sat,, is a set of label sets that allows checking if a graph node v matches the node
u. According to the need in the RGS model (defined after), the satisfaction set
for a node u can be computed as follows: (1) the first set in Sat, contains labels of
u’s children nodes, (2) for each element in the first set, we replace it by the labels
of the corresponding node’s children, if they exist, and we produce all possible

combinations.

Figure 3.1 shows an example of a part of a data graph (Figure 3.1b) and a
pattern graph (Figure 3.1a). One can quickly check the satisfaction set Sat,,
of the desired node uy. In this example, the first set in Sat,, contains the
children’s labels of the node wyg, i.e., {B,C,D}. According to the above de-

scription, the label of the node u; will be present in all combinations, since it

29

does not have children. The label C' will be replaced by {E, F, D} and the la-
bel D will be replaced by {F,G}. The final satisfaction set of the node wg is
Sat,, ={{B,C,D},{B,E.F,D} {B,C,F,G},{B,E,F,D,G}}.

Next, we formally define the relaxed graph simulation model.

Definition 3. Let G = (V(G), E(G),1,%X) and Q = (V,, E,, f,) be a data graph
and a pattern graph, respectively. The graph G matches the pattern () via RGS
if there exists a binary relation R C V, x V(@) that verifies: if (u,v) € R then (1)
l(u) = fy(v), and (2) 35, C Sat, such that S,, C L,, with L, is the list of labels

of v’s children.

From the above definitions, the relation between graph simulation and relaxed

graph simulation can be drawn as follows:

Theorem 1. For a given pattern graph and a data graph, we denote the matching
set of graph simulation as Rgg and that of relaxed graph simulation as Rgggs, then
Rgs € Rres-

3.4 Ranking Pattern Matches

In general, data graphs are enormous, which makes the result set M(Q, G) exces-
sively large. However, the user’s interests can be expressed by the top-k answers of
the desired node w, [89]. This highlights the need for ranking functions to compute

the top-k answers for a given query Q).

In this section, we first define the top-k ranking problem and the result-diversity
problem. We consider specific functions to measure the relevance and the diversity,
respectively. Then, we formalize the diversification problem and we introduce a

diversification function, which is a trade-off between the two previous ones.

3.4.1 Top-k ranking for RGS problem

We first define the top-k ranking problem, then we present the scoring function

that measures the relevance of the desired node’s matches.

Definition 4. Let G = (V(G), E(G),[,X) be a data graph, Q* = (V,, E,, f,, us)

be a pattern graph with the desired node u,, k be an integer and () be a score

30

function. A sequence of nodes, R = (v;,, viy, ..., Vi,), s a top-k ranking of the nodes

of the graph with respect to the pattern Q* iff

1. the ranking contains the & matches that are closest to the desired node u,:
Yuj & R Q(v;,) > Q(v,), and

2. the nodes in the ranking are sorted by their scores to the desired node:
Q(Uij) Z Q(Ul'j+1), with 1 S] < k.

The top-k ranking problem is the problem of computing top-k matches of a query
@* in a graph G. In the rest of this chapter, we use the notation @) to refer to a
pattern with a desired node and M(Q, G) to refer to its match set in G.

Using the RGS model, the quality of results depends mainly on the number of

reached nodes and the number of substitutions during the matching process.

Reached nodes. Given a graph node v € GG that matches a query node v € Q.
Let U = {uq,us,...,u,} be the set of descendants of u in Q. Let V = {v;} be
the set of matches in G of every u; € U. The set of reached nodes R(u,v) is the
subset of V' containing each vertex v; such that each vertex of the path u to w;
is in U and each vertex of the path v to v; is in V. That is, R(u,v) includes all

matches v; reachable by v via a path of matches.

As aforementioned, the RGS model is based on the satisfaction set of each node
in @, which is the key to our ranking function. The relation (u,v) € R means
that the v’s children set covers at least one set from the u’s satisfaction set Sat,.
Each member in Sat, contains either the labels of the u’s children or another list
with the substitution of elements in the first list by the labels of the corresponding
node’s children (as it is described above). This substitution gives the intuition that
the importance of a matched node v is according to the corresponding covered
set in Sat,. It is clear that the best match for a node u € @ is the one that
satisfies the first list in Sat,, i.e., the node that matches the set of direct children.
Each substitution affects the importance of the corresponding match and the best

quality is the one that corresponds to fewer substitutions.

Let o € [0,1] be a penalty factor for each substitution and b; be the number of
substitutions in S,, C Sat, with 0 < b; < deg(u). We define the score 7(S,,) as

31

follows:
v(Sy,) = deg(u) — a - b;. (3.1)

Thus, Equation 3.1 gives an overview of the quality of the matched node through
the covered satisfaction set. The impact of substitution on the match quality is
controlled by «, which is a user-defined parameter. In other words, the penalty
factor expresses the influence of the missing nodes on the quality of results. For
example, we can define a« = 0 if we consider that the missing nodes have no impact
on the expected results, which is uncommon. As against, if the missing nodes are

crucial, then the value of @ must be increased, a = 1 for example.

We present now the score function (Equation 3.2) for evaluating deemed matches
of the desired node. Let the node v, € V(G) be a deemed match of the desired
node u, € V,. Let v € V(G) be a match of u € V such that v is reached via
a path from v, and wu is reached via a path from wu,. The node v covers at least
one set from the satisfaction set Sat,. So for each matched node u, we choose
the set S C Sat,, covered by v, with the best score (). Let Spes; be the set of
the best-covered sets for the matched nodes of the pattern @, the score §() of the

node v, is defined by:

> (Si)

Sigsbest
3o) = H (3.2)
q

Then, we present the relevance function.

Relevance function. On a match node v € G of the desired node u, € @, the

relevance function €)() is defined as
(o) = 6(v) - |R(ue, 0)]. (33)

Using the relevance function (Equation 3.3), the problem of top-k ranking can be
defined as the problem of finding the subset R, of size k, from the set of matches
M(Q,G) with the highest similarity among all subsets of size k in M.

R = argmax sim(Q, S), (3.4)
SCM,|S|=k

where

sim(Q,S) = Y Quy). (3.5)

v; €8,i=1

32

TABLE 3.1: Covered satisfaction sets in G (G given in Figure 3.1)

Match Covered satisfaction sets
" ~v(Saty, = {B,D, E,F}) =25,v(Sat,, = {F,G}) =2,
v(Sat,, = {F}) =1,v(Sat,,(i € [1,2,5,6]) =) =0
s ~v(Sat,, = {B,D,E,F})=2.5,y(Sat,, = {F,G}) = 2,
v(Sat,, = {F}) =1,v(Sat,,(i € [1,2,5,6]) =0) =0

~v(Sat,, = {B,C,D}) = 3,~v(Sat,, = {E,F,D}) = 3,
Uy ~v(Saty, = {F,G}) = 2,v(Sat,, ={F}) =1,
v(Sat,, (i € [1,5,6]) =0) =0

TABLE 3.2: Reached nodes in G (G given in Figure 3.1)

Match Reached nodes
n1 R(Uo,vl) = {Us,06,07,08,0107014,?115}
U3 R(UO, U3) = {U97U10,U11, V12, V16, V17, U18}
Uy R(Uo,m) = {Ulo, V12, V13, V17, U18,U19}

Hence, the more matches v can be reached, the more significant impact it may

have, as observed in [148].

FExample 2. Consider G and () shown in Figure 3.1. One can verify that the nodes
of subgraphs induced by the nodes vy, v3 and v, are mappings for the ()’s nodes via
RGS. Table 3.1 shows the corresponding covered satisfaction sets of the matched
nodes in GG and Table 3.2 illustrates the corresponding sets of reached nodes. One
can verify that M = {vy,v3} or M = {vy,v1} is a top-2 ranking according to the
RGS model. The relevance of the node vy is 6, since each node in () is mapped to
at least one node in G, as shown in Figure 3.1. The relevance of the nodes v3 and
vy is 4.27 each (with a = 0.5). This is due to the fact that the label of the node
uo is substituted by the labels of its children in Sat,,.

3.4.2 Match diversity

We next formalize the diversity problem and we introduce a simple metric for

result diversity.

Definition 5. Let G be a data graph, @) be a pattern graph, M(Q,G) be the
set of matches of the desired node u, € @ in G, k be an integer and div() be

a dissimilarity function. A sequence of nodes, R = {v;,,vi,,...,v; } is a set of

33

k-diverse graph nodes with respect to the pattern) such that

R = argmax div(95), (3.6)
SCM,[S|=k

where

k
div(S) = } Z O(v;,v;). (3.7)

The distance function O(.,.) is an essential component of diversification that com-
putes the dissimilarity between the returned matches. In the following, we define
a simple distance function based on Jaccard Coefficient [149]. Let v; € G and
vj; € G be two matches of the desired node u,, the dissimilarity between v; and v;

is defined as
|R<U*, U2)| N |R(U’*a Uj)|

|R<U*JUZ)| U |R(u*,1)j)| .

@(Ui,vj) =1- (38)
The problem of match diversity is to select a subset R C M of size k that maximizes
the sum of inter-element distances amongst elements of R. The above definition

is a minor revision of the Max-Sum Dispersion Problem introduced by [150].

Ezample 3. Given G and @) in Figure 3.1, we observe the following: (1) div(vs,v4) =

g; this means that v3 and v4 have impact on more than half of the same group of

12

people in G, and (2) div(vy,v3) = 33,

div(vy,vy) = % Thus, v; and vg are most

dissimilar to each other.

Next, we formally define the diversified top-k problem.

3.4.3 Diversified top-k£ matches

Given a list of results R = {v;,, vy, ...,v;, } of size k from the set of matches
M(Q, G), the diversified top-k matches, denoted as D(R), is a list of results that
satisfy the following conditions:

e D(R) C M and |D(R)| < k,

e for any two results v; € R and v; € R and i # j, if v; is similar to v;, then
{vi,v;} € D(R), and

e the relevance of D(R) is maximized.

34

The diversified top-k matches are the set of k results, such that the similarity
between results is minimized and the sum of relevance is maximized [119]. Based

on the above functions, we define the diversification function as follows

D(R) = argmax F(R), (3.9)
RCM,|R|=k
where
F(R)=(k—1)(1—X)-sim(Q, R) 4+ 2\ - div(R). (3.10)

Value A\, with 0 < A <1, is a user-defined parameter that represents the trade-off
between similarity and diversity, i.e., it balances between relevance and diversity
of matches. The diversity function is scaled up since there are k& numbers for the
relevance sum and @ for the diversity sum. This function is a minor revision

of Max-Sum Diversification introduced by [119].

Ezxample 4. Given G and @ in Figure 3.1, one can verify that {vg, v} is a top-
2 diversified match set since their diversification value is maximum among all

2-matches of M(Q,G).

3.5 Top-k graph pattern matching algorithms

In this work, we first introduced a new notion of graph pattern matching, called
Relaxed Graph Simulation, to cope with restrictions of previous approaches and
to avoid the empty-set answer problem. Next, we develop algorithms that aim to

solve the top-k answering problem and to reduce the cost of the search.

In the following, we proceed with the presentation of two new approaches for the
top-k matching problem and the diversified top-k matching problem using the
RGS model.

3.5.1 Finding top-£ matches

The matching process in our approach consists of two main steps. The first step
aims to encode the information of each graph node using the cuckoo filter [151].
The second step aims to compute the top-k matches of a query @) according to

the RGS model. The efficiency of the proposed approaches relies on the node

35

hs(e) Insert complete

Insert(e) A

ha(e)

N H®N2O

NoareN 2o

(

Relocate

(a) (b) (c)

FicUre 3.2: Hlustration of the insertion process in cuckoo filter

encoding, where the cuckoo filter is used to distill the neighborhood information
into an array of bits. Unlike many existing methods, our encoding can be used for

dynamic graphs without additional data structures.

In the following, we first describe the cuckoo filter, and then we detail the matching

process.

3.5.1.1 Cuckoo filter

The cuckoo filter [151] is a variant of the cuckoo hash table [152] that stores a bit
string, known as fingerprint, obtained by hashing an item instead of a dictionary
data structure, i.e., key-value pairs. In this data structure, the basic unit that
stores one fingerprint is called entry and the hash table is an array of m buckets
that can have b entries. Two hash functions, h;() and hy(), are used to identify

the buckets for insertion or the lookup.

Cuckoo filter is an efficient probabilistic data structure that supports set mem-
bership testing. The authors in [151] show that cuckoo filter is better than bloom
filter [153]: (a) in terms of lookup performance (runtime performance), (b) it han-
dles deletion, which is not supporting in bloom filter, and (c) it is a space efficiency

data structure with low false positive rates e.

In the following, we describe the processes of insertion and lookup in the cuckoo
filter.

Insertion. When inserting an item e in the cuckoo filter, one can confront
several cases. The first one is when the two buckets in positions h;(e) and hsy(e)
are not allocated, the insertion bucket is chosen arbitrarily. Figure 3.2a shows the
insertion of the element x in the bucket 3. The second case is when one bucket is

allocated, the insertion is performed in the empty bucket. The last case is when

36

both buckets are allocated. Figure 3.2b illustrates this case. In such a case, the
item e can be inserted in one bucket (bucket 7 in this example), and the item that
occupies the current bucket will be reinserted in another bucket with reallocation.
Figure 3.2¢ illustrates this case where the item z is inserted in bucket 3 and the

occupant of bucket 3 (i.e.,, the element z) is inserted in bucket 5.

Inserting a new item in an allocated bucket requires a reallocation for the oc-
cupying item. This reallocation requires access to the original items in order to
determine their new corresponding buckets. As mentioned before, the cuckoo fil-
ter does not store the item itself but it stores its fingerprint 6(). Therefore, it is
challenging to find the new bucket of a moved item. To overcome this limitation,
the two hash functions are dependent so that they can determine the position of

an element based on its fingerprint.

hy(x) =hash(z), (3.11)
hao(x) =hi(z) ® hash(6(x)). (3.12)

Hence, the only need for the reallocation is the information in the table, i.e., there

is no need for original items.

Lookup. The lookup using the cuckoo filter is a simple process. Let x be a
searched item, the fingerprint 0(x) is first calculated, then the two bucket positions
hi(z) and ho(x) are checked. If §(z) exists, then the cuckoo filter returns true;

otherwise, it returns false.

False Positive Probability. = The analyzes of the false positive for the cuckoo
filter is detailed in [151]. Let b be the bucket size and |f| be the fingerprint
size. The false positive rate € depends on b and |6, thus the minimal size of the
fingerprint is |0 > logz(2b/€) bits.

3.5.1.2 Finding top-k Matches with cuckoo filter

To achieve a fast search time, we need to design powerful algorithms that can
benefit from the idea of using the cuckoo filter. Recall that our aim is to find the
top-k matches of the desired node u, according to the RGS model. Let G be a
data graph and @ be a pattern graph. We must first identify the set cand(u,) of

37

candidates of the desired node u,. From each candidate node, we then check the
matching based on the notion of satisfaction set. Using the RGS model, we have

the following lemmas.

Lemma 1. Given a data graph G and a pattern graph), the top-k matches of the

desired node u, can only come from the set of candidates, cand(u.), of u,.

Proof. From Definition 4, it is easy to verify that the result of the matching process

contains only candidates of the desired node wu,. [|

Lemma 2. Given a data graph G and a pattern graph @, a graph node v € V(G)
is not a candidate of a query node u € V, if f,(v) # l(u).

Proof. From Definition 3, the correspondence of labels is required for a graph node

to be a candidate of a query node. |

Lemma 3. Given a data graph G and a pattern graph @, a graph node v € V(G)
is not a candidate of a query node u € V, if deg(v) < deg(u).

Proof. In Definition 3, the second condition for a graph node v that matches a
query node u via the RGS model is that one set S, of u’s satisfaction set (Sat,)
is included in the list of labels of the v’s children L,, so |S,| < |L,|. Since
|Su| > deg(u) and |L,| = deg(v), we have deg(u) < deg(v). [

Lemma 4. Given a data graph G, a pattern graph @) and a graph node v € V(G)
that verifies Lemma 2 and Lemma 3 for a query node u € V. Let veyckoo be
the cuckoo filter representation of L,. If ﬂSui C Sat, that verifies Ve € S,,.,

0(e) € Veuekoo, then v is not a candidate of w.

Proof. Assume that v € V(G) is a candidate of v € V, with S, C Sat, is the
corresponding satisfaction set, and assume that there is an element e € S, such
that 0(e) & Veuckoo- This means that the element e ¢ L, and therefore S, € L,
which contradicts Definition 3 (condition 2). |

We outline Algorithm 1, called cMatch(). Typically, the algorithm verifies the last
three lemmas to identify deemed matches of the query nodes. (1) It initializes a
boolean variable Match for the candidacy condition and a set Sat to maintain the
corresponding satisfaction set if a node v is evaluated as a match of a node u. (2)
The algorithm checks if both nodes have the same label (line 3), (3) if so, it checks

38

Algorithm 1 Cuckoo filter matching cMatch(u,v)

Input: A graph node v and a query node u
Output: Return the satisfaction set S, C Sat, covered by v if v is a candidate for u
according to lemmas 2, 3 and 4
1: Match := false;
2: Sat := ()
3. if (fy(v) =1(u)) then

4: if (deg(u) < deg(v)) then

5: while (Match = false and 3 unvisited S,, in Sat,) do
6 if (Ve € Sy, : 0(€) € Veuckoo)) then

T Match := true;

8 Sat :=S5y,;

9: end if
10: end while

11: end if
12: end if

13: return Sat;

whether the node v has a sufficient number of children to be a candidate for the
node u (line 4). These two investigations reveal if a node satisfies Lemma 2 and
Lemma 3. After that, (4) for a node v that satisfies both conditions, the algorithm
checks if the list of labels of v’s children L, covers one set of the satisfaction set
Sat,. For each S,, € Sat, and while the match is not yet found, the algorithm
checks if L, covers S,,. Thus, Algorithm 1 uses the cuckoo filter representation
Veuckoo Of Ly. For each element e € S, it verifies if the fingerprint 6(e) belongs to
Veuckoo-

Let m be the size of S, and n be the size of L,. In general, the inclusion of .S, in
L, is checked in O(n xm) time. Using cuckoo filter, the membership of an element
e in L, is checked in constant time and the inclusion of S, in L, is checked in
O(m) time, which provides a significant gain for finding matches. (5) Algorithm 1

returns a covered set from Sat, if it exists; otherwise, it returns an empty set.

Algorithm 2 details the search process. It uses the cMatch() subroutine, which
verifies Lemma [2-4], and checks whether a graph node is a candidate for a given
query node. The Top-kCuckoo matching algorithm first initializes termination,
which is a boolean variable for the termination condition, and a set R to maintain
matches of the desired node u, ranked by their relevances () (lines 1-2). The
algorithm selects, from the candidate set cand(u,) of u., an unvisited node and
invokes CheckMatch() subroutine to check whether this node is a veritable match
(lines 4-14). If a candidate of u, is evaluated as a veritable match, Algorithm 2
invokes CheckAdd(), which evaluates the score of the node () and performs the

39

Algorithm 2 Top-k£Cuckoo matching

Input: A graph G, a pattern Q* and a positive integer k.
Output: R: a top-k match set of the desired node wu.
1: termination := false;
2: R =0
3: cand(uy) := {non matched v € V(G) such that |cMatch(v, uy)| # 0};
4: while (termination = false and |cand(u.)| > 0) do

5: Choose a node w € cand(ux);

6: if (w# () then

7: if (CheckMatch(Q,w) = true) then

8: CheckAdd(w, R);

9: check and update the termination condition;
10: end if

11: else

12: termination := false;

13: end if

14: end while
15: return R;

insertion in the list of answers R. If this node has a score () better than the
score of the last element in R, then it must be inserted in R (line 8). Algorithm 2
checks the termination condition: if R has k elements with the highest score, the
variable termination will be updated with false (line 9). If this last holds or the

set of candidates is empty, Algorithm 2 returns R as a response to the query.

Subroutine CheckMatch(). The starting point in CheckMatch() is the satisfaction
set covered by the list of children of the current candidate node. CheckMatch()
looks for mapping each element in the current satisfaction set against the children
of the corresponding graph node. If at least one element is not mapped (according
to the RGS model), the corresponding candidate of u, is evaluated as a non-match,
and the process tackles the next candidate. Otherwise, each mapped query node
can have one of the two following states: (a) the mapped query node has no
satisfaction set or (b) the mapped query node has a satisfaction set. The first
state is simple; no further processing is required for this node. For the second
state, CheckMatch() looks for mapping the elements of the children list of this
node, i.e., the elements of the corresponding satisfaction set, and it performs the
same previous evaluation for each generated satisfaction set until all investigations

for the mapping are performed.

FExample 5. Consider data graph G and query graph @ given in Figure 3.1. When
Q is issued on G, top-kCuckoo matching identifies the top-2 matches as follows:
Firstly, v, v3 and vy are selected as candidate matches of the query node wuy.

Suppose that the node v; is evaluated first, the corresponding satisfaction set

40

covered by vy is {B, D, E, F'} with v = 2.5. Algorithm 2 looks for mapping each
corresponding node with a label in the satisfaction set to a graph node, the node
uy is mapped to vig with v = 0, the node ug is mapped to v; with v = 2 since
the list of v7’s children covers the wug’s satisfaction set {F,G}. The node wuy is
mapped to vs with v = 1 and the wuy’s covered satisfaction set is {F'}. The last
corresponding node in the wuq’s satisfaction set us is mapped to vg with v = 0. After
this first evaluation of elements of the first satisfaction set, Algorithm 2 evaluates
elements of the resulting satisfaction sets in the same manner. The corresponding
nodes of F,G are mapped to v5 (or vg), vs respectively, the node wus (from the
uy’s satisfaction set) is mapped to vi5 or vg. At this end, all the evaluations are
performed and the node vy must be added to R with the score Q(v) = 4.27.
Similarly, the nodes v3 and v, are evaluated and their final scores are Q(v3) = 4.27

and Q(vy) = 6. Hence, Top-k Cuckoo matching returns R = {vy, vy }.

Complexity. We give an analysis of the running time of the proposed approach.
Let D and d be the average degrees of the graphs G and @) respectively. The
satisfaction set Sat, of a node u contains 2% sets Sy, each of size at most d,?, with
d, = deg(u). For a given node v with a degree d,, the cuckoo filter construction
takes O(d,.h.m.b), where h represents the number of the used hash functions, m is
the number of buckets and b is the number of entries for one bucket. Since h = 2
and m.b = O(D), the construction of this filter takes O(|V|.D) time for the entire
graph G. In the cuckoo filter, each element of S,, can be checked in O(1), so the
checking process of S,, takes O(d?) time. As all S,, C Sat, should be checked,
the total time of cMatch() for a given node u is O(2¢.d?) = O(2%). CheckMatch()
subroutine uses cMatch() to check whether a node v € G is a candidate for the
desired node uq (in time O(2%)). This verification for all the nodes of @ is then
done in O(]V,|.2%) time. Thus, to check all nodes of G we need O(|V|.|V,|.2%) time.
Finally, the CheckAdd() uses a min-heap to maintains the results in O(|V|.log k).
Thus, the top-k Cuckoo is done in O(|V|.D + |V||V,].2¢ + |V].logk) = O(|V|.D +
[V |V,].2%) time.

In graph pattern matching the size of a pattern @) is typically small and the
maximum degree in this pattern is often small too [12]. Thus, since the time
complexity of our approach depends on the average degree d of the query () and
d is generally small (related to the query size), we have |V,|.2¢ << |V|+ |E| and
the complexity of top-kCuckoo becomes O(|V].D + |[V|.(|V]| + |E|)), which gives

41

Algorithm 3 Top-kDiv

Input: A data graph G, a pattern Q*, a positive integer k and A\ € [0 — 1].
Output: R: a diversified match set R of the desired node uy, |R| = k.
: R = 0;
Compute M (Q, G, us);
while (|R| < k) do
x 1= argmax,c,, F(z, R);
R:= RU{z};
M := M — {z};
end while
return R;

a better time complexity than top-kGS (given by O((|V,] + |E,)(|V| + |E|) +
VI.(VI+[E])) [115]).

3.5.2 Finding diversified top-t£ matches

In the following, we proceed with the presentation of the diversified top-k matching
problem. In contrast to the top-k matching problem, which is based only on the

sim(), the diversified top-k problem is intractable.

Theorem 2. The diversified top-k problem is NP-complete (decision problem).

Proof. Given a graph G, a pattern @), an integer k, A € [0 — 1] and a bound B,
the decision problem of Top-kDiv (Algorithm 3) is to decide whether a k-element
set R C M(Q,G) with F(R) > B exists. In the following, we show the proof
given in [115]. Since we can guess a k-element set R and then check whether
R C M(Q,G) and F(R) > B in PTIME, so the decision problem of diversified
top-k is in NP. Furthermore, the diversified top-k problem is NP-hard since it is
a general case of the k-diverse set problem [154], which is known to be NP-hard.
Thus, the diversified top-k problem is NP-complete. [|

Despite the hardness, we provide an approximation algorithm for the diversi-
fied top-k problem. Intuitively, this problem can be decomposed into two pro-
cesses. The first one is the graph pattern matching, which computes the match

set M(Q,G), and the second one is the result diversification.

Algorithm. Given a graph G, a pattern @), an integer k and A € [0 — 1],
Algorithm 3, denoted as Top-kDiv, identifies a set of k& matches of the desired

42

node u, that maximize F'(). (1) It initializes a set R to maintain the matches of
the desired node wu,. (2) It computes M(Q,G) with the same strategy used in
Algorithm 2 with respect to the RGS model. (3) Top-kDiv incrementally builds
the result set R by selecting a pair of matches that maximizes the diversification
value F(). It then performs the insertion of elements in R and removes them from
M(Q,G). Finally, Algorithm 3 returns R as a response to the pattern Q.

Fxample 6. Consider data graph G and pattern graph) given in Figure 3.1, and
assume that A = 0.5 and £ = 2. When @ is issued on G, Top-kDiv identifies
the top-2 diversified matches of the query @ as follows: Firstly, {v1,vs3,v4} are
selected as matches of the desired node u,, w.r.t. RGS. Then a pair of matches
that maximizes F() is selected. Hence the pair {vy, v} is selected and returned

as the final result, since the diversification value F'(vy,v1) = 6.05 is maximized.

3.6 Experiments

In this section, we describe and discuss experimental results to evaluate our meth-
ods. We evaluate the performances of the proposed approaches over various types

of real graphs, number of labels and sizes of queries.

3.6.1 Experimental setting

All experiments are conducted on a machine with 3.19 Ghz Intel Core i7 CPU and
with 16 GB of RAM running Windows 7. All algorithms are implemented in Java.
In the following, we present the test collections and the evaluation method then

we present our results.

3.6.1.1 Datasets

For the experiments, we use four datasets of real-world graphs from the Stanford

Large Network Dataset Collection !.

e FEpinions. This dataset consists of a graph representing who-trust-whom on-
line social network. This graph contains 75,879 nodes, 508,837 edges and

50 synthetic labels with a uniform random distribution on the nodes.

Thttp://snap.stanford.edu/

43

TABLE 3.3: Graph dataset characteristics

Dataset V] |E| Number of labels
Epinions | 75,879 | 508,837 50
Amazon 400,727 | 3,200,440 100
Google 875,712 | 5,105,039 200
LiveJournal | 4,847,571 | 68,993,773 500

e Amazon. Thisis a real co-purchasing network with 400, 727 nodes, 3, 200, 440
edges and 100 synthetic labels with a uniform random distribution on the

nodes.

e (Google. In this graph, nodes represent web pages and directed edges rep-
resent hyper-links between them. This dataset contains 875,713 nodes,
5,105,039 edges and 200 synthetic labels with a uniform random distribution

on the nodes.

e LiveJournal. This dataset is a graph representing an on-line social net-
work with almost 5 million members (4, 847,571) and over 68 million edges
(68,993, 773), which represent friendship relations. We use 500 distinct la-

bels with a uniform random distribution on the nodes.

The characteristics of the datasets are summarized in Table 3.3. For each graph,
we report the number of nodes, the number of edges and the number of unique
labels.

3.6.1.2 Pattern generating

For the experiments, we generate several queries with different sizes, controlled by
three parameters: number of nodes, number of edges and labels from the list of
graph labels ¥. We use (|V,],|E,|) to denote the query size, and for each size, we
generate 20 different query graphs.

3.6.1.3 Evaluation method

We use two criteria to evaluate the experiment results. The first one is the failure
rate, which represents the ratio between the number of failing queries, i.e., for

which the algorithm cannot find a response, and the number of queries used.

44

Failure rate (%)

Failure rate (%)

Time (ms)

Time (ms)

100

80

60

a0

100
Graph_Simulation EEE Graph_Simulation HEEEE
Relaxed_Graph_Simulation HEE Relaxed_Graph_Simulation

40

Failre rate (%)

20

100

(A) Epinions (B) Amazon

100
Graph_Simulation HE Graph_Simulation M
Relaxed_Graph_Simulation EESS Relaxed_Graph_Simulation EEEEE

Failure rate (%)

% @ 0 % 9
o Ty T, /'2,9 %y p@% % e, B, % e B B F%%

K]] K T b

(¢) Google (D) LiveJournal

FiGure 3.3: Failure rate of Relaxed Graph Simulation and Graph Simulation

140

120

100

80

60

40

20

250

250

top-kGS Hm

200

i top-kGS
top-kCuckoo Hmm top-kCuckoo HE
top-kRGS | s00| top-kRes Emm]
w150
£
:
E
= 100
50
0
pr,g p@& Q@Je %y e By %y %
=4 1 o 4 K2 Y
(A) Epinions (B) Amazon
500
top-kGS HEEEN top-kGS NN
top-kCuckoo MR top-kCuckoo EEE
top-kRGS = 4 400 | top-kRGS EEEE B
- 300 B
E
F
£
= 200 —
100 - =
0

% %, %
eq{‘) -{5@ %5

%’9 %e, %e;é Py

(c) Google (D) LiveJournal

FIGURE 3.4: Search time for the top-k search problem (Varying |Q|)

45

Time (ms)

Time (ms)

Time (ms)

Time (ms)

200
top-kGs ——
180 - top-kCuckoo ——
top-kRGS —+—

160

20 .

topkGS —+—
2001 top-kCuckoo —%—
180 topkRGS —*—

(¢) Google

Time (ms)

Time (ms)

600

500

top-kGS —+—
I top-kCuckoo —— 1
top-kRGS —*— o

5 10 15 20 25 30 35 40

(B) Amazon

top-kGS —+—
[top-kCuckoo —— "
L topkRGS —— e 4

(D) LiveJournal

FIGURE 3.5: Search time for the top-k search problem (Varying k)

120

DivGS M
DivCuckoo NN

(A) Epinions

120
DivGs Hm

DivCuckoo
100

80
60
40 -

20 -

% Ry
B Y

(c¢) Google

Time (ms)

Temps (ms)

400

350

300

250

200

150

100

DivCuckoo N
ol

DivGS Hmmm

%, f %

RO

(B) Amazon

DivGs
- DivCuckoo Hm 4

b, By, B B B % G

% v

%y
OB B

(D) LiveJournal

FIGURE 3.6: Search time for the diversified top-k search problem (Varying |Q])

46

This criterion evaluates the effectiveness of algorithms. The second criterion is
efficiency in terms of search time. In the following, we demonstrate the usefulness

of our propositions by conducting three sets of experiments.

The first experiment, called failure rate, analyzes the effectiveness of the RGS

model against the GS model using the four datasets.

The second experiment, called top-k search, analyzes the efficiency of the proposed
algorithms for the top-k matching problem. Three sets of algorithms are investi-
gated: (1) Top-kGS is the implementation of the top-k search algorithm using the
S model and the early termination property [115]. This algorithm is well evalu-
ated in the literature. It takes on average only 60% of the time of the same process
without the early termination property. (2) Top-kRGS is the implementation of
the top-k search algorithm using the RGS model. (3) Top-kCuckoo is the imple-
mentation of the top-k search algorithm using the RGS model and the cuckoo
filter as an optimization strategy (Algorithm 2). Although the RGS and the GS
models are different, we compare the RGS-based algorithm with the GS-based one

to prove the effectiveness and the efficiency of the proposed approach.

The last experiment, called Diversified top-k search, evaluates the efficiency of the
proposed diversified top-k search algorithm. We compare our algorithm (called
DivCuckoo), which is the implementation of the diversified top-k algorithm using
the RGS model and the cuckoo filter, with the diversified top-k algorithm (called
DivGS), which is the implementation of the diversified top-k search algorithm
using the GS model and the early termination property [115].

3.6.2 Results

In the following, we report and discuss the obtained results.

3.6.2.1 Failure rate

We first evaluate the effectiveness of the RGS model compared to the GS model.
Figures 3.3a, 3.3b, 3.3c and 3.3d report the results of the failure rate of the two
searching models on Epinions, Amazon, Google and LiveJournal datasets, respec-

tively. In this experiment, we set k& = 10 and we varied the query size from (5, 6) to

(20,60). We observe that the RGS model effectively reduces the failure rate in all

47

experiments. For instance, the RGS’s failure rate using Q(5,6) is 20%, 35%, 30%
and 25% less than the GS’s failure rate on Epinions, Amazon, Google and Live-
Journal, respectively. We observe almost the same results for all other queries on

all datasets.

Case study. The results presented in the figures of failure rate show whether
the algorithm returns at least one response. Nevertheless, this does not help to
know if the algorithm has identified enough results, i.e., whether the number of
returned results is close to the desired k. For all datasets, the result lists of both
models are inspected, and we observe that (1) the returned results correspond to
the desired queries and (2) the RGS model surpasses the G'S model. For instance,
we kept & = 10 and we consider queries of size (8,12) on the Amazon dataset.
These queries correspond to the minimum difference between the failure rates of
the two models (the GS’s failure rate is 65% and the RGS’s failure rate is 45%).
For the queries that have been answered by the GS-based algorithm, this latter
returned 1,3,3 and 5 answers for 4 different queries. However, the RGS-based
algorithm was able to find 7,10,9 and 10 answers for the same queries. These

observations are for small queries and the problem persists for larger ones.

3.6.2.2 Top-k search

The search time criterion shows the efficiency of the proposed approach. In what
follows, we report the search time of the three algorithms. We first start with the
search time by varying the query size, then we present the search time by varying

the number of desired answers k.

Varying query size. Figures 3.4a, 3.4b, 3.4c and 3.4d show the average search
time per query size (20 queries per size) after running 30 times in the same setting
as the Failure rate experiment. The results show that top-kGS and top-k Cuckoo
always outperform top-k RGS. On Epinions dataset, top-k Cuckoo takes less search
time than top-k GS for small queries, but it takes more search time for large queries,
which is entirely reasonable since top-k Cuckoo identifies more matches. Generally,
top-k GS and top-k Cuckoo have the same time on average. top-k Cuckoo takes only
61% of the time of top-k RGS on average. On Amazon dataset, top-kGS takes 78%
of the time of top-k Cuckoo, which outperforms top-k RGS by 49% on average. On

48

Google dataset, top-kGS takes 82% of the time of top-k Cuckoo on average. On the
other hand, top-kCuckoo improves top-kRGS by 48%. On LiveJournal dataset,
top-k GS takes 89% of the time of top-k Cukcoo, which improves top-kRGS by 36%

on average.

Varying k. For this experiment, we have varied k£ from 5 to 40 with an incre-
mentation of 5, and we have chosen the query size Q(7,9) since it has the minimum
difference between the failure rate of the two models. Figures 3.5a, 3.5b, 3.5¢ and
3.5d report the search time by varying k. The three algorithms are sensitive to
k. The search times of top-kGS and top-kCuckoo are close, and both of them
outperform top-kRGS.

In terms of scalability, both models scale well with the graph size, which is ap-
proved by the experiments on Google and LiveJournal datasets. The search times
of top-k Cuckoo and top-kGS are less sensitive to the variation of £ than those of
top-kRGS.

3.6.2.3 Diversified top-k search

Finally, we evaluate the efficiency of DivCuckoo against the DivGS. In this exper-
iment, we do not report the results of the diversified top-k search without using
the Cuckoo filter optimization since it has a longer search time compared to the
two other algorithms (as shown in the previous experiments). We keep the same

setting as the Varying query size experiments (Section 3.6.2.2) and we set A = 0.5.

Figures 3.6a, 3.6b, 3.6¢ and 3.6d show the average search time per query size (20
queries per size) after running 30 times. These results are consistent with the
previous experiments. On Epinions dataset, DivCuckoo outperforms DivGS for
small queries, which is unexpected since it performs more test and it identifies
more matches. Furthermore, DivGS takes less search time for large queries, which
is quite reasonable according to the principle of each model (GS and RGS). On
the other datasets, we observe that DivGS and DivCuckoo have an almost similar
search time on average for almost small queries. We also observe the same results

as those on Epinions dataset for large queries.

49

Both algorithms are sensitive to the query size (|V,]|,|E,|). However, DivCuckoo
is more sensitive due to the extra time incurred by larger queries to compute the

matching using the RGS model.

Case study. To evaluate the quality of our algorithm, we manually inspected
the top-3 diversified matches. We observed that the returned results correspond
to the queries and the DivCuckoo substituted at least one intermediate result by

another one to diversify the final results.

These experiments show the performance of the proposed approaches, using the
RGS model, in terms of quality and with an almost similar search time to those

using the traditional G'S model.

3.7 Chapter summary

In this chapter, we have addressed the (diversified) top-k graph pattern match-
ing problem. We have introduced and studied a new model of graph pattern
matching called Relaxed Graph Simulation (RGS). Based on the RGS model, the
search process can achieve more meaningful matches and avoid the empty-set an-
swer problem by considering matches with missing nodes and without affecting the
quality of results. It provides good flexibility for several applications, such as social
networks. We have also defined functions to measure the relevance and diversity
of the returned matches. Based on both of them, we have proposed a diversifica-
tion function that balances the two criteria. Besides, we have developed efficient
algorithms using the cuckoo filter for computing the (diversified) top-k matches.
Therefore, our approach is very suitable for large graphs due to its scalability. The

experiments validate the effectiveness and efficiency of this approach.

Chapter 4

Aggregated search: Definition

and overview

Contents
4.1 Aggregatedsearch 51
4.1.1 Motivation Lo 52
4.1.2 Definition 53

4.2 Aggregated search: related research and IR disciplines 57
4.2.1 Federated Search, 57
4.2.2 Cross-Vertical Aggregated search 58
4.2.3 Natural Language Generation 58
4.2.4 Question answering 59
4.2.5 Composite retrievalo 59

4.3 Aggregation search in graphs 60

4.4 Relational aggregated search 61
4.4.1 Relational aggregated search framework 61

4.5 Chapter summary ¢ v v v v v v v v v o v v oo 63

Information Retrieval (/R) encounters a migration from the traditional paradigm,

which aims to return a list of ranked responses, to the aggregated search paradigm,

which aims to provide integrated search services that bring the most focus and

relevant answers to the user’s queries.

In other words, in response to a user’s

query, traditional information retrieval systems back a ranked list of links that

50

51

reference potential answers examined by the user to find those that likely fulfill
his/her need. For some queries, the user could find the link that satisfies his/her
need (e.g. the date of the second world war). However, for other kinds of queries
(e.g. the second world war), one link (or document) is not enough since the
relevant information may be scattered across several documents. In such a case,
the user should collect and aggregate all relevant and non-redundant information,
from different data sources, which can respond to his/her expectations. Querying
all these data sources and combining the returned results in the same aggregate
to achieve better relevance and better organization is the scope of the aggregated

search.

In this chapter, we firstly present the aggregated search paradigm in the field of
Information Retrieval (/R), which is one of the most exciting problems in IR. We

also survey and discuss related /R disciplines and tools.

4.1 Aggregated search

Recently, information retrieval systems have been expanding to address more range
of information-seeking tasks. Examples include search according to the type of
information (e.g., image, document, video...) or according to the domain of search
(e.g., shopping, travel, news ...). Each information-seeking task requires, in most
cases, a customized solution. In other words, different tasks may require different
representations of information, different retrieval algorithms and different ways
of returned-results representation. For examples, (1) images and books require
two different representations, e.g., images can be represented by text from the
surrounding context in the originating page [155] and books can be represented
by text from an external summary page [156]. (2) Geographic-based search and
news search require two different retrieval algorithms, e.g., local business search
may require favoring businesses that are geographically close [157], news search
may require favoring recently published articles [158]. (3) A video search and
web-page search require two different representations, e.g., videos are displayed
using a still-frame of video, a description and a duration while web-page results
are displayed using the title and a summary showing the context where the query

terms appear [159].

52

The diversity of user needs makes information retrieval engines more and more
specialized. Typically, an engine that supports multiple search tasks uses a spe-
cialized system for each supported task. How can such an approach be achieved
by integrating search across these widely different systems? This is the goal of
the aggregated search. Aggregated search addresses the task of searching and as-
sembling information from a variety of data sources and placing them in a unified
interface or document. Using this search paradigm makes it possible to exploit a
wide range of functionalities and advantages in order to obtain better results, in

terms of precision and quality, to a user query.

4.1.1 Motivation

Typically, Information Retrieval (IR) engines return, in response to a user query,
a list of ranked documents or links that are evaluated as deemed matches. These
returned documents are ranked by criteria functions that deal with features of
documents and queries. The user should go through this response list to examine
each returned document, by starting with the top one, in order to find relevant
answers to his/her query. As a result of current information features, the returned
list may become huge, and the relevant information may not be a single adjoining
document which makes these systems outdated concerning the satisfaction of the

user needs.

Most of the used matching processes in these engines focus on relevant information
at the document level. Each of them is based on a theoretical model such that the

probabilistic model [160], vector space model [161] and language model [162].

This vision of the document-level ranking is limited and may not be appropriate
to meet user expectations [19-21] for several reasons. In the following we cite
some limitations: (1) a relevant information may not be an entire document,
it may be contiguous or scattered sections (information) in the same document
as it may be scattered across several documents, (2) the way in which returned
results are represented, often as a ranked list, is not always appropriate to the
user’s expectations above all when the answer is just a part of document, (3) the
interpretation of queries differs from one context to another, which makes them
ambiguous in term of information need. The example in such a case is when a term
refers to several things at once, especially when different sources of information

are used to construct the answer.

93

These mentioned limitations are just some of many other limitations of tradi-
tional information retrieval systems. Thus, there is a need for more focus, more
organization, and more diversity in the returned results. Besides, more in-depth
search methods, which process information with finer granularity and build a re-
sponse by combining multiple contents that may be useful to the user, are needed.

Aggregated search addresses these tasks of searching and assembling results.

4.1.2 Definition

Google! was the first who explicitly introduced the idea of aggregated search as

universal search:

"Google’s vision for universal search is to ultimately search across all its content
sources, compare and rank all the information in real time, and deliver a single,
integrated set of search results that offers users precisely what they are looking for.
Beginning today, the company will incorporate information from a variety of previ-
ously separate sources — including videos, images, news, maps, books, and websites
—nto a single set of results. At first, universal search results may be subtle. Over
time users will recognize additional types of content integrated into their search
results as the company advances toward delivering a truly comprehensive search

experience.”

Moreover, the first definition of the aggregated search was given at the ACM SIGIR
2008 Workshop on Aggregate Research [20]:

Definition 6. Aggregated search is the task of searching and assembling informa-

tion from a variety of sources, placing it into a single interface.

In other words, the goal of the aggregated search is to provide integrated search
across multiple heterogeneous sources and construct an aggregate answer, that
contains the most relevant, exhaustive and non-redundant information, to be re-

turned in a unified interface (document) and a common presentation of results.

For instance, the provided results for the query “Stephen Hawking” in Google
search engine? (see Figure 4.1), in the red rectangle that represents the aggregated

search result, contain a short biography, images, associated books, and movies.

Thttp://googlepress.blogspot.com /2007 /05 /google-begins-move-to-universal-search_16.html
2March 2019

54

Google stephen Hanking Y

Tous Imeges Widdos Aotuskés Lwes Plus Pasmétres Outls

Environ 35,000 000 résultats (0,48 secondes)

Stephen Hawking — Wikipédia
kilStephen_Hawking
a8

S Décés: 14

Stephen Hawking - Lucy Hawking - Jane Wilde Hawking

Stephen Hawking <

Physicien théorizien

‘Stephen William Hawiing, né e 8 jamvier 1842 & Orxford ef mort e 14

oricennique. Théaneen d2 renommée mandisle, ses lives 2t ses

bliques ont far [£I8brite. VWikipé:
Pourquol Stephen Stephen Hawking Stephen Hawking mest Sppeiechs pUEsges ont it de i Doclici b Specal

Hawking n'a jamais plus, mais la
voulu changer de voix connaissance des trous
2 noirs ...

with Staphen Hauking,

Le Monde - 14 mars 2018 YouTube - 14 mars 2018 LaPresseca-lly= 7 heures 5
Epouses : Elsine Mason (m. 1995-2008), Jsns Wilds Hausking (m

Alaune

-
Unebrive Brives Yatilun

Lnivers
Trous noirs. Stephen Stephen Hawking n'est Une piéce de monnaie histoire du___ réponses grsnd sans une

Livres. o den

Stephen
Hawking
.

o e

FI1GURE 4.1: Aggregated search result in Google web search engine

This is why this kind of search engine uses several techniques that aim to search
and provide results from various sources. Then it integrates diverse contents,

provides pertinent answers and assemble related contents in the same frame.

Based on the above, aggregated search can be seen as a mature subfield of previous
works in the information retrieval fields such as federated search, metasearch, se-
mantic search, natural language generation and so on, which will be discussed later
from the perspective of aggregated search. Typically, most aggregated search sys-
tems follow an architecture with three main sub-tasks [21]: (1) Query dispatching,
concerned with how to analysis the used query and how to select the information
sources, (2) fragment retrieval, concerned how to select fragments that contain per-
tinent information, from which relevant documents can be retrieved, and (3) result
aggregation, concerned with how to assemble results from the retrieved fragments
so as to best represent the final result with the most relevant information. Figure
4.2 shows a general aggregated search framework that uses the three sub-tasks. In

the following, we will discuss them in more detail.

In the query dispatching step, we include the actions that precede query matching,
that is, initial interpretation of the query (query analysis) and other actions that
depend mainly on the query and knowledge about the collections. We can also
see this step as deciding which solutions should be triggered for a given query.
We distinguish between the approaches that aim at selecting the right sources to

be used, the approaches that try to understand more about the query, and the

55

Fragment
retrieval

Result
aggregation

B8
@ aa

Query
’Stephen Hawking” dispatching

FIGURE 4.2: Aggregated search framework

approaches that try to extend the query to have more chances to find suitable

search results. We will list here briefly well-known problems in this context:

e Query dispatching: the first sub-task deals with two operands before pro-
cessing the query matching. The first operand is the query where each
submitted one undergoes an analysis operation that aims to interpret and

reformulate the query. The second operand is the information sources.

— Query analysis: this action aims to interpret and reformulate the query
in order to decide which solutions should be triggered. We distinguish
two main operations: (1) Query interpretation that aims to discover
the intent of the question, to find what type of question is being asked
(e.g. wh-questions, yes/no questions, ...) and to identify semantic
relations between the query and the answers [163]. In this respect,
several solutions are envisaged, such as query decomposition in order
to make the retrieval process easier [164, 165]. (2) Query reformulation
aims to add some features, to adapt and to personalize the query. These
operations are mainly based on the interpretation of the query and the
sources to be interrogated. To illustrate this concept, one can consider a
search engine that interrogates XML collections. Usually, the query is in
a textual format which should be translated to an appropriate format
(e.g., XML fragment) that allows considering content and structure

using the same query [166].

56

— Source selection: is to predict which sources (if any) seem relevant to the
query. One can view this task as that of deciding which sources should
be interrogated and which type of information should be displayed on
the aggregated search results regardless of their position. Furthermore,
it is impractical to issue the query to every source of information [159].
For this reason, most approaches use pre-retrieval evidence that is based
on particular keywords; for example, the query is related to a specific
domain such as health domain, contains the term “news” or the query

contains the name of a location, etc.

e Fragment retrieval: is the sub-task that follows the query dispatching
and precedes the result aggregation. That is, it aims to extract information
fragments, that seem relevant to the query, and return them to construct
the final answer that will be sent to the next sub-task. Typically, on the
one hand, this sub-task depends on the nature and the type of interrogated
sources, and on the other hand, the type of expected results. To this end,
there are many types of fragment retrieval approaches that can be used in
the aggregated search process. This includes textual retrieval, image re-
trieval, heterogeneous retrieval, and so on. Also, we can distinguish between
approaches of document retrieval, that seek to return the entire document,
and approaches of fragment /focused retrieval, that seek to return relevant in-
formation units instead of returning the entire document. These approaches
are not exclusive; we can also mention others such as database retrieval,

knowledge graphs and so on.

e Result aggregation: previous sub-task results are used as input for this
last sub-task. The purpose of result aggregation is to build the final result,
which will be returned to the user by putting these results together in the
best and coherent way. In the following, we mention and describe some

generic ways of content aggregation:

— Sorting: is the most used method of representation in the field of in-
formation retrieval. It is used to process the list of returned fragments
and return a new sorted list with respect to some defined features/func-
tions, e.g., relevance function, location, time etc. This vision is limited

since the aggregated search aims to go beyond the ranking.

— Grouping: based on common features of the returned results, the group-

ing action tends to create groups of results that share at least some

o7

features or similar content, such as an event in the same time, same

information format, same kind of object, same location, etc.

— Merging: we can present this process as the action that brings several
fragments/results into one aggregate result. This last can be a new
document, a summary off all relevant results or any other representa-

tion/format allowing the merging of results.

— Splitting: unlike the merging process, the splitting process decomposes
fragments/results into other smaller ones. Typically, this process is
used when the returned fragments are relatively huge and is usually
augmented by another process, like the sorting or the grouping, that
better represents the final results. The output of this process can be

an ordered list of even more smaller fragments.

— Fatracting: The main purpose of this process is to extract and iden-
tify one or more semantic information from the returned fragments.
These semantic information can be entities describing places, pronouns

identifying interlocutors, images or video, and so on.

4.2 Aggregated search: related research and IR

disciplines

Aggregated search can be seen as a mature subfield of previous works in the
Information Retrieval fields such as federated search, metasearch, semantic search,
natural language generation, and so on. In the following, we discuss these different

disciplines from the perspective of the aggregated search.

4.2.1 Federated Search

Federated search or distributed information retrieval is a multiple distributed data
sources paradigm used in the IR field [167-169]. One can identify three tasks, as
for the aggregated search, in this paradigm. Each submitted query undergoes the
dispatching task that aims to select some sources, which seem relevant to the query,
to search. These sources are indexed and characterized by a local representation

that is used to identify them better. After that, the system sends the query to these

o8

selected sources, for which it may have specific matching algorithms, which return
results for the query to the system. Finally, the obtained results are presented to

the user. Typically, the final answer is a ranked list.

Using the concept of federated search in the web gives birth to two paradigms:
meta-search [170] and aggregated search [171]. A metasearch engine queries several
search engines, as an intermediary to query different sources, and combines results
from them or display them separately [20]. Unlike aggregated search approaches,
federated search approaches use assumptions that are not worth in the aggregated
search environment. However, they are similar in the way of querying distributed

sources and assembling the final returned results.

4.2.2 Cross-Vertical Aggregated search

At the onset of the Cross-vertical aggregated search (cvAS), studies have seen it as
an instance of both federated search [169] and meta-search [170]. However, since
the introduction of the concept of aggregated search, most studies, such as [172—
175], classified the cvAS within the aggregated search direction. Cross-vertical
Aggregated Search is defined as the task of searching and assembling information
from different vertical search engines in response to a user query [21, 175, 176].
Usually, this paradigm is related to the web search where each vertical represents
a specific collection, such as videos, images, news and so on [158, 177]. Using cvAS
provides more visibility to vertical search engines [176] where the final results are

more than a list of fragments.

4.2.3 Natural Language Generation

From the perspectives of the expected results, Natural Language Generation (NLG)
approaches and Aggregated Search approaches are similar since they both use in-
formation fragments across several documents/sources rather than a list of ranked
documents. The purpose of the Natural Language Generation is to organize tex-
tual information using predefined ways to generate answers in an appropriate
linguistic form [178]. Here we show the analyses of NLG given in [21]. Approaches
using NLG paradigm care less about the query dispatching and fragments retriev-
ing as the information given beforehand from databases or search engines [179],

that is, some NLG approaches start from a known context of use which means that

29

the need is considered implicit. Based on the information fragments, NLG aggre-
gates these fragments using different prototypical ways of information organization
known as discourse strategies. These strategies can be either static, using cause-
effect relation or chronological form, or dynamic that depend on the information
need and the information availability also. To this end, the dynamic strategies,
also known as learned strategies, use learning models on examples databases or
documents that serve as a training set. Thus, each learning strategy is specific to
one known domain [180]. Interested readers are referred to [178] for an interesting
study of NLG.

4.2.4 Question answering

Unlike traditional information retrieval engines, that return a ranked list of doc-
uments, Question Answering (QA) paradigm provides a set of multiple responses
[181]. One can see this paradigm like a case study for aggregated search since the
answers are produced through information extraction and assembling. Similar to
the aggregated search, we also find the three main sub-tasks of the defined frame-
work (Figure 4.2) in the QA paradigm. In the query dispatching sub-task, several
approaches are used to understand the query, identify named entities and other
helpful facts within the query, which are useful for selecting potential sources. The
fragment retrieval sub-task in QA aims to extract information, in the form of text,
and assemble answers. Although this sub-tasks does not amount to the impor-
tance of the other two sub-tasks, it is worth mentioning that it is usually a critical
and error-prone process, which is usually not easy. Finally, as a third sub-task,
QA engines return a list of potential answers which juxtaposed with supporting
text passages extracted from the matching documents. Further information about
QA could be found in this interesting study [165].

4.2.5 Composite retrieval

Composite retrieval paradigm is an interesting new search paradigm that seems
similar to the aggregated search paradigm. Its main purpose is to build a coherent
set of item bundles, associated with different aspects or sub-topics of the query,

rather than return a list of ranked documents. This paradigm was first introduced

60

in [182]. In this study, the composite retrieval aims to return the k-diverse bun-
dles of complementary items. For example, planning a trip requires a query that
expects as answer bundles associated with travel options such as transportation,
hotels, restaurants, the weather, points of interest, and so on. Each returned bun-
dle should be valid within the constraints of the query, such as the time of the
trip and the maximum budget to spend. This problem is NP-hard as showing in
[182]. Several other works, such as [183, 184], process composite retrieval within

the aggregated search context.

4.3 Aggregation search in graphs

Recently, several approaches, such as [7, 36, 185, 186], have been proposed to deal
with the problem of graph query processing. Their main purpose is to find the
information/subgraph that seems relevant to the query graph. In this respect, the
main challenge is how to ensure the efficiency of the graph comparison process in

terms of search time and search space?

In a scenario, like previous ones of aggregated search, where the answer is scat-
tered across several fragments/subgraphs, most of the existing approaches do not
attempt to assemble subgraphs in a sensed way to provide the final answer for a
given query. In view of this context, several works seem to have a similar inten-
tion as the problem of aggregated search. This concept differs from one context to
another, where the keyword graph aggregation has a different meaning. Usually,
most of the proposed approaches aim at performing a certain level of summariza-
tion or compressing using merging techniques based on shared common features
[187-191].

In [187, 188] authors propose a model that allows merging XML data (trees)
streams. It is based on a merge template that defines the result document’s struc-
ture, and a set of functions to be applied to the XML data streams. Similarly,
the work involved in [189] performs aggregation in two steps. First, all nodes that
share some common features are grouped within the same super-node. Next, if all
the nodes within two super-nodes are related then a relation/link between these
super-nodes must be created. Authors in [192, 193] present an XML keyword
search model based on possibilistic and bayesian networks respectively, which al-

lows returning, in the same unit, the answer with its complementary elements. The

61

study given in [191] introduces a set of formalizing rules, called graph aggregation,
to perform summarization preferences within a group of users. The main idea
of this study is to build a final graph, which represents users with their common
preferences, from a set of oriented graphs, where each graph represents preferences
of a single user. Similarly, aggregating and merging found a way in the ontology
field. The study presented in [194] performs some level of aggregating and merging
in order to summarize a global choice of a group using opinions, preferences, and

judgments available.

4.4 Relational aggregated search

Relational Aggregated Search (RAS) groups the approaches that involve retrieving
and aggregating information fragments using their relations [173]. Combining both
paradigms, entity-oriented search [195] and relational search [196, 197], gives rise
to an interesting alternative that seeks not only entities of information, but also the
relationships between these entities, which makes this new paradigm more efficient.
In this respect, the relation between RAS paradigm and the graph search (graphs,
knowledge graphs, graph databases etc.) cannot be overlooked by the fact that

both seek information surrounded by structural requirements.

In the following, we present the main concepts used in RAS as well as an according

framework of relational aggregated search.

4.4.1 Relational aggregated search framework

Relational aggregated search paradigm may improve many search directions, such
as semantic search, entity-oriented search, database information retrieval, ... | by
considering the relation between information fragments. The use of these relations
can help, in most scenarios, to find more structured results by considering more
attributes related to the query, e.g., a query that seeks a person may have, as a
result, not only a name but also any other type of information that seems useful

and relevant to the query such as date and place of birth/death, news and so on.

By analyzing the needs and the requirements of this paradigm, we find that the

aggregated search framework, depicted in Figure 4.2, can be generalized for the

62

relational aggregated search paradigm as long as it takes into account the relation
aspect within the three sub-tasks (query dispatching, fragment retrieval, and result

aggregation).

4.4.1.1 Query Dispatching

The query dispatching sub-task maintains the same principle and the same main
goal as described in Section 4.1. It aims to interpret and reformulate the used query
before processing the query-sources matching to select sources deemed relevant.
Inspired by the work in [196], authors in [173] propose a taxonomy that identifies
three types of queries where benefits from relational aggregated search are obvious.

In the following, we describe these relational query types.

e Attribute query: This type of query looks for units of information that
can directly meet the desired need, for example "Game Of Thrones filming

locations”.

e Instance query: This type of query looks for a known instance of a class/
category. The returned result should contain this instance with all its related
attributes, for example "Game Of Thrones” is an instance of the class Tv

Series.

e Class query: This type of query is a generalization of the previous type.
A class query could be as ”French writer”, "movies”, ”animals” and so on.
Using this kind of query requires more voluminous answers, i.e., the returned

answers contain all class instances with their attributes.

The query dispatching is an important task since the query type determines which
search approach should be triggered and which solution of result aggregated should

be investigated.

4.4.1.2 Relation search

The second sub-task in relational aggregated search is called relational retrieval/
search (instead of fragment retrieval). In this sub-task, RAS uses approaches that

focus on the relation between the information units. For this reason, interrogated

63

sources are usually structured as entities with specific inter-relations. This kind of
sources is known as knowledge bases. Another interesting information search field
that uses relation-based search is known as Information Extraction (IE) [198].
IF is common to extract and relate information from structured sources. Existing
approaches can extract not only information entities, such as names, location, etc.,
but also their relations such as ”George R. R. Martin” author of A Song of Ice
and Fire”. However, further information about this search field could be founded

in these interesting studies [21, 199].

4.4.1.3 Result Aggregation

The use of relations allows considering new ways to ensure the result aggregation.
In RAS, the aggregation of results depends mainly on the type of the query. In

the following, we discuss them briefly.

e Result aggregation of the attribute query: The best choice in answering to an
attribute query is to return the exact answer, i.e., the correct value of the
attribute being requested. For this type of query, choosing the most relevant
answer is a delicate decision. That is why returning a list of candidate

answers can be considered the best choice.

e Result aggregation of the instance query: When the query is an instance, the
answer can be the values of all the attributes of the instance. In such a case,

the best choice can be the summarization of these attributes.

e Result aggregation of the class query: As described above, queries of type
class could be answered by a list of instances that describe this class. This
list could be presented in tables with rows representing the instances and

columns representing their attributes.

4.5 Chapter summary

In this chapter, we presented the aggregated search starting from motivation and
a general definition in its original context, i.e., Information Retrieval. We have
shown that the use of the aggregated search provides a rewarding experience for

users. We presented and discussed a general framework where the aggregated

64

search process is decomposed into three main sub-tasks (query dispatching, frag-
ment retrieval, and result aggregation). Further, we presented some important
and related works that go beyond information retrieval (query matching) with an
additional effort on result aggregation. We have started with aggregated search
in the IR field, such as federated search, and we have presented and analyzed a
spectrum of approaches, from multiple research fields, in the context of aggre-
gated search. Among these approaches, we can briefly mention federated search,
cross-vertical aggregated search, question answering, natural language generation,

composite retrieval and so on.

Furthermore, we introduced and discussed the concept of graph aggregation from
the point of view of literature work. The interpretation of ”aggregation” in these
works is different from that in the information retrieval field. However, in the
graph context, the aggregation can be achieved by graph operators, such as graph
compression or graph summarization, which aim to merge entities (nodes) and

relations (edges) that share some features.

At the end of this chapter, we presented the relational aggregated search, which
is related to the graph search given that both look for information surrounded
by relations. We highlighted and focused on RAS as an intersection between the
graph search and the aggregated search, which represents the scope of our next

contribution.

Chapter 5

Tree Matching and XML

o
Retrieval
Contents
5.1 Introduction 000, 65
5.2 Querying XMLdata...............00.0... 66
5.2.1 Backgrounds on XML documents 67
5.2.2 Query languageso 68
5.3 Algorithms for tree matching 69
5.3.1 Exact tree matching L. 70
5.3.2 Approximate tree matching algorithms 72
5.4 Tree matching for XML retrieval 76
5.4.1 Exact tree-matching algorithms for XML retrieval . . . 76

5.4.2 Approximate tree matching algorithms for XML retrieval 79

5.5 Chapter summary ¢ v v v v v ot v o oo 82

5.1 Introduction

Nowadays, the XML (eXtensible Markup Language) is among the most used for-
mat for representing and exchanging information given its simple nature and self-
description. The advent of applications related to the emergence of the internet,

ranging from intelligence web searching to e-commerce has brought this standard

65

66

to greater prominence. The strength of XML lies in its ability to describe any data
domain through its extensibility. XML tags describe the hierarchical structure of
the content. An XML element is delimited by an opening and a closing tag, and

it describes a semantic unit or a hierarchy of the document.

Victim of its success and intensive use, XML has shown the need for appropriate re-
trieval methods that can exploit huge documents. Using this standard, structured
documents focus on relevant information. They contain heterogeneous contents
organized with structural information. The structure of a document can be used

to process textual information with more granularity than the entire document.

In this context, many approaches have been proposed to deal with XML retrieval.
However, most of them have not exploited the benefits of this standard, although
the use of graph theory may be of interest. In this respect, the XML data model
allows considering documents as trees [200], which represent a particular kind of
graph. In such a representation, nodes represent XML elements (i.e., text) and
edges represent relations between these elements. The same representation can be
used to formulate the queries. On top of that, the retrieval process can be ensured

by a matching process between the tree query and the tree documents.

In [18], the authors highlight three main challenges to deal with structured queries
and the tree matching problem. The first issue is how to ensure efficiency in terms
of returned results, especially when the interrogated documents are enormous.
The second issue is how to interpret structural constraints when the structure of
the query does not match the structure of the document; nevertheless, elements
describing the information match even approximately the need in the query. At
last, how to combine the content requirements of the queries, if they exist, with

the structural one.

5.2 Querying XML data

XML documents can be considered as trees, which allows applying algorithms pro-
posed for tree matching. This section is devoted to this topic. In the following, we

will first recall some backgrounds and present some issues behind XML retrieval.

67

<article year = *1996”>
<header>
<title> An Algorithm for Subgraph Isomorphism</title>
<author> J. R. ULLMANN </author>
</header>
<body>
<section>
<title> Abstract </title>
<paragraph> Subgraph isomorphism can be determined by ... </paragraph>
</section>
<section>
<title> Introduction</title>
<paragraph> Corneil and Gotlieb [4] mention that ... </paragraph>
<paragraph> Simple Enumerating Algorithm for ... </paragraph>
<paragraph> ... </paragraph>

</section>
<section>

</section>
<section>

</section>
</body>
</article>

FIGURE 5.1: An example of XML document

5.2.1 Backgrounds on XML documents

As mentioned earlier, the data model of XML documents gives them a tree repre-
sentation. In such a representation, the root node represents the whole document,
internal nodes (i.e., non terminal nodes) represent elements and leaf nodes (i.e.,
terminal nodes) represent the contents. These nodes are linked with edges that
represent their hierarchical relations. For more visibility, we give an XML docu-
ment in Figure 5.1 and its corresponding tree representation in Figure 5.2. By the
way, XML documents can be categorized into two main classes. The first class,
called ”data-oriented documents”, is characterized by a determined structure and
homogeneous contents. Documents within this category can be considered as a
database where each element represents a database record (i.e., like a couple of key-
value). Unlike the first class, documents in the second class, called ”text-oriented

documents”, have irregular structure and may contain mixed contents.

Generally, the success of an information search application depends directly on
the data representation and the efficiency of the search process. Talking about
XML retrieval leads to two most problems in XML access approaches: exact and
inexact matching according to their results. In other words, exact approaches
return results that satisfy all the requirements of the query. Such approaches focus

on efficiency problems, and they are more concerned with searching than ranking

68

article

body

year ="1996"

title section

section

paragraph paragraph

An Algorithm for

Subgraph Tsomorphism | [+ & VLLMANN

Subgraph [Corneil Simple
Abstract |Introduction
lisomorphism can be ooueH land Gotlieb i

|determined by [4] mention that ... Algorithm for ...

Ficure 5.2: XML tree associated with the document of Figure 5.1

(e.g., database search). However, inexact approaches aim at ranking components,
that deemed similar to the query, according to their relevance (e.g., information

retrieval approaches).

The XML retrieval problem is to match a document tree with a query tree. In the
following, we will first present some query languages, and then we will describe

some approaches from the information retrieval and the database communities.

5.2.2 Query languages

The user’s need can be formulated through one of two types of queries, content-
only or content-and-structure queries. Usually, content-only queries are used in
traditional information retrieval, where simple keywords terms express the desired
information. Such queries are suitable for XML retrieval, especially when users
do not look or know the structure. In our work, we are not interested in this
kind of queries, since they do not have structural hints. In content and structure
queries, the content conditions are surrounded by structure requirements. These
reduce the size of returned results by favoring those that respect, in addition to
the content, the structural constraints. In [201], the authors classified the content-

and-structure query languages in three main categories:

e tag-based queries is used to express simple conditions concerning the tag of
the information sought, i.e., "title: game of thrones” which means that the

user looks for a title element about ”game of thrones”.

69

article

section year

nonmonotonic reasoning 1999-2000
FIGURE 5.3: INEX topic expressed as an XML fragment.

e path-based queries use the XPath syntax [202] to describe the contents.
Among the query languages that use this syntax, we can cite FuzzyXpath
[203] and NEXI language [204].

e clause-based queries express the user needs via clauses that have structure
similar to the SQL one. We can mention, as examples, XQuery [205] and
XQuery full-text [206].

Authors in [166] argue that whatever the query language used, content-and-structure
queries, can be represented as XML fragments, in other words, as labeled trees.
Using this representation of queries offers more flexibility in terms of representa-
tion and approximation of information needs. For instance, consider the following
need from the INEX topic: ”Retrieve all articles from the years 1999-2000 that
deal with works on nonmonotonic reasoning.”. This query can be translated into

the fragment shown in Figure 5.3.

The retrieval process can be considered as a tree matching process. In the next
section, we describe some works from the literature on exact and approximate tree

matching.

5.3 Algorithms for tree matching

The tree matching problem is defined as the process of finding a mapping between
the nodes and the edges of two trees that satisfy some (more or less stringent)
constraints, ensuring that substructures in the one tree correspond to similar sub-
structures in the other tree. This problem is crucial in many applications where
the information are represented and structured by trees. In order to state the

problem, the terminology of trees and their components has to be defined first.

70

Definition 7. In graph theory, a tree T' = (V, E) is a connected graph without
cycles where any two nodes are connected by exactly one path. If you suspend
a tree by a node r € V(T'), you obtain a rooted tree on r. In a rooted tree, a
hierarchical relationship exists between any node and its neighbors. Then each
node x (except the root r) has exactly one parent in the tree (i.e. its predecessor
in the path from r to z), denoted parent(z), and the remaining of its neighbors
are its children. If a node = # r has no child, it is called a leaf. Thus sibling nodes
x,y satisfy parent(x) = parent(y) and an ancestor of a node z is a node in the
path from 7 to = (except x). Note that an independent ancestor of v is an ancestor
that conveys only the v’s information. Moreover a tree is said labeled if each node
is given a label. A tree is said ordered if the order between siblings is important,

otherwise the tree is unordered.

Tree matching approaches are classified into two main categories. The first one
represents exact tree matching, which requires a strict and exact correspondence
among the two trees, or their sub-trees, to be compared. The second one concerns
inexact tree matching or approximate tree matching. In this category, two sub-
trees can be matched even if they are structurally different to some extent. In
the following, we present the tree matching problem, which is one of the most
interesting problems in graph theory. We also survey and discuss the exact and

approximate tree matching algorithms proposed to solve this problem.

5.3.1 Exact tree matching

Exact tree matching approaches aim to find out if a mapping is edge preserving
for each mapping for each node of the two trees. In other words, it requires a
strict correspondence between the two trees being matched, or at least between

sub-trees of them.

We give below the formal definition of the exact tree matching problem.

Definition 8. Let target T = (V, E) and pattern Q = (V, E,) be two ordered
labeled trees. The pattern tree () matches the target tree T" at node r if there
exists a one-to-one injective function from the nodes of @) into the nodes of T" such
that:

e the root of () maps to r,

71

e N
s e N
]

FIGURE 5.4: An example of exact tree pattern matching.

e if u € V, maps to v € V, then u and v have the same label,

e if u € V, maps to v € V and v is not a leaf node, then each child of u maps

to some children of v.

A fraction of a target tree is shown as 7" in Figure 5.4, and the requirement of the
pattern tree is shown as) in Figure 5.4. Dotted lines represent the one-to-one

mappings between 7" and Q).

Tree matching process takes, in the worst case, O(nm) time where n is the size
of the target tree and m is the size of the pattern tree. This process is based
on a naive idea that consists of visiting all the nodes in a pre-order walk. For
each visited node v, the algorithm seeks recursively for a possible occurrence of
the pattern at the node v and the process will be terminated if a mismatched is

detected.

Several works have been done to improve the naive tree matching algorithm. These
works fall into one of these two categories: traversal approaches or decomposition
approaches. For example, but not limited, we mention some approaches. In the
traversal approaches, authors proposed in [207] bottom-up and top-down matching
algorithms. The top-down algorithm encodes all the root-to-leaf paths as strings
and seeks for occurrences of the pattern string in the target-tree string using a
string pattern matching algorithm. The bottom-up algorithm aims to find, for
each node in the target tree, all patterns and all parts of patterns that match this
node. However, the main idea of the decomposition approaches is divide and rule.
Approaches that follow this mechanism try to decompose the target tree in small
pieces in order to make the matching process easier. Authors proposed in [208] a

two-phase algorithm for tree pattern matching. The first step aims to construct

72

a matching automaton from a given pattern set. In this respect, it generalizes
the string matching algorithm of [209] using the position ordering relation for
the decomposition of patterns. After that, these patterns are merged into an
automaton. Next, in the second step, target trees are fed into the automaton, by

traversing through the automaton according to the target trees.

We will not focus here on the exact tree matching problem. However, we di-
rect the interested reader to [18] and references therein for additional information
about this research field. In the following, we review approximate tree matching

algorithms.

5.3.2 Approximate tree matching algorithms

Approximate tree matching, or inexact tree matching, can be defined as the process
of finding the most similar matches of one tree/subtree against another one. This
process can be interpreted as the task of measuring the dissimilarity between
trees. One of the most used metrics for approximate tree matching is the tree edit
distance. In [210], the authors generalized the edit distance between strings used in
[211] for trees. The edit distance between two trees is defined as the minimal cost
of edit operations that transform a tree into another tree. There are three basic
edit operations: node insertion, node deletion and node relabeling. We describe

each of these operations in detail below.

Let T, q be two labeled trees. The tree edit distance between T and ¢ is defined

as:

T, q) = min cht(ei),

e1,.,en€y(T,q) <
=1

where (7', q) is the set of edit operations, and cst() represents the edit operation

cost. The edit operations are:
e Insertion: insert a node v as a child of w in T, w’s children become v’s

children.

e Deletion: delete a node v in T', v’s children become children of v’s parent.

e Relabeling: replace the label of a node by another label.

VA SANIVANEAN
VANEVAN

d d f

FIGURE 5.5: Tree edit distance operations

Figure 5.5 represents an example of the three edit operations, where the transition
(A) — (B) represents the relabeling of the label a by r, (B) — (C') represents
the deletion of the node labeled by ¢ and (C') — (D) shows the insertion of node
labeled by f.

Approximate approaches of tree matching can be classified, based on the concept
of editing distance, into three classes [212]: tree edit distance approaches, tree

inclusion approaches, and tree alignment distance approaches.

Tree edit distance approaches. As mentioned earlier, the tree edit distance,
d(F,Q), is defined as the minimum-cost sequence of node edit operations that turns
F into G. The recursive approach for this problem was first proposed in [210],
and the solution takes O(|F| - d% - |G| - dZ%) time and space. Authors had improved
in [213] the previous algorithm and the resulting algorithm has a complexity of
O(|F|-|G|-min{lp, dr}-min{lg, dc}) time and O(|F|-|G|) space. In this approach,
the distance between two trees F' and G is computed from the solutions of following
smaller sub-problems: (1) 6(F —v,G), (2) 0(F,G —w), (3) 0(F,,Gy), (4) 0(F —
F,,G — Gy), and (5) 0(F —v,G — w). Figure 5.6 is an illustration of the this

recursive solution.

Given the importance of the problem and its presence in many emerging ap-
plications, researchers are constantly coming up with remarkable improvements.
Author in [214] proposed a faster algorithm, for un-rooted ordered trees, with
O(|F|* - |G| - log|G|) time complexity and O(|F| - |G|) space complexity.

The dynamic programming implementations of the recursive solution show their
effectiveness as the fastest algorithms. Given that each sub-problem is computed,
from other sub-problems, in constant time, the complexity of these algorithms is
equal to the number of different relevant sub-problems they produce [215]. Au-
thors showed in [216] that algorithms proposed in [213, 214] could be described

74

5(0,0) =0,
6(F,0) = 6(F — v,0) + ca(v),
5(0,G) =6(0.G —w) + ci(w),
if F'is not a tree or GG is not a tree:
0(F —v,G) + ca(v) (1)
§(F,G) =min| 6(F, G — w) + ci(w) (2)
0(Fy,Guw)+8(F —F,,G—Gy) (3),(4)
if F'is a tree and G is a tree:
F —v,G)+ ca(v) (1)
O(F,G) =min< §(F,G — w) + ci(w) (2)
HF —v,G—w)+ e (v,w) (5)

FIGURE 5.6: Recursive formula for Tree Edit Distance.

FIGURE 5.7: An example of tree inclusion matching.

as decomposition strategies. They proposed a novel algorithm that minimizes the
number of distinct recursive calls and runs at most in O(|F| - |G| - log|G| - log|G|)

time in the worst case, and (|F'||G]) on average.

Tree inclusion. The tree inclusion is a particular case of the tree edit distance.
Let F and G be two labeled rooted trees. The tree inclusion aims to locate sub-
trees of GG that are instances of F. This problem can be reduced on tree edit
distance since one can only use sequences of delete operations to obtain F' from G.
Depending on the order between siblings of the pattern nodes, this problem has
two versions: the ordered tree inclusion problem, where the order is important,
and the unordered tree inclusion, where the order is not important. The study in
[217] focused on these two versions and showed that the problem for unordered

trees is NP-complete. Figure 5.7 shows an example of tree inclusion.

Let F' and G be two labeled rooted trees. The inclusion of F' in G is defined as the

1)

A a B a C (aa)

/NN N

¢ d b f (e,\) (/\,f)\
b/ \c c/ \d (bb) (e,A) (Ac) (dd)

FIGURE 5.8: Tree Alignment Distance: (A) tree F, (B) tree G, (C) an alignment
of F and G.

embedding relation of F' into G, i.e., there is an injective function h : F' — G
that preserves labels and ancestor-ship. For each u € F' and v € F', the following

requirements are preserved:

e h(u) = h(v) if and only if u = v,
e the labels of the nodes u and f(u) are identical,

e v has an ancestor u in F' if and only if f(v) has an ancestor f(u) in G

Tree alignment distance. The tree alignment problem is another particular case
of the tree edit distance problem. The principal requirement of this concept is that
all sequences of insertion operations must be done before any delete operation. An
alignment of two labeled trees, ' and G, consists first in making them isomorphic
by the insertion of nodes, on both of them, labeled with the null label A, and
then overlaying the first augmented tree on the second. The cost of the alignment
can be defined as the sum of costs of all opposing labels in the alignment and the
purpose in such a problem is to minimize the final cost. Figure 5.8 illustrates an

example of an ordered alignment [218].

We encourage readers interested in more details to consult [18, 212] for surveys as

well as references therein.

76

5.4 Tree matching for XML retrieval

As a data structure, XML is increasingly used to model data and complex objects.
Tree representation of XML documents allows conveying as much information as
possible to ensure an efficient representation of complex objects and also a relevant
comparison between objects. Thus various real applications use XML as a model
of representation. In many cases, the success of an application based on a tree
representation of data is mainly dependent on the efficiency of the underlying
tree query processing. Talking about tree query matching leads directly to one of
the most popular problems in graph theory, which is the tree matching problem.
Tree matching consists of finding the correspondences between the nodes of two
trees that provide the best alignment of their structures. Generally, tree matching
methods can be divided into two main categories. The first category covers the
exact algorithms that consist, in the field of XML retrieval, of finding all twig
patterns in XML document. The second category covers the inexact algorithms

that return a ranked list of the most similar matches.

In this section, we present and discuss state of the art related to the tree matching
algorithms in the field of XML retrieval. Since this part of this thesis is situated
initially in the graph theory and aggregated search fields, we highlight and focus on
inexact tree matching algorithms as a preliminary step for the aggregated search
in XML documents.

5.4.1 Exact tree-matching algorithms for XML retrieval

As we have seen previously, the underlying data model of XML is a labeled tree,
and twig patterns are used for expressing queries. Recently, the problem of finding
all occurrences of such a twig pattern in an XML database has been a great deal of
interest. According to the study given in [219], most of the proposed approaches
can be classified into four groups:

e structural join approaches,

e holistic twig join approaches,

e sequence matching approaches,

e other important exact tree algorithms.

7

In the following, we cite some of the well-known algorithms and discuss their

results.

5.4.1.1 Structural join approaches

Structural join approaches are based on a fundamental idea, which usually requires
three steps: (1) decomposition step, (2) matching step and (3) merging step. In
the decomposition step, a twig pattern is decomposed into a set of basic parent-
child and ancestor-descendant relationships between pairs of nodes. Then, in
the matching step, each relationship is separately executed using structural join
techniques and the results of this process are stored for further processing. In the

final step, the intermediate results are merged in order to produce the final result.

Multi-predicate merge join (MPMGJN) [220] is the first structural join algorithm
that aims to find all occurrences of the basic structural relationships. This al-
gorithm takes advantage of the containment labeling scheme [220] (called region
encoding) that encodes each element in an XML database by its positional informa-
tion. The main purpose of this labeling scheme is that the structural relationship
(ancestor-descendant and parent—child relationships) between two elements can be
determined easily without knowledge of the path information between these two
elements. It uses a region code (start, end, level) to represent the position of an
XML element in the data tree where start and end are generated by performing a
pre-order traversal procedure of the data tree, and level is the nesting depth of the
element in the data tree. The result of this algorithm showed that for many XML
queries, MPMGJN is more than an order-of-magnitude faster than the standard

Relational Database Management System join implementation.

Using the same containment labeling scheme of XML elements, authors developed
in [221] two algorithms, Tree-Merge and Tree-Stack, for matching parent-child
and ancestor-descendant structural relationships, which decrease the time of join

processing.

5.4.1.2 Holistic twig join approaches

The main problem of approaches based on decomposing twig queries into multiple
binary relationships i