
HAL Id: tel-01685518
https://theses.hal.science/tel-01685518v1

Submitted on 16 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable algorithms for monitoring activity traces
Julien Pilourdault

To cite this version:
Julien Pilourdault. Scalable algorithms for monitoring activity traces. Data Structures and Algorithms
[cs.DS]. Université Grenoble Alpes, 2017. English. �NNT : 2017GREAM040�. �tel-01685518�

https://theses.hal.science/tel-01685518v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 Août 2006

Présentée par

Julien Pilourdault

Thèse dirigée par Sihem Amer-Yahia
et co-encadrée par Vincent Leroy

préparée au sein du Laboratoire d’Informatique de Grenoble
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Scalable Algorithms for Monitoring
Activity Traces

Thèse soutenue publiquement le 28 septembre 2017,
devant le jury composé de :

Mme. Nadia Brauner
Professeur à l’Université Grenoble Alpes, Présidente
M. Patrick Valduriez
Directeur de recherche INRIA, Rapporteur
M. Donald Kossmann
Professeur à ETH Zurich, Rapporteur
Mme. Yanlei Diao
Professeur à l’École Polytechnique, Examinatrice
Mme. Sihem Amer-Yahia
Directrice de recherche CNRS, Directrice de thèse
M. Vincent Leroy
Maître de conférences à l’Université Grenoble Alpes, Co-Encadrant de thèse

Abstract

Scalable Algorithms for Monitoring Activity Traces

Keywords: Monitoring; Temporal Data; Distributed Processing; Joins; Crowdsourcing;
Task Assignment

In this thesis, we study scalable algorithms for monitoring activity traces. In several
domains, monitoring is a key ability to extract value from data and improve a system.
This thesis aims to design algorithms for monitoring two kinds of activity traces.

First, we investigate temporal data monitoring. We introduce a new kind of inter-
val join, that features scoring functions reflecting the degree of satisfaction of temporal
predicates. We study these joins in the context of batch processing: we formalize Ranked
Temporal Join (RTJ), that combine collections of intervals and return the k best results.
We show how to exploit the nature of temporal predicates and the properties of their
associated scored semantics to design TKIJ , an efficient query evaluation approach on a
distributed Map-Reduce architecture. Our extensive experiments on synthetic and real
datasets show that TKIJ outperforms state-of-the-art competitors and provides very good
performance for n-ary RTJ queries on temporal data. We also propose a preliminary study
to extend our work on TKIJ to stream processing.

Second, we investigate monitoring in crowdsourcing. We advocate the need to incor-
porate motivation in task assignment. We propose to study an adaptive approach, that
captures workers’ motivation during task completion and use it to revise task assignment
accordingly across iterations. We study two variants of motivation-aware task assignment:
Individual Task Assignment (Ita) and Holistic Task Assignment (Hta).

First, we investigate Ita, where we assign tasks to workers individually, one worker
at a time. We model Ita and show it is NP-Hard. We design three task assignment
strategies that exploit various objectives. Our live experiments study the impact of each
strategy on overall performance. We find that different strategies prevail for different
performance dimensions. In particular, the strategy that assigns random and relevant
tasks offers the best task throughput and the strategy that assigns tasks that best match
a worker’s compromise between task diversity and task payment has the best outcome
quality. Our experiments confirm the need for adaptive motivation-aware task assignment.

Then, we study Hta, where we assign tasks to all available workers, holistically. We
model Hta and show it is both NP-Hard and MaxSNP-Hard. We develop efficient approxi-
mation algorithms with provable guarantees. We conduct offline experiments to verify the
efficiency of our algorithms. We also conduct online experiments with real workers and
compare our approach with various non-adaptive assignment strategies. We find that our
approach offers the best compromise between performance dimensions thereby assessing
the need for adaptability.

Résumé

Mots-clés: Monitoring; Données Temporelles; Traitement Distribué; Jointures; Crowd-
sourcing; Affectation de Tâches

Dans cette thèse, nous étudions des algorithmes pour le monitoring des traces d’activité
à grande échelle. Le monitoring est une aptitude clé dans plusieurs domaines, permettant
d’extraire de la valeur des données ou d’améliorer les performances d’un système.

Nous explorons d’abord le monitoring de données temporelles. Nous présentons un
nouveau type de jointure sur des intervalles, qui inclut des fonctions de score caractérisant
le degré de satisfaction de prédicats temporels.

Nous étudions ces jointures dans le contexte du batch processing (traitement par lots).
Nous formalisons la Ranked Temporal Join (RTJ), une jointure qui combine des collections
d’intervalles et retourne les k meilleurs résultats. Nous montrons comment exploiter les
propriétés des prédicats temporels et de la sémantique de score associée afin de concevoir
TKIJ , une méthode d’évaluation de requête distribuée basée sur Map-Reduce. Nos expéri-
ences sur des données synthétiques et réelles montrent que TKIJ est plus performant que
les techniques de l’état de l’art et démontre de bonnes performances sur des requêtes RTJ
n-aires sur des données temporelles. Nous proposons également une étude préliminaire afin
d’étendre nos travaux sur TKIJ au domaine du stream processing (traitement de flots).

Nous explorons ensuite le monitoring dans le crowdsourcing (production participative).
Nous soutenons la nécessité d’intégrer la motivation des travailleurs dans le processus
d’affectation des tâches. Nous proposons d’étudier une approche adaptative, qui évalue
la motivation des travailleurs lors de l’exécution des tâches et l’exploite afin d’améliorer
l’affectation de tâches qui est réalisée de manière itérative.

Nous explorons une première variante nommée Individual Task Assignment (Ita), dans
laquelle les tâches sont affectées individuellement, un travailleur à la fois. Nous mod-
élisons Ita et montrons que ce problème est NP-Difficile. Nous proposons trois méthodes
d’affectation de tâches qui poursuivent différents objectifs. Nos expériences en ligne étu-
dient l’impact de chaque méthode sur la performance globale dans l’exécution de tâches.
Nous observons que différentes stratégies sont dominantes sur les différentes dimensions de
performance. En particulier, la méthode affectant des tâches aléatoires et correspondant
aux intérêts d’un travailleur donne le meilleur flux d’exécution de tâches. La méthode af-
fectant des tâches correspondant au compromis d’un travailleur entre diversité et niveau de
rémunération des tâches donne le meilleur niveau de qualité. Nos expériences confirment
l’utilité d’une affectation de tâches adaptative et tenant compte de la motivation.

Nous étudions une deuxième variante nommée Holistic Task Assignment (Hta), où
les tâches sont affectées à tous les travailleurs disponibles, de manière holistique. Nous
modélisons Hta et montrons que ce problème est NP-Difficile et MaxSNP-Difficile. Nous
développons des algorithmes d’approximation pour Hta. Nous menons des expériences sur
des données synthétiques pour évaluer l’efficacité de nos algorithmes. Nous conduisons
également des expériences en ligne et comparons notre approche avec d’autres stratégies
non adaptatives. Nous observons que notre approche présente le meilleur compromis sur
les différentes dimensions de performance.

v

Remerciements

Je remercie mes proches pour leur soutien lors de ces dernières années. Je suis également
reconnaissant à Sihem Amer-Yahia et Vincent Leroy pour m’avoir permis de concrétiser
cette thèse. Je remercie enfin toutes les autres personnes avec qui j’ai pu collaborer et qui
m’ont aidé dans ce travail.

vi

Contents

1 Introduction 1
1.1 Monitoring Temporal Data . 2

1.1.1 Temporal Data and Temporal Joins 3
1.1.2 Top-k Temporal Joins: Problem and Challenges 4
1.1.3 Scope: Batch and Stream Processing 5

1.2 Monitoring in Crowdsourcing . 5
1.2.1 Crowdsourcing and Adaptive Task Assignment 5
1.2.2 Motivation-Aware Task Assignment: Problem and Challenges . . . 7
1.2.3 Scope: Individual and Holistic Task Assignment 7

1.3 Overview of this thesis and contributions 8
1.4 Applications . 9

2 Monitoring Temporal Data 11
2.1 Our Proposal: Top-k Temporal Joins . 11

2.1.1 Top-k Temporal Joins: Challenges 13
2.1.2 Overview of our Contributions . 13

2.2 Temporal Predicates . 14
2.3 Top-k Temporal Joins: Batch Processing 16

2.3.1 Data Model and Problem for Batch Temporal Joins 17
2.3.2 Our Approach for Processing Batch Temporal Joins 18
2.3.3 Experiments . 27
2.3.4 Related Work on Batch Temporal Joins 36

2.4 Top-k Temporal Joins: Stream Processing 39
2.4.1 Data Model and Problem for Stream Temporal Joins 41
2.4.2 Preliminary Study for Processing Stream Temporal Joins 42
2.4.3 Related Work on Stream Temporal Joins 45

2.5 Conclusion . 48

3 Motivation-Aware Task Assignment 49
3.1 Our Proposal: Motivation-Aware Task Assignment 49

3.1.1 Motivation-Aware Task Assignment: Challenges 50

vii

Contents viii

3.1.2 Overview of our Contributions . 51
3.2 Data Model and Motivation Factors . 52

3.2.1 Data Model for Tasks and Workers 52
3.2.2 Adaptive Task Assignment Model 54
3.2.3 Motivation Factors . 54
3.2.4 Capturing Motivation . 56

3.3 Individual Motivation-Aware Task Assignment 57
3.3.1 Individual Task Assignment Problem (Ita) 57
3.3.2 Our Approach for Ita . 60
3.3.3 Experiments . 63

3.4 Holistic Motivation-Aware Task Assignment 69
3.4.1 Holistic Task Assignment Problem (Hta) 70
3.4.2 Our Approach for Hta . 73
3.4.3 Experiments . 80

3.5 Ita and Hta Experiments: Discussion . 86
3.6 Related Work on Motivation-Aware Task Assignment 87
3.7 Conclusion . 89

4 Summary and Perspectives 91
4.1 Summary . 91
4.2 Perspectives . 92

4.2.1 Optimizations . 92
4.2.2 Platforms . 94
4.2.3 Semantics . 94

Bibliography 96

A Motivation-Aware Crowdsourcing: Experimental Setup 107
A.1 Tasks Datasets . 107
A.2 Crowdsourcing Platform . 108

B Proofs for Hta 111
B.1 Proof of Equation 3.17 . 111
B.2 Proof of Theorem 5 . 112

List of Figures

2.1 Motivating example for top-k temporal joins 12
2.2 The Allen algebra with Boolean and scored temporal predicates. 15
2.3 Approximating equals and greater . Here, x ∈ {x, x}, y ∈ {y, y}. 16
2.4 Definition of s-shiftMeets , s-justBefore and s-sparks. Here, avg = AVGz(z−z). 17
2.5 Example of RTJ query . 18
2.6 Overview of TKIJ . 19
2.7 Example of Bucket Combinations . 24
2.8 Synthetic data: score distribution . 29
2.9 Experiments on synthetic data: workload distribution 30
2.10 Experiments on synthetic data: detailed execution time, all TopBuckets

strategies . 30
2.11 Experiments on synthetic data: effect of number of granules g 33
2.12 Experiments on synthetic data: scalability 33
2.13 Network traffic data distribution . 34
2.14 Experiments on network traffic data: scalability 35
2.15 Experiments on network traffic data: effect of k 36
2.16 Overview of distributed stream top-k join processing 43

3.1 Overview of motivation-aware task assignment 50
3.2 Motivation-aware task assignment: model 55
3.3 Task assignment in Ita . 58
3.4 Example screenshot of user interface – e.g., task grid 64
3.5 Ita online experiments: results . 67
3.6 Ita online experiments: evolution of αi

w (hk is k-th work session) 69
3.7 Ita online experiments: distribution of αi

w 69
3.8 Task assignment in Hta . 71
3.9 Example of mapping to MaxQap: matrices A and C 75
3.10 Hta synthetic experiments: scalability w.r.t. the number of tasks and work-

ers . 82
3.11 Hta synthetic experiments: effect of task diversity 83
3.12 Hta online experiments: results . 84

ix

List of Figures x

A.1 GACS crowdsourcing platorm - Workflow 108

List of Tables

2.1 Experiments: RTJ queries . 27
2.2 Experiments: scored predicates parameters 28

3.1 Motivation-aware task assignment: summary of important notations 53
3.2 Example of tasks and workers . 54
3.3 Hta: example of tasks and workers . 75

xi

Chapter 1

Introduction

Considerable amounts of data of various types are continuously generated at increasing
pace. This leads both academia and industry to pour many efforts into building systems
that can handle such large datasets. These datasets are mostly known under the buzzword
“Big Data”, whose strict definition may vary [30, 75].

These datasets often have the form of traces of activities. Network traffic, physical
activity, a discussion on Twitter or a visit on a website are some examples of activities.
Firewall logs, measurement of physical sensors, tweets or web server logs are corresponding
examples of traces. A number of systems generate activity traces.

In this thesis, we focus on a specific case of activity traces processing. We aim to
build algorithms that enable efficient monitoring of activity traces. A general definition of
monitoring is:

The act of “observing and checking the progress or quality of (something)
over a period of time” and/or “keeping under systematic review”1

Monitoring activity traces has applications in several domains. In this thesis, we focus
on designing algorithms for monitoring two kinds of activity traces.

First, we focus on temporal data, that is often generated by sensors. For instance, in
a data center, a system administrator has to monitor network traffic. She needs to query
firewall logs to monitor potential threats. Such a query involves connecting data from
several collections of client connections on her servers. These collections are usually large,
since thousands of connections may be created during a single hour. She thus needs efficient
algorithms to process these datasets. Moreover, such data usually includes timestamps,
that denote when connections occurred, which is useful for traffic analysis. Concretely, the
system administrator may want to find pairs of connections that happened simultaneously
or forming a sequence. In another context, the quantified self domain, one may wish to
monitor her performances. She would want to analyze speed and heartbeat measurements

1https://en.oxforddictionaries.com/definition/monitor

1

https://en.oxforddictionaries.com/definition/monitor

2 1. Introduction

so as to discover if she has improved her performances. Because she may have different
devices, she may also need to connect data from several collections.

The second kind of activities of interest are those generated by humans in the con-
text of crowdsourcing. On crowdsourcing platforms, workers complete tasks published by
requesters. A requester may need to improve crowdwork performance by adapting the as-
signment of tasks to workers. She naturally sees assignment as an iterative process, where
each iteration is based on workers’ performance during the previous iteration. Therefore,
she has to monitor task completion and devise an adaptive assignment strategy that evolves
over time.

In our two domains of investigation, monitoring is key to discovering valuable insights or
improving a system’s efficiency. This ability relies on algorithms that allow to connect data.
For instance, in network traffic monitoring, connecting collections of client connections
involves evaluating joins. Joins are both heavily used in various domains and very expensive
to evaluate, hence various algorithms were developed to return efficiently join results. In
crowdsourcing, task assignment relies on algorithms that connect workers to tasks and
optimize various objectives. Because task assignment problems are often hard to solve,
efficient algorithms — that often have the form of heuristics or approximations — were
developed.

Since large amounts of activity traces are generated at higher paces, monitoring requires
to tackle harder challenges. Systems must remain scalable and responsive to handle large
datasets. This leads to the growing need to design scalable algorithms.

The goal of this thesis is to develop scalable algorithms for monitoring temporal data
and human activity traces in crowdsourcing. The remainder of this chapter is organized as
follows:

1. We introduce monitoring of temporal data in Section 1.1. Specifically, we focus on
processing joins on interval data.

2. We introduce adaptive task assignment in crowdsourcing in Section 1.2. Here, mon-
itoring is interpreted as continuous task assignment and capturing workers’ motiva-
tion.

3. We present an overview of this thesis and of our contributions in Section 1.3.

1.1 Monitoring Temporal Data

The definition of monitoring features the notion of evolution over time. Therefore, it is
natural to find applications of monitoring on temporal datasets. We present here examples
of temporal data and focus on the commonly used interval data.

1.1. Monitoring Temporal Data 3

1.1.1 Temporal Data and Temporal Joins

Because a number of systems generate records that contain timestamps, temporal data
is pervasive. Examples include store receipts, webserver logs, or temperature measures
generated by weather sensors or by wearables. Such data is often best represented as
intervals with start and end timestamps. We illustrate two kinds of temporal data that
can be represented as intervals in the examples below.

Example (Network Traffic Monitoring). In a data center, network traffic generates con-
tinuously temporal data. Specifically, firewall logs collect large amounts of traffic packets
exchanged between servers and clients. Each packet has a timestamp. The connection of
a client on a server may be represented by grouping close consecutive packets exchanged
between a (client, server) pair. Therefore, a connection has the form [IP_client,IP_server,
start timestamp,end timestamp,. . .] and represents the activity of the client on the server
between two timestamps.

Example (Tweet Analysis). Tweets are associated to hashtags that characterize their topics.
An analyst may be interested in querying trending topics. To do so, she defines the lifespan
of a hashtag as the period during which it was popular (e.g. it was used more than 1000

times per hour). She obtains an interval [hashtag, start time popular period, end time
popular period] that represents the lifetime of a trending topic.

Temporal Joins. Monitoring temporal data involves connecting data that comes from
several collections. Such an operation is usually expressed using joins. In this thesis, we
focus on interval joins, that connect interval data from several collections using temporal
relations. Temporal relations between intervals are typically expressed using the Allen
interval algebra [7], which defines a set of Boolean predicates such as before, meets, starts
and overlaps. For instance, before(x, y) requires that x ends before y starts and meets(x, y)
requires that x ends exactly when y starts. We revisit the previous example to illustrate
interval joins.

Example (Network Traffic Monitoring). A data center administrator wishes to monitor
traffic emanating from two countries. She has two collections of connections, one for each
country. She formulates a query that returns pairs of connections (x, y) where before(x, y)
and x and y originate from different countries.

Example (Tweet analysis). An analyst has a collection of trending topics that characterize
notorious events. She is interested in detecting causality between those events. She would
need to find pairs of discussion topics where one started when the other ended. Thus, she
would need pairs of topics (x, y) where meets(x, y).

Processing interval joins has been extensively studied in both centralized [35, 44, 54]
and parallel settings [29, 113]. For instance, the queries presented above can be efficiently
evaluated in a distributed setting using Map-Reduce [29].

4 1. Introduction

1.1.2 Top-k Temporal Joins: Problem and Challenges

We showed examples where temporal joins featuring a Boolean interpretation of temporal
predicates help monitoring activity traces. In this thesis, we argue that a wider range of
scenarios should be considered. The ability to evaluate interval predicates approximately
and assign scores to resulting interval pairs, appears as a natural requirement to finding
interesting results. In practice, joins need to be evaluated approximately to cope with im-
precise measurements and the need to cover more results. The following revisited examples
illustrate this idea.

Example (Network Traffic Monitoring). A pair of two connections that occurred at very
different periods may not be relevant since they may not be related. Therefore, a connection
pair (x, y) where x ends just before y may be preferred to those where x ends much earlier
than the start of y.

Example (Tweets Analysis). A Boolean interpretation of x meets y is likely to return an
empty result or very few results and will not detect discussion topics that started roughly
after another ended. A small delay may indeed be acceptable.

Problem. To the best of our knowledge, no previous study has investigated approximate
interval joins. It is crucial to (i) formalize a query model that enables using approximate
predicates and (ii) define an efficient way to evaluate join queries that use those predicates.
Our problem is thus how to formalize and evaluate efficiently a temporal join query that
features an approximate interpretation of temporal predicates?

Challenges. Our problem incurs new challenges. First, we need to devise an appropriate
semantics for a variety of temporal predicates in order to capture the strength of relation-
ship between two intervals. This includes the formalization of a new kind of query. Second,
we need to design an efficient query evaluation approach: evaluating joins is known to be
expensive and an analyst needs a decent response time with a scalable approach when
querying large datasets.

To the best of our knowledge, existing techniques are not applicable to our settings.
First, we aim to use an approximate interpretation of temporal predicates whereas pre-
vious studies rely on a Boolean interpretation of Allen’s predicates [29] or the intersects
predicate [35, 44, 88], that is verified only if two intervals have a non-empty intersection.
Second, traditional techniques on top-k or rank-join processing [45, 46, 51, 72, 95] rely on
sorting or indexing objects using their scores. In our settings, the strength of relationship
between two intervals can also be seen as a score. However, this score is unknown a priori,
since it depends on pairs of intervals, that need to be materialized to compute scores. This
makes traditional techniques inapplicable.

1.2. Monitoring in Crowdsourcing 5

1.1.3 Scope: Batch and Stream Processing

We study two processing paradigms for temporal data monitoring. First, we investigate
algorithms for batch processing of temporal data. In this setting, all data is given at
once. For instance, in network traffic monitoring, an analyst queries the log of a whole day
after all data has been collected. Here, monitoring is processed offline.

We also propose a preliminary study for extending our investigations on stream pro-
cessing. Here, data arrives in the form of streams that are a “real-time, continuous, ordered
sequence of items” [57]. For instance, in network traffic monitoring, an analyst may want
to query client connections as they arrive, or just a few minutes after they have finished.
Here, monitoring happens in real-time or online.

1.2 Monitoring in Crowdsourcing

Our second domain of investigation is crowdsourcing. Here, we focus on the activity of
workers who complete tasks. We first introduce the concept of crowdsourcing, then, we
argue why monitoring plays a key role in virtual marketplaces.

1.2.1 Crowdsourcing and Adaptive Task Assignment

The term “crowdsourcing” (a neologism coming from outsourcing) was originally defined
by Jeff Howe2[70] as

“the act of a company or institution taking a function once performed by em-
ployees and outsourcing it to an undefined (and generally large) network of
people in the form of an open call”

This definition encompasses several activities such as collaborative tasks, project work, sur-
veys or microtasking. Crowdsourcing has notably emerged as an efficient way to complete
tasks that are easier for humans, but harder for computers. The example below illustrates
collaborative crowdsourcing in a science project.

Example (Collaborative Crowdsourcing). Galaxy Zoo3 is a “citizen science project”. In
2007, researchers published a number of galaxies images and invited visitors to classify
these galaxies according to their shape. This allowed to get more than 50M classifications
in a year and to overpass difficulties raised by other classical solutions (i.e. having a few
professional astronomers working on thousands of images or using computers programs
that were not accurate enough).

2http://www.crowdsourcing.com/cs/2006/06/crowdsourcing_a.html
3https://www.galaxyzoo.org

http://www.crowdsourcing.com/cs/2006/06/crowdsourcing_a.html
https://www.galaxyzoo.org

6 1. Introduction

Other popular examples include writing a Wikipedia article — that can be seen as
a collaborative task, collaborative creation of maps (OpenStreetMap4, Crowdmap5) or
transcription of audio files for a public library (NYPL Labs6).

Crowdsourcing is not only about volunteering. A number of online crowdsourcing
platforms have been developed7 to enable a professionalization of crowdsourcing. A popular
example is Amazon Mechanical Turk (AMT), which is a micro-tasking platform. On AMT,
requesters publish HITs, that are essentially micro-tasks. Then, workers complete these
HITs and submit their work to get a financial reward. A micro-task usually includes few
questions that can be completed in less than a minute. Tagging an image or classification
tasks are popular examples of micro-tasks published on AMT [74]. The example below is
a concrete illustration of a micro-task that may be published on a crowdsourcing platform.

Example (Micro-Task). An airline company AirWorld has collected tweets that feature
#AirWorld as hashtag. The customer service aims to get the opinion of people about the
company. They choose to publish tasks on a micro-tasking platform. In each task, a worker
is asked to classify the tone of a tweet (positive, negative, neutral) and if it is negative, give
the reason of dissatisfaction. Once all tweets have been classified, the customer service can
get a precise insight of people’s opinion about AirWorld.

Adaptive Task Assignment. On most crowdsourcing platforms, requesters rely on
self-appointment of workers to tasks. Workers look for tasks that they prefer using filters
or ranking proposed on the platform. This approach has several caveats. For instance,
workers waste time looking for interesting tasks, while they could be paid to complete
tasks. Moreover, requesters may need to wait longer to get published tasks completed.
Additionally, crowdwork quality may not be sufficient as inexperienced workers may com-
plete tasks. Several techniques are employed to tackle this latter problem such as requiring
qualifications for workers or imposing them to complete test tasks (also known as golden
tasks) to evaluate them. However, they may be tedious to design or have limitations in
complex tasks that require knowledge [47]. To tackle this problem, multiple research efforts
were driven towards algorithmic task assignment [47, 55, 67, 68, 106, 109, 135]. Here, tasks
are assigned to workers using some algorithm. Task assignment usually considers goals
such as maximizing quality of the crowdwork or meeting a deadline. A number of studies
focused on adaptive task assignment [47, 67, 68, 135] where past crowdwork is leveraged
to improve task assignment. For instance, one may learn worker’s skills based on the tasks
that she completed before and assign her task that best match her skills.

Interestingly, adaptive task assignment can be interpreted as the monitoring of workers’
activity. Indeed, it requires to observe workers and check how tasks are completed to

4http://www.openstreetmap.org
5https://crowdmap.com
6http://togetherwelisten.nypl.org
7http://www.mturk.com, https://www.foulefactory.com, https://www.crowdflower.com

http://www.openstreetmap.org
https://crowdmap.com
http://togetherwelisten.nypl.org
http://www.mturk.com
https://www.foulefactory.com
https://www.crowdflower.com

1.2. Monitoring in Crowdsourcing 7

improve task assignment. Therefore, monitoring is crucial in crowdsourcing, since it helps
to tackle important challenges such as improving crowdwork quality.

1.2.2 Motivation-Aware Task Assignment: Problem and Challenges

Task assignment has received much attention [47, 55, 67, 68, 106, 109, 135]. Since the
70’s, on the other hand, organization studies explored worker motivation in physical work-
places [62], and recent work has shown that a similar motivation model prevails in virtual
marketplaces [79, 108]. In particular, worker motivation has been shown to play a key
role in task completion [25, 33]. In this thesis, we combine these two ideas and inves-
tigate motivation-aware micro-task assignment based on the following hypothesis: Since
workers’ motivation evolves as they complete tasks, tasks should be re-assigned to workers
accordingly, in order to improve the quality of their contributions. To the best of our knowl-
edge, existing work on crowdsourcing does not incorporate motivation in task assignment.
Instead, motivation is treated as an external factor in task completion, by incentivizing
workers for long-lasting tasks [25, 69], or entertaining them when they complete several
tasks [33]. We argue that a principled way of leveraging motivation is to incorporate it
directly in the task assignment process, i.e., in choosing which tasks to assign to which
workers.

Problem. We define our problem as how to monitor workers and incorporate motivation
in task assignment ? We believe solving this problem will lead to high quality contributions,
and improve overall performance.

Challenges. Our first challenge is to model a worker’s motivation. Some workers may be
driven by fun and enjoyment, others may look to advance their human capital, or increase
their compensation [79]. We need to devise a model that captures accurately a worker’s
motivation. Our second challenge is to formulate motivation-aware task assignment. Task
assignment has been formulated as a one-shot optimization problem whereby goals such
as maximizing task quality, or minimizing cost and latency, are used when matching tasks
and workers [106, 109]. The difficulty with worker motivation is that it must be re-captured
as workers complete more tasks, and tasks must be assigned to them accordingly and adap-
tively. Our third challenge is to design efficient assignment algorithms. The crowd is
volatile and usually not well-engaged: it is crucial that the response time of our algorithms
is optimized so that workers are never waiting for being assigned motivating tasks.

1.2.3 Scope: Individual and Holistic Task Assignment

We study two natural variants of motivation-aware task assignment. The first one, In-
dividual Task Assignment (Ita), individually assigns tasks to one worker at a time.
The second one, Holistic Task Assignment (Hta), assigns tasks to all available workers,
holistically.

8 1. Introduction

1.3 Overview of this thesis and contributions

This thesis is organized around its two main domains of investigation. We pursue the
following outline:

1. In Chapter 2, we present our investigations on monitoring temporal data.

(a) We present our proposal for a new kind of join for monitoring temporal data.

(b) We model approximate temporal predicates, that are an adaptation of a flexible
scoring approach for Allen’s predicates.

(c) We study the efficient evaluation of temporal join queries in distributed batch
processing [103]:

1. We study how to formalize temporal join queries that feature approximate
predicates. We introduce n-ary RTJ queries.

2. We study how to design an efficient query evaluation approach for RTJ
queries. We design TKIJ , a query evaluation approach on Map-Reduce that
leverages scores to avoid computing unnecessary results and to balance the
load between reducers.

3. We conduct extensive experiments on synthetic and real datasets showing
the very good performance of TKIJ for n-ary RTJ queries on temporal data.

(d) We propose a preliminary study to extend our contribution to stream processing.
We formalize a query model and propose investigation directions to design an
efficient query evaluation approach in the context of stream processing.

2. In Chapter 3, we study the problem of motivation-aware task assignment.

(a) We present our proposal for motivation-aware task assignment and why we
advocate an adaptive task assignment approach.

(b) We present our model for motivation-aware task assignment. First, we model
tasks and workers. Then, we formalize motivation factors and show how we
capture the preference of a worker for a given factor.

(c) We study Individual Task Assignment (Ita) [101]:

i. We model the Ita problem and show it is NP-Hard. We define motivation
as a combination of two factors: task diversity and task payment.

ii. We design three assignment strategies for Ita that exploit different objec-
tives: relevance, div-pay and diversity.

iii. We conduct live experiments with real workers to evaluate these strate-
gies showing that div-pay, an adaptive motivation-aware strategy, leads to
higher quality contribution.

1.4. Applications 9

(d) We study Holistic Task Assignment (Hta) [102].

i. We model the Hta problem and show it is NP-Hard and also MaxSNP-
Hard. We consider a different definition of motivation, that combines task
diversity and task relevance.

ii. We develop Hta-App and Hta-Gre, two approximation algorithms for
Hta. Hta-App has a better approximation factor (1

4
) than Hta-Gre (1

8
),

with the cost of a higher running time.
iii. We conduct synthetic experiments with real tasks showing the superiority

of Hta-Gre over Hta-App: the higher running time of Hta-App does not
yield better results for Hta.

iv. We conduct live experiments with real workers to evaluate Hta-App against
several alternatives. We find that Hta-Gre offers a good compromise be-
tween various performance dimensions: quality, number of completed tasks
and worker retention.

3. We conclude in Chapter 4, where we propose future directions for our investigations.

1.4 Applications

In this thesis, we assessed the relevance of our investigations in two concrete application
domains.

Network Traffic Monitoring. We contributed to the Datalyse project8, a consortium
involving computer science laboratories and companies. Specifically, we collaborated with
a data hosting company that owns datacenters. We worked on concrete usecases to help
monitoring datacenters and on shipping our implementation of TKIJ . Concretely, TKIJ
is a 3-phase Map-Reduce algorithm that counts ≈ 11, 000 lines of Java code.

This collaboration allowed us to run experiments on real data. Specifically, we use
network traffic data collected on firewall logs. For instance, we use packet traces, that
represent activities of client on servers. We employ files that include all packet traces
for a single day. We transform these traces to process joins on interval collections that
include ≈ 3M intervals, which is in the same order of magnitude as collections employed in
experiments for state-of-the-art competitors [29]. We verify the efficiency of our algorithm
on various queries that are useful to monitor network traffic.

Adaptive Crowdsourcing. Our work includes the design and the implementation of
a crowdsourcing platform, coined GACS (Grenoble Adaptive CrowdSourcing). Existing
platforms, such as AMT, do not enable adaptive task assignment although they benefit

8http://www.datalyse.fr

10 1. Introduction

from a large workforce. Therefore, we chose to hire workers from such platforms and
redirect them to GACS. Concretely, GACS is a ≈ 2, 800 lines of code JEE web application
backed by a Postgresql database. It can be interfaced with various assignment strategies
or data models.

We employed GACS to conduct experiments with real workers hired from AMT. Work-
ers were assigned real tasks that we extracted from Crowdflower, a popular crowdsourcing
platform. We conducted two main experiments, where up to 58 different workers completed
2, 715 tasks in 80 work sessions. These experiments allowed us to assess the relevance of
our approaches in a concrete setting.

Chapter 2

Monitoring Temporal Data

We exposed in Chapter 1 how joins on temporal data could be interpreted as monitoring ac-
tivity traces. We sketched the problem of monitoring temporal data using an approximate
interpretation of predicates. In this chapter, we present our investigations on temporal
data monitoring. We propose to study a new kind of join supporting an approximate in-
terpretation of temporal predicates and returning only best results. Then, we propose an
efficient query evaluation approach on Map-Reduce. Finally, we study an extension of our
work for stream processing.

2.1 Our Proposal: Top-k Temporal Joins

Joins have a key role in a number of applications. We illustrate in the following example
how joins may be used for monitoring network traffic data.

Example (Network Traffic Monitoring). In a data center, a tuple (IP_client, IP_server,
start timestamp, end timestamp,. . .) represents a connection of a client on a server. The
interval [IP_client,IP_server] represents the lifetime of the client activity on the server.
A system administrator has to monitor the data center which requires to monitor traffic
emanating from different countries. The firewall has collected two logs of that have the
form of collections of connections, one for each country. She needs to find abrupt changes
of traffic between two countries, and she has two collections C1 and C2 as exposed in
Figure 2.1. She would formulate a query that returns pairs of requests (x, y) ∈ C1 × C2

where x starts as y ends or equivalently x meets y. Such pairs may be interesting since
they may reflect some causality between two connections. The best sequences are those
satisfying meets(x, y) reflecting strict equality between the end of x and the beginning of
y. In our example, only (x4, y4) qualifies for a Boolean interpretation.

Temporal relations such as meets are typically expressed using the popular Allen interval
algebra [7]. Allen defined a set of Boolean predicates such as before, meets and overlaps
that characterize relations between intervals. In this thesis, we argue that the ability to

11

12 2. Monitoring Temporal Data

x1

C1
x3

C2

y1 y2

5 10 15 20 25

y5

x4

x2

x5

y3

y4

Figure 2.1: Motivating example for top-k temporal joins

evaluate interval predicates approximately and assign scores to resulting interval pairs,
appears as a natural requirement to finding interesting results. Moreover, a query should
return only best results, which can be interpreted as returning only the top-k results. We
illustrate this idea in the example below.

Example (Network Traffic Monitoring, continued). In our example, only (x4, y4) is re-
turned if a Boolean interpretation is employed. Yet, given the uncertainty on clocks in
different network equipments, a small overlap or a short delay between two consecutive
connections would be more realistic. In order to express that with Boolean semantics, a
query must evaluate a disjunction of before, overlaps and meets and would build many
useless interval pairs. A ranked semantics on the other hand, would build (x, y) pairs
where x almost meets y, allowing a tolerance on intervals’ endpoints. For instance, tuples
(x, y) where x ends at most 2 timestamps before or after y starts, could be considered
high-scoring. Using such a semantics, we can return the top-3 {(x4, y4), (x1, y3), (x1, y1)}.

Proposal

Our example shows the need to support a wider range of scenarios. We propose to formalize
n-ary Ranked Temporal Join (RTJ) queries that feature approximate temporal predicates
and return the k best results.

Scope

First, we investigate algorithms for batch processing of temporal data. We assume that
we are given interval collections. For instance, in network traffic monitoring, an analyst
queries the log of a whole day after all data has been collected. In tweet analysis, all tweets
over a given period may be collected before querying the dataset. In this context, the query
evaluation response time is usually in seconds or minutes and data is processed offline. This
enables some optimizations for query evaluation. For instance, we can pre-process datasets
(e.g. collect statistics) to optimize join processing. Our investigation includes the design

2.1. Our Proposal: Top-k Temporal Joins 13

of an efficient query evaluation approach on Map-Reduce [34], a popular framework for
distributed batch processing of large datasets.

Second, we conduct a preliminary study for extending our investigations on stream
processing. In this setting, data arrives in the form of streams that are a “real-time, con-
tinuous, ordered sequence of items” [57]. Streams are usually “multiple, rapid, time-varying,
[and] possibly unpredictable” [12] which raises new challenges [57, 119]. For instance, in
network traffic monitoring, an analyst may want to query client connections as they arrive,
or just a few minutes after they have finished. Here, monitoring happens in real-time or
online and we expect a query evaluation response time in sub-seconds or seconds. We aim
to design a distributed query evaluation approach, that could be implemented on Apache
Storm [121], a popular framework for distributed stream processing.

2.1.1 Top-k Temporal Joins: Challenges

RTJ queries raise a number of new challenges. First, an appropriate ranked semantics
needs to be devised for a variety of temporal predicates in order to capture the strength
of relationship between intervals as a function of the desired semantics for each predicate.
Most related studies focus on a common query that involves the intersects predicate [35,
44, 88]. The idea is to retrieve tuples that share a common period of validity, in order to
combine events whose time range has a non-empty intersection. Our semantics is richer
since we are interested in any temporal predicate between intervals. For instance, we aim
to capture predicates from the Allen algebra (see the three first columns of Figure 2.2).

It is important to note that, unlike existing work on returning approximate answers [20],
we focus on computing exact answers of queries that make use of scored join predicates. The
second challenge we tackle is to devise an efficient query evaluation strategy that guarantees
to return the best answers for a variety of temporal predicates. The key difficulty here is
to develop a general-purpose algorithm that works with a variety of predicates and ranked
semantics and yet, that is able to exploit the nature of those predicates to devise an efficient
evaluation.

2.1.2 Overview of our Contributions

In this chapter, we present our investigations on temporal data monitoring:

(a) We study how to model approximate temporal predicates. We need a model that
supports a range of queries on temporal data. We aim to support queries shown in
our concrete examples in network traffic monitoring or tweet analysis. We propose
to adapt a flexible scoring approach for Allen’s predicates. We present temporal
predicates in Section 2.2.

(b) We study batch processing of top-k temporal joins in Section 2.3 [103]:

14 2. Monitoring Temporal Data

1. We formalize n-ary Ranked Temporal Join queries (RTJ), that combine interval
collections with any number of approximate interval predicates and return the
k best results. We introduce n-ary RTJ queries in Section 2.3.1.

2. We design TKIJ , an efficient RTJ query evaluation approach on a distributed
Map-Reduce architecture. TKIJ exploits the nature of temporal predicates to
prune unnecessary results and optimize workload assignment to reducers. We
present TKIJ in Section 2.3.2.

3. We run extensive experiments to evaluate TKIJ on synthetic and real network
traffic datasets. Our experiments show the efficiency of our pruning technique
and the great benefit of using scores to distribute the load between reducers.
Because TKIJ executes only combinations that ensure to return the correct
top-k answers, it scales to very large collections (up to 5M tuples per collection)
and to high k values (up to 105). Section 2.3.3 presents our experiments.

(c) We propose a preliminary study for extending RTJ queries to stream processing in
Section 2.4. We outline main components for monitoring temporal data using stream
processing:

(a) We formalize S-RTJ queries, an extension of RTJ queries to stream processing.

(b) We propose investigation directions to design an efficient distributed evaluation
approach for S-RTJ queries.

2.2 Temporal Predicates

A key observation we rely on is that an approximate interpretation of a predicate amounts
to approximating the strength of relationship between its intervals’ endpoints. That is
compatible with the flexible scoring approach proposed by Dubois et al. [41] to approximate
Allen predicates [7]. It is based on associating a degree of satisfaction with equality and
inequality of 2 intervals’ endpoints. In this thesis, we adapt this framework to allow
scoring any temporal predicate. We also allow to use any monotone aggregation function to
compute the score of a query result for our queries. Consequently, a 3-way query involving
the predicates starts(x, y) and meets(y, z) would return (x, y, z) tuples and associate to
each tuple its degree of satisfaction of the query as an aggregation of individual predicate-
dependent scores for each of starts(x, y) and meets(y, z).

Boolean temporal predicates. The general form of a temporal predicate between two
intervals x and y is denoted p(x, y) and is expressed as a Boolean conjunction of equalities
and inequalities between their endpoints x, x, y, y. This allows to capture a wide range of
predicates among which the seminal Allen algebra [7]. The first 3 columns of Figure 2.2

2.2. Temporal Predicates 15

before(x, y) x < y

equals(x, y) x = y ∧ x = y

meets(x, y) x = y

overlaps(x, y)
x < y ∧ x > y

contains(x, y) x < y ∧ x > y

starts(x, y) x = y ∧ x < y

finishedBy(x, y) x < y ∧ x = y

Temporal Boolean Valid answers

x

∧ x < y

Scored

greater(y, x)

Interpretation

x

x

x

x

x

x

y

y

y

y

y

y

y

min{equals(x, y),

equals(x, y)

min{greater(y, x),
greater(x, y),
greater(y, x)}

equals(x, y)}

min{greater(y, x),
greater(x, y)}

min{equals(x, y),
greater(y, x)}

min{greater(y, x),
equals(x, y)}

s-before(x, y) =

s-equals(x, y) =

s-meets(x, y) =

s-overlaps(x, y) =

s-contains(x, y) =

s-starts(x, y) =

s-finishedBy(x, y) =

Predicate Intepretation

Figure 2.2: The Allen algebra with Boolean and scored temporal predicates.

summarize Allen temporal predicates and their semantics. For example, meets(x, y) im-
poses that y starts when x finishes while starts(x, y) requires that x and y start at the
same time and that x ends before y.
It is important to note that we aim to capture all Allen predicates but also any pred-
icate comparing interval’s endpoints. While we do not aim to provide a long list of
new predicates, we discuss examples that we are using in our experiments. For exam-
ple, in network traffic analysis, we introduce justBefore(x, y) that is satisfied iff y > x

and y − x ≤ AVGz(z − z). The intuition is that the elapsed time between x and y is no
greater than the average interval length. A special case is the predicate shiftMeets(x, y)
that is satisfied iff (y − x) = AVGz(z − z). In tweet analysis, a possibly useful predicate
would be sparks(x, y) which is satisfied iff (y − y) > 10 ∗ (x − x) and y > x. As a result,
the (x, y) pairs satisfying sparks(x, y) would identify hashtag pairs where the preceding
hashtag lasted 10 times shorter that the following. That could be useful in determin-
ing causality of long-lasting events such as finding all short-lasting hashtags before the
long-lasting #JeSuisCharlie.

Scored temporal predicates. Since we are interested in capturing the degree at which
a temporal predicate is verified by a pair of intervals, we propose to associate a score

16 2. Monitoring Temporal Data

y y + λy − λ y + λ+ ρy − λ− ρ

1

0

equals(x, y)

greater(x, y)

x

equals(x, y): 0 λ+ρ−|x−y|
ρ 1 λ+ρ−|x−y|

ρ 0

greater(x, y): 0 x−y−λ

ρ 1

Figure 2.3: Approximating equals and greater . Here, x ∈ {x, x}, y ∈ {y, y}.

to each predicate. Here again, we aim to be general and we adopt the flexible approach
for scoring Allen predicates [41] and adapt it to our settings. This approach relies on
two primitive approximation comparators on intervals’ endpoints. Those comparators,
equals(x, y) and greater(x, y), are used to express the degree of equality or inequality of
intervals’ endpoints x and y, where x ∈ {x, x}, y ∈ {y, y} as a graded value in [0, 1]. They
rely on two parameters λ and ρ that provide flexibility in controlling the tolerance degree
when comparing intervals’ endpoints. Figure 2.3 shows how equals(x, y) and greater(x, y)
are used with λ and ρ to express that tolerance. For instance, by defining that whenever
|x− y| ≤ λ, equals(x, y) returns 1, λ sets a tolerance for exact endpoint equality. ρ, on the
other hand, is used to define score values. A large ρ value defines a wide range of score
values and a small ρ produces a more abrupt curve and fewer possible score values.

Since temporal predicates are expressed as equalities and inequalities on intervals’ end-
points, their approximation can be achieved using a conjunction of equals() and greater()
with appropriate λ and ρ values. This allows us to associate a scored variant to each tempo-
ral predicate. We denote that variant s-p(x, y) and refer to it as scored temporal predicate,
abusing the term “predicate” to mean “function”. Indeed, while p(x, y) returns a Boolean
value, s-p(x, y), returns a score in [0,1]. For example, we can define the scored version of
starts(x, y) as s-starts(x, y) = min{equals(x, y), greater(y, x)}.

We also propose to allow different values of λ and ρ for equals() and greater() for different
predicates. That provides a finer control of the score values produced by each predicate. A
Boolean interpretation of a predicate becomes a special case of our scored interpretation.
For example, strict endpoint equality can be obtained by setting both λequals and ρequals to
0. Thus, we can define, s-justBefore(x, y) with λgreater and ρgreater set to 0, ρequals to any
value and λequals to AVGz(z − z) (Figure 2.4).

2.3 Top-k Temporal Joins: Batch Processing

In this section, we present our investigations for monitoring temporal data using batch
processing. The efficient batch processing of interval joins has been studied before [29,

2.3. Top-k Temporal Joins: Batch Processing 17

shiftMeets(x, y) y = x+ avg

justBefore(x, y) x < y ∧

Temporal Boolean Valid

x

Scored
Interpretation

x

y

min{equals(x, y),
greater(y, x)}

s-shiftMeets(x, y) =

s-justBefore(x, y) =
Predicate Intepretation

avg
equals(x+ avg, y)

y

y − x ≤ avg λgreater = ρgreater = 0,
λequals = avg, ρequals ∈ R+

Answers
avg

sparks(x, y) x < y ∧
(y − y) >
10 ∗ (x− x)

x
ylx

> 10 ∗ lx

s-sparks(x, y) =
min{greater(y, x),
greater(y − y, 10 ∗ (x− x))}

Figure 2.4: Definition of s-shiftMeets , s-justBefore and s-sparks . Here, avg = AVGz(z−z).

35, 44, 88]. The closest to our work is the recent one by Chawda et al. [29] with a focus
on processing queries on Map-Reduce [34]. However, their algorithms focus on a Boolean
semantics and are not directly applicable in our case. In our work, scores constitute both
a challenge and an opportunity. They are a challenge because, unlike Boolean semantics,
every combination of intervals is potentially an answer. The opportunity lies in the ability
to leverage statistics on input data in order to avoid computing low-scoring results.

We present our investigations as follows. First, we model RTJ queries, that include an
approximate interpretation of temporal predicates. Second, we propose TKIJ , a 3-stage
query evaluation approach for RTJ queries on Map-Reduce. Third, we conduct extensive
experiments to evaluate TKIJ on both synthetic and real network traffic datasets.

2.3.1 Data Model and Problem for Batch Temporal Joins

We are given m collections of intervals C1, . . . , Cm. Each interval x has a unique identifier,
a start time x and an end time x.

2.3.1.1 Temporal join queries

We are interested in expressing n-ary join queries on interval collections C1, . . . , Cm. We
express a query Q as a weakly connected oriented simple graph1 of the form (V,E). Each
each vertex vi ∈ V is mapped to a collection Ci. Each edge (i, j) ∈ E between two vertices
vi and vj is labeled with a scored temporal predicate s-p(i,j)() between the two collections
Ci and Cj corresponding to vi and vj.

The evaluation of an n-ary join query Q returns a set of tuples of the form (x1, . . . , xn)

where xi ∈ Ci. The score of each tuple in the query result is computed using a function S
that aggregates the partial scores assigned by each predicate s-p(i,j)() associated with each

1no self loops and (i, j) ∈ E =⇒ (j, i) ̸∈ E

18 2. Monitoring Temporal Data

C1 C2

s-starts(x1, x2)

C3

s-finishedBy(x2, x3)s-meets(x1, x3)

(a) RTJ Query

x1

x3

x2

(b) High-scoring result.
Here xi ∈ Ci

Figure 2.5: Example of RTJ query

query edge (i, j) ∈ E. S could be any monotone function such as the weighted sum as it
is commonly the case in ranked aggregation [46, 51, 72, 95].

For example, we can express a 3-way query that returns a tuple (x, y, z) where x ∈ C1,
y ∈ C2 and z ∈ C3 and the score of (x, y, z) is computed as an aggregation of its partial
scores for query predicates s-starts(x, y) and s-meets(y, z).

Although we use the term “join” to refer to our queries, their expressiveness goes beyond
traditional relational joins. Our queries are not compositional in the sense of a relational
join since their results are not intervals but tuples of any length (corresponding to the
number of vertices in the query). Our queries can express any combination of interval
collections with any scored predicates including chain queries and queries containing cycles.

Figure 2.5a illustrates a RTJ query featuring three predicates, three collections and a
cycle. This query returns triplets of intervals. If scores are aggregated using the average,
the high-scoring results have the form illustrated in Figure 2.5b.

2.3.1.2 Ranked Temporal Join (RTJ) problem

Given an n-ary temporal join query Q=(V,E) expressed over a set of collections C1, . . . , Cm

corresponding to query vertices in V and temporal predicates s-p(i,j)() associated to each
edge (i, j) ∈ E, our problem is to find a top-k set of tuples of the form (x1, . . . , xn), xi ∈ Ci,
ranked by (descending) order of S(i,j)∈E(s-p(i,j)(xi, xj)).

2.3.2 Our Approach for Processing Batch Temporal Joins

We present TKIJ , our approach for evaluating Top-K Interval Joins, that efficiently finds
the set of k best results for an RTJ query Q. We first provide an overview of TKIJ , then
we give each step in detail.

2.3. Top-k Temporal Joins: Batch Processing 19

Collect
Statistics

(a)

TopBuckets
(b)

Statistics
B1 . . .Bm

DistributeTopBuckets
(c)

(DTB)

7

0

2

8
2

0

0

4be
gi

ns
in

ends in
g1,1 g1,2 g1,3 g1,4

g
1
,1

g
1
,2

g
1
,3

g
1
,4

7 6

8

7

6

8

4

7

06

B1

7

2

2

4

be
gi

ns
in

ends in

7

g1,1 g1,2 g1,3 g1,4

g
1
,1

g
1
,2

g
1
,3

g
1
,4

8

7

8

B1

Ωk,S

ReducerReduce2Reduce1

7

g1,1

g
1
,1

4

g2,4
g
2
,3

2

g3,4

g
3
,2

8

g1,2

g
1
,2

2

g2,4

g
2
,4

2

g3,4

g
3
,2

8

g1,3

g
1
,2

g2,4

2g
2
,4

7

g3,4

g
3
,4

...

. . .

top-k results

MapMapMap

(e)
Merge

local top-k results

C1 . . . Cm
x1

x2 x3

g1,1 g1,2 g1,3

...

. . .

(d)

C1 . . . Cn
x1

x2 x3

g1,1 g1,2 g1,3

Figure 2.6: Overview of TKIJ

2.3.2.1 Overview of TKIJ

Figure 2.6 summarizes TKIJ . Given a set of interval collections C1 . . . Cm, TKIJ executes
a query-independent pre-processing phase to collect statistics on intervals’ distribution.
This phase partitions time into granules and computes buckets for each collection (a). A
bucket associated to a collection Ci corresponds to a pair of granules, and contains the
number of intervals of Ci starting at one granule and ending at another. Given a query Q,
these statistics are used to evaluate bucket combinations that should be processed in order
to obtain top-k results (b). TKIJ relies on a constraint programming solver to compute
score bounds for each bucket combination and uses those bounds to prune combinations
that do not contain top-k results. The third phase is the actual join processing which

20 2. Monitoring Temporal Data

relies on two Map-Reduce jobs. The first job assigns a subset of buckets to each reducer
rj (c) which then processes locally the RTJ query, returning local top-k results (d). This
assignment aims at reducing data replication to limit I/O, and leverages score bounds to
distribute high-scoring results evenly so that each reducer can quickly prune low-ranking
results. The second Map-Reduce job merges all local results into a single query output (e).

2.3.2.2 Statistics collection

TKIJ pre-processes each dataset once in order to collect statistics which are then used
to optimize the execution of any RTJ query on this dataset. These statistics maintain a
matrix Bi representing the distribution of endpoints of intervals in each collection Ci. TKIJ
partitions the time range of each Ci into a set of contiguous granules. We adopt a uniform
partitioning which has been shown to be appropriate for temporal joins [29, 35, 54].

As illustrated in Figure 2.6a, each matrix entry records the cardinality of a bucket,
where a bucket bi,l,l′ = (gi,l, gi,l′) contains all intervals of Ci that start in gi,l and end in
gi,l′ : Bi[l][l′] = |bi,l,l′ |= |{x ∈ Ci, x ∈ gi,l ∧ x ∈ gi,l′}|. As an example, given g1,1 = [10, 20]

and g1,2 = [20, 30], the matrix entry for b1,1,2 = (g1,1, g1,2) indicates 6 intervals starting in
[10, 20] and ending in [20, 30].

Range partitioning is a common approach in temporal join processing [29, 35, 54, 88].
The rationale is that intervals having similar endpoints are likely to satisfy similar join
predicates. For example, most previous studies, that focus on intersection joins, leverage
partitions to avoid pairs of intervals that are guaranteed not to intersect. Similarly, TKIJ
relies on these statistics to obtain information on the distribution of intervals within buckets
and prune the search space of any RTJ query.

Statistics are computed in a single Map-Reduce phase. Each mapper reads a fraction of
the data and maintains a local matrix per collection. Matrices are then aggregated in the
reduce phase, and the reducer responsible for collection Ci outputs a final matrix Bi. While
we focus in this thesis on the case of statistics computed from scratch for a new dataset,
we can easily handle updates by applying the same process on the inserted/deleted data.

2.3.2.3 Selection of bucket combinations

We now describe how TKIJ uses pre-computed statistics to estimate score bounds on
candidate results. Then, we present how score bounds are used to avoid computing un-
necessary results while we guarantee to return the exact top-k results. We further develop
several processing strategies that aim to tackle computational costs raised by this pruning
step.

Estimating score bounds. Processing an RTJ query Q requires to return the top-k
tuples (x1, . . . , xn), xi ∈ Ci according to a scoring function S. Since any tuple (x1, . . . , xn) is
a potential answer, we investigate how to reduce the amount of data processed using scores.

2.3. Top-k Temporal Joins: Batch Processing 21

We use ω = (b1,l1,l′1 , . . . , bn,ln,l′n) to denote a bucket combination, ω.nbRes=
n

i=1 |bi,li,l′i | the
total number of results that can be obtained from a bucket combination ω, and Ω the set
of all combinations. We define the score upper and lower bounds in each ω, denoted ω.UB

and ω.LB as follows:

Score Bounds. The score upper-bound (resp. lower-bound) ω.UB (resp. ω.LB) of a
bucket combination ω = (b1,l1,l′1 , . . . , bn,ln,l′n) is the upper-bound (resp. lower-bound) of
S(i,j)∈E(s-p(i,j)(xi, xj)) where xi ∈ gi,li , xi ∈ gi,l′i ,∀i ∈ 1 . . . n.

As an example, suppose that query Q features a predicate s-meets(1,2)(x, y) where x∈C1

and y ∈ C2, using scoring parameters (λequals, ρequals) = (4, 8). Collected statistics show
6 intervals in bucket b1,1,2 = ([10, 20], [20, 30]) for C1 and 7 intervals in bucket b2,2,3 =

([20, 30], [30, 40]) for C2. We build the bucket combination ω=(b1,1,2, b2,2,3). Then, we can
derive bounds on the score S(x, y) = s-meets(x, y) of a result (x, y) ∈ ω. The maximum
possible score is 1 (e.g. with (x, y) = ([12, 25], [25, 35])), and the minimum score is 0.25
(with (x, y)=([15, 20], [30, 35])). Hence, ω.UB=1, ω.LB=0.25. Thus, 42 results in ω have
a score in [0.25, 1].

TKIJ relies on a constraint programming solver as a generic approach to compute
score bounds for any combination of predicates. Computing score bounds for a bucket
combination requires to solve the following problem:

Bounds Problem. Let ω = (b1,l1,l′1 , . . . , bn,ln,l′n). Find (x1, . . . , xn) s.t.:

max (resp. min) S(i,j)∈E(s-p(i,j)(xi, xj))

s.t. xi ∈ gi,li ∀i ∈ 1 . . . n (2.1)
xi ∈ gi,l′i ∀i ∈ 1 . . . n (2.2)

Each xi ∈ Ci is mapped to a decision variable xi. For each partial score s-p(i,j)(xi, xj),
we create an intermediate variable s-pij. For all (i, j) ∈ E, we impose that the variables
xi, xj and s-pij satisfy the constraints {Cij : s-pij = s-p(i,j)(xi, xj)}. Then, we create a
variable score and impose Cs : score = S(i,j)∈E(s-pij). The solver then maximizes (and
minimizes in the case of a lower-bound) score such that constraint Cs, all constraints Ci
and all constraints on decision variables (2.1-2.2) are satisfied. While we virtually allow
any temporal predicates, in practice, predicate implementation depends on the range of
constraints supported by the server used in the implementation.

Pruning bucket combinations. TKIJ leverages computed score bounds to reduce com-
putation cost by eliminating results that are guaranteed not to be in the top-k. To do so, it
computes Ωk,S ⊆ Ω, a subset of the search space that is sufficient to guarantee correctness.
We define Ωk,S as follows:
Top Buckets. The set of Top Buckets Ωk,S is a subset of Ω satisfying the following condi-
tions:

• ∀ω ∈ Ω \Ωk,S ∃Ψ ⊆ Ωk,S :

22 2. Monitoring Temporal Data

– ∀ω′ ∈ Ψ ω′.LB ≥ ω.UB

–


ω′∈Ψ ω
′.nbRes ≥ k

This definition ensures that whenever a bucket combination ω is pruned, there are
at least k results from Ωk,S with a score higher than results generated from ω. Note
that Ωk,S is not unique: given a valid set of bucket combinations, any super-set is also
valid. To compute Ωk,S , we design the getTopBuckets algorithm (Algorithm 1). Algorithm
getTopBuckets uses as input a set of bucket combinations whose score bounds are pre-
computed. It first computes a lower bound kthResLB on the score of the kth result (Lines
1-6). Then, it keeps only bucket combinations whose score upper-bound is greater than
kthResLB (Lines 7-13). The process safely stops in Line 11 since no bucket combination
outside the collected set has results with score above kthResLB.

Algorithm 1 getTopBuckets
Input: k, Ω list of bucket combinations with UB and LB
Output: Ωk,S
1: Sort Ω by descending LB
2: collectedResults = 0

3: for ω ∈ Ω

4: collectedResults += ω.nbRes
5: kthResLB = ω.LB
6: if collectedResults ≥ k then break
7: Sort Ω by descending UB
8: Ωk,S ← ∅, collectedResults = 0

9: for ω ∈ Ω

10: if collectedResults≥k and ω.UB≤kthResLB
11: break
12: Ωk,S ← Ωk,S ∪ ω

13: collectedResults += ω.nbRes
return Ωk,S

Pruning unnecessary results is a two-step process, coined TopBuckets . A first step
computes score bounds for bucket combinations using a solver. Then, a second step ex-
ecutes getTopBuckets that uses those bounds to eliminate unnecessary results. In our
setting, all (x1, . . . , xn) combinations are potential answers, and we cannot employ tradi-
tional top-k techniques to prune the search space. TopBuckets addresses this challenge
using pre-computed statistics to locate high-scoring answers. Still, a new challenge is to
limit the overhead of TopBuckets due to computing score bounds for bucket combinations.
In the following section, we discuss this challenge and possible solutions.

2.3. Top-k Temporal Joins: Batch Processing 23

Algorithm 2 Strategies loose, two-phase

Input: Boolean onePhase, Buckets {bi,li,l′i : i ∈ 1 . . . n}
Output: Ωk,S
1: L2 ← all bucket pairs (bi, bj) s.t. (i, j) ∈ E

2: for all ω in L2

3: Compute ω.UB, ω.LB using solver
4: for ω in Ω

5: Compute ω.UB, ω.LB using score bounds from (bi, bj) ∈ L2

6: Lm ←TopBuckets(Ω)
7: if onePhase then return Lm

8: for ω ∈ Lm

9: Compute ω.UB, ω.LB using solver
return TopBuckets(Lm)

TopBuckets Strategies. A first straightforward approach to find Ωk,S is to build all
possible bucket combinations Ω, compute their score bounds using a solver and then use
getTopBuckets to prune useless ones. In this strategy, coined brute-force, a large num-
ber of n-tuples of buckets are assigned a score by the solver (with g granules per collection,
|Ω| is O(g2n)). Moreover, for each combination, 2n decision variables need to be assigned
by the solver. Thus, as n or g increase, brute-force becomes inefficient.
To tackle that, we propose the loose strategy (Algorithm 2 with the flag onePhase set
true.) loose first builds all bucket pairs (bi,li,l′i , bj,lj ,l′j) for each scored predicate (i, j)∈E
(Line 1). Score bounds are then computed by the solver (Line 3) for each pair. Then, loose
builds n-tuples of buckets (Lines 4-5). For each ω = (b1,l1,l′1 , . . . , bn,ln,l′n), we obtain score
bounds using bounds computed for each pair (bi,li,l′i , bj,lj ,l′j). To calculate correct bounds,
we rely on the monotonicity of S. Without loss of generality, suppose that S is monoton-
ically increasing. In the expression of S, we replace each partial score s-p(i,j)(xi, xj) with
the upper bound of the corresponding pair of bucket. Therefore S(i,j)∈E((bi,li,l′i , bj,lj ,l′j).UB)
is a correct upper-bound for ω. Then, loose runs getTopBuckets on the generated bucket
combinations (Line 6) and returns the selected combinations. The rationale behind loose
is that processing time can decrease significantly because (i) fewer bucket combinations
need to be assigned a score bound (their number is O(|E| ·g4)) and (ii) the solver needs
to assign only 4 variables when computing score bounds. A drawback of loose is that
the aggregation of bounds using S may result in loose bounds. We illustrate that in the
following example.

Example 1. Figure 2.7 depicts a dataset with three buckets b1, b2, b3 from C1, C2, C3. We
have b1 = (g1, g2), b2 = (g2, g3), b3 = (g3, g3), where g1 = [10, 20], g2 = [20, 30], g3 = [30, 40].
Our query features scored predicates s-starts(1,2)(x, y) and s-starts(2,3)(y, z) and our aggre-
gation function is the normalized sum. We use the scoring parameters {(λequals, ρequals),

24 2. Monitoring Temporal Data

x1
10 20 30 40

g1 g2 g3

x2

y1
y2

z1
z2

b1

b2

b3

Figure 2.7: Example of Bucket Combinations

(λgreater, ρgreater)={(1, 3), (0, 4)}. loose first computes bounds for ω1=(b1, b2). We have
ω1.UB=1 (because s-starts(1,2)(x1, y1)=1), and ω1.LB=0 (s-starts(1,2)(x1, y2)=0). Then,
loose computes bounds for ω1 = (b2, b3). We have ω2.UB = 1 (s-starts(2,3)(y2, z1) = 1),
and ω2.LB = 0 (s-starts(2,3)(y2, z2) = 0). Then, loose merges combinations ω1, ω2 in
ω3 = (b1, b2, b3), and computes ω3.UB = S(1, 1) = 1, ω3.LB = S(0, 0) = 0. Yet, brute-
force, computes ω3.UB = 0.5 because there is no (x, y, z) such that s-starts(1,2)(x, y) =
s-starts(2,3)(y, z)=1 given the buckets’ bounds: it is impossible to have both equals(x, y)=1

and equals(y, z)=1 with x∈g1, y∈g2 and z∈g3. Thus, in this example, loose returns an
exact lower-bound and a loose upper-bound, while brute-force returns tight bounds.

These observations lead to propose a third strategy two-phase, that combines brute-
force and loose. two-phase is executed by Algorithm 2 when the flag onePhase is set
to false. First, two-phase computes loose bounds to eliminate some bucket combinations
(Lines 1-7), identically to loose. Then, two-phase refines the bounds of the remaining
combinations (Lines 8-9) to obtain exact bounds. The rationale behind two-phase is
that its first phase may help reduce the number of bucket combinations that need to be
assigned a score in the second phase, thus improving the solver’s running time. Unlike
loose, two-phase returns tight bounds thanks to the second phase of the solver.

When selecting bucket combinations, TKIJ runs TopBuckets using one of the three
strategies presented. Each strategy (i) employs the solver and (ii) executes getTopBuckets
once or twice using loose or tight score bounds on bucket combinations.

2.3.2.4 Distributed Top-k Join Processing

The TopBuckets process generates Ωk,S , a set of bucket combinations that are sufficient
to accurately compute the top-k results. We now describe how TKIJ computes the top-k
results (Steps (c)-(d)-(e) in Figure 2.6). We implement TKIJ on Map-Reduce [34]. Given
a set of r reducers, TKIJ assigns each bucket combination ω ∈ Ωk,S to a single reducer
rj, j ∈ 1 . . . r, that processes results in ω. The main challenge in distributed join processing
is to devise an efficient workload assignment function. When performing large-scale joins,
I/O often constitutes a major bottleneck. We first review existing assignment algorithms,
then we consider the specifics of distributed top-k computation and show that it is essential
to take scores into account when dividing the workload. We present DistributeTopBuck-

2.3. Top-k Temporal Joins: Batch Processing 25

Algorithm 3 DistributeTopBuckets (DTB)
Input: Ωk,S
Output: M : assignments (bucket, reducer)
1: Sort Ωk,S by descending order of ω.UB

2: avgRes =


ω∈Ωk,S
ω.nbRes

r

3: for all ω ∈ Ωk,S
4: rj = getReducer(avgRes , ω)

5: for all bucket b ∈ ω ▷ Assign buckets in ω to rj
6: M ←M ∪ (b, rj)

return M

ets , a novel function that focuses on assigning high-scoring results to each reducer, while
minimizing I/O cost as a secondary objective. Finally, we present how an RTJ query is
processed using appropriate Map-Reduce algorithms.

Existing I/O optimizations. When different reducers require the same chunk of data,
this data is replicated in the shuffle phase of Map-Reduce, which increases input cost.
Several distributed join algorithms, such as RCCIS [29] and the work of Afrati et al. [4]
specifically aim at reducing that cost. In TKIJ , this corresponds to different reducers
being assigned bucket combinations involving the same bucket. Other approaches focus
on assigning a balanced load to each reducer [29, 97]. This ensures that the number of
results generated by each reducer is comparable, so that no reducer will have a larger
workload in output dominated tasks. Finally, some algorithms optimize both input and
output costs simultaneously [134]. All these approaches are not directly applicable to our
settings. They achieve optimizations for specific queries (equi-join [4], 2-way θ-join [97],
m-way θ-join [134]). One close related work to ours [29] reduces I/O cost by leveraging
the Boolean interpretation of Allen predicates. That is not directly applicable to scored
predicates.

Top-k optimizations. TKIJ significantly differs from standard Map-Reduce-based join
processes due to its ranked semantics. In TKIJ , each reducer processes a full RTJ query
locally using the bucket combinations it receives (Figure 2.6d). Hence, it is important to
ensure that each reducer quickly identifies high-scoring results as it is usually the case in
top-k processing [45, 46, 51, 110]. Therefore, the assignment of bucket combinations to
reducers favors an even distribution of high-scoring results.

DTB algorithm. TKIJ relies on the DistributeTopBuckets algorithm (Algorithm 3)
to assign bucket combinations from Ωk,S to reducers. Following the principles described
above, DTB increases the probability that each reducer receives a fair share of high-scoring
results. This step relies on the knowledge, for each bucket combination, of the number of

26 2. Monitoring Temporal Data

Algorithm 4 getReducer
Input: ω bucket combination to assign, avgRes average number of results per reducer
Output: reducer to which ω has to be assigned
1: min_ω_assigned = +∞
2: for j = 1 to r ▷ Retrieve the minimum amount of bucket combinations assigned
3: if rj.nbRes < 2× avgRes
4: min_ω_assigned = min{|Ωrj |,min_ω_assigned}
5: minCost = +∞
6: for j = 1 to r ▷ Find the best reducer wrt inCost(ω, rj)
7: if rj.nbRes < 2× avgRes ∧ |Ωrj |=min_ω_assigned
8: if inCost(rj, ω) < minCost
9: bestReducer=rj

10: minCost = inCost(rj, ω)
return bestReducer

results generated, as well as their score bounds. DTB first sorts Ωk,S by descending order of
score upper-bound (Line 1) to access them according to their likelihood of generating high-
scoring results. It then assigns each bucket combination to a reducer using the getReducer

function (Algorithm 4), which returns a reducer among the ones that were assigned the
fewest bucket combinations so far.
Furthermore, DTB opportunistically optimizes I/O cost. First, in the worst case, a reducer
evaluates all the results it is assigned. If Ωrj is the set of bucket combinations assigned to
a reducer rj, then


ω∈|Ωrj |

ω.nbRes would be computed. DTB first computes the average
number of results assigned to reducers (Algorithm 3, Line 2). Then getReducer ensures
that reducers that are already assigned more than twice the average number of results
are discarded (Algorithm 4, Lines 3, 7). This heuristic limits imbalance in a worst-case
scenario. In the case, where several reducers have received the same number of bucket
combinations, getReducer selects the reducer that was already assigned the largest fraction
of current ω from previous overlapping bucket combinations (Algorithm 4, Lines 8-10). For
a given w, getReducer evaluates for each reducer rj the input cost of assigning w to rj using
inCost(rj, ω). We define inCost(rj, ω) =


bi,l,l′∈ω

|bi,l,l′ | ·Φ(rj, bi,l,l′) where Φ(rj, bi,l,l′) re-
turns 1 if bi,l,l′ was already assigned to rj, else 0. This process favors assignments that reduce
replication cost. Having selected the reducer rj that has to be assigned the current bucket
combination ω, DTB stores all the assignments (bi,l,l′ , rj) where bi,l,l′ ∈ ω (Algorithm 3,
Lines 5-6). These assignments determine to which reducers buckets are communicated,
ensuring both output correctness and join processing efficiency.

Join Processing. The final phase of TKIJ first runs DTB using Ωk,S to determine data
distribution among reducers. Then, a Map-Reduce phase processes the RTJ query locally.
For each input interval x, a mapper computes the bucket bix,lx,l′x in which x falls. Then, x

2.3. Top-k Temporal Joins: Batch Processing 27

Id
Scored Temporal Predicates In Q.

xi ∈ Ci ∀i ∈ 1 . . . n.
Qb,b s-before(x1, x2), s-before(x2, x3)
Qf,f s-finishedBy(x1, x2), s-finishedBy(x2, x3)
Qo,o s-overlaps(x1, x2), s-overlaps(x2, x3)
Qs,f,m s-starts(x1, x2), s-finishedBy(x2, x3), s-meets(x1, x3)
Qs,s s-starts(x1, x2), s-starts(x2, x3)
Qb* s-before(x1, x2), . . . , s-before(x1, xn)
Qo* s-overlaps(x1, x2), . . . , s-overlaps(x1, xn)
Qm* s-meets(x1, x2), . . . , s-meets(x1, xn)
Qf,b s-finishedBy(x1, x2), s-before(x2, x3)
Qo,m s-overlaps(x1, x2), s-meets(x2, x3)
Qs,m s-starts(x1, x2), s-meets(x2, x3)
QjB,jB s-justBefore(x1, x2), s-justBefore(x2, x3)
QsM,sM s-shiftMeets(x1, x2), s-shiftMeets(x2, x3)

Table 2.1: Experiments: RTJ queries

is communicated to all reducers rj that received bix,lx,l′x . That way, each reducer rj receives
its share of input data, and a list of bucket combinations Ωrj ⊆Ωk,S whose results are
potential top-k candidates. Once each reducer has processed locally the RTJ query, we
run an additional Map-Reduce phase (Step (e) in Figure 2.6), that merges local results and
returns the final top-k answers.

2.3.3 Experiments

2.3.3.1 Settings

Platform. We conduct experiments on an 8-node industrial cluster with 6 workers. Each
worker has 1 Intel Xeon E5-2650L (8 cores), 32GB RAM, 5TB disk. Machines run Cen-
tos 6.6 with Cloudera 5.2.5 and Hadoop 2.5.0. All presented results are averages of 5
consecutive runs.

Statistics collection. We use the same number of granules g for each collection. We
observed that only the number of interval |Ci| per collection had a significant impact on
statistics collection time. Statistics collection lasted between 28s for |Ci| = 2×105 and 36s
for |Ci| = 5×106. Since this task is only executed once as a pre-processing for a given
dataset, we do not include it in query evaluation time.

28 2. Monitoring Temporal Data

Id (λequals, ρequals) (λgreater, ρgreater)

P1 (4,16) (0,10)
P2 (0,16) (2,8)
P3 (4,12) (0,8)
PB (0,0) (0,0)

Table 2.2: Experiments: scored predicates parameters

Selection of bucket combinations. We implement a distributed and multi-threaded
version of TopBuckets . We split the set of buckets B1 into 6 equal-sized groups B1,j, j ∈
1 . . . 6. Then each worker j ∈ 1 . . . 6 runs a local version of TopBuckets using buckets in
B1,j and all buckets in Bi, i ∈ 2 . . . n. Thus, each worker has as input a disjoint set of
possible bucket combinations. We use Choco [104], a software for constraint programming
to compute score bounds for each bucket combination. Each execution of the solver is
handled in a separate thread. A second phase of TopBuckets merges local TopBuckets
results on a selected worker and returns the set of best bucket combinations Ωk,S.

Distributed join processing. We run TKIJ using 24 reducers. Local query execution
accesses the received bucket combinations by descending order of score upper-bounds. It
then uses R-Trees to access intervals in memory. For an interval xi and a score value v, it
queries the R-Tree and returns only intervals xj s.t. s-p(i,j)(xi, xj)≥v.

Queries. Tables 2.1 and 2.2 summarize queries and score parameters. We use S =
(i,j)∈E s-p(i,j)(xi,xj)

|E| to compute the score of a query result (x1, . . . , xn). Unless otherwise
specified, k=100.

2.3.3.2 Summary of Results

We show that TKIJ processes various RTJ queries efficiently on both synthetic data and
real network traffic logs. TKIJ scales to collections of up to 5 million intervals (|Ci| ∈ [1M,

5M]) and efficiently returns the top-k results for k ∈ [10, 105]. We show that our workload
distribution approach, DistributeTopBuckets , that fairly distributes high-scoring results,
outperforms a more naive approach based on the LPT algorithm. That is particularly use-
ful for queries that return few high-scoring results, such as those featuring equality-based
predicates (e.g starts). We observe that the efficiency of DistributeTopBuckets decreases
with coarser statistics. We also show that as the number of collections or the number of
predicates in a query vary, TopBuckets efficiently prunes buckets combinations. Experi-
ments on network traffic data show that on queries featuring before or overlaps , TopBuckets
can select few bucket combinations guaranteeing TKIJ to return high-scoring results. We
observe that a higher number of granules g (finer statistics) helps prune unnecessary results,

2.3. Top-k Temporal Joins: Batch Processing 29

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

S
c
o
re

Rank (x10
4
)

s−before
s−overlaps

s−meets
s−starts

Parameters: |Ci| = 104,P = P1

Figure 2.8: Synthetic data: score distribution

which improves overall join processing time. However, it also makes pruning computation
with TopBuckets slower. Hence, we run experiments to find a sweet-spot value for g.

2.3.3.3 Synthetic Data

To generate synthetic data, we use the same parameters as in previous work [29]. We
use a pseudo-random uniform generator to get intervals’ startpoints and lengths in spec-
ified ranges (respectively s = [0, 105] and w = [1, 100]). Intervals’ endpoints are integers.
We vary the number |Ci| of intervals per collection, and the number n of collections. A
collection of 5M intervals measures ≈113MB (text format).

Score Distribution. We conduct preliminary experiments to get an insight of the score
distribution of a set of results using scored temporal predicates. Especially, we want to
measure the share of results that have a high score. We want to verify that the fewer the
number of high-scoring results, the less likely a worker will receive high scoring results from
DTB . We compute all the combinations (x1, x2) ∈ C1×C2 and we evaluate each result with
scored predicates s-before(x1, x2), s-meets(x1, x2), s-overlaps(x1, x2) and s-starts(x1, x2).

On Figure 2.8, we plot scores for the top-50000 results. s-before is the predicate with the
largest number of high-scoring results (scores of top-50000 results equal 1.0), since a single
inequality on endpoints is required. More high-scoring results can be found with s-overlaps
(≈18,000 results), that evaluates only inequality on endpoints, than with s-meets (≈9000),
where an equality is required. Fewer results are assigned a high score when s-starts is
used since it requires both equality and inequality on endpoints. Thus, we can expect a
faster join processing on queries using only inequality-based predicates where more high-
scoring results can be found, since high-scoring results favor early termination of local
top-k processing.

30 2. Monitoring Temporal Data

 0

 50

 100

 150

 200

 250

LPT
D
TB

LPT
D
TB

LPT
D
TB

LPT
D
TB

R
u

n
n

in
g

 t
im

e
 (

s
)

(j
o

in
 o

n
ly

)

Qb,b
Qo,o

Qf,f
Qs,s

Qs,f,m

|Ci|=1.6M|Ci|=1.4M|Ci|=1.2M|Ci|=1M

(a) Running Time

 0

 20

 40

 60

 80

 100

 120

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

M
a

x
.

T
im

e
 R

e
d

u
c
e

r
(s

)

LPT DTB

|Ci|=1.6M|Ci|=1.4M|Ci|=1.2M|Ci|=1M

(b) Max Running Time of Reducers

 0.85

 0.9

 0.95

 1

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

M
in

.
S

c
o

re
 o

f
k
−

th
 R

e
s
u

lt

LPT DTB

|Ci|=1.6M|Ci|=1.4M|Ci|=1.2M|Ci|=1M

(c) Minimum Score of k-th Result
Parameters: g = 20, k = 1000, P = P2, TopBuckets : loose

Figure 2.9: Experiments on synthetic data: workload distribution

 0

 20

 40

 60

 80

 100

 120

 140

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

R
u

n
n

in
g

 t
im

e
 (

s
)

>1
h

TopBuckets
DTB

Join
Merge

n=5n=4n=3

(a) Qb*

 0

 500

 1000

 1500

 2000

 2500

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

>1
h

>1
h

>1
h

TopBuckets
DTB

Join
Merge

n=5n=4n=3

(b) Qo*

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

>1
h

>1
h

TopBuckets
DTB

Join
Merge

n=5n=4n=3

(c) Qm*

Parameters: g = 15, k = 100, |Ci| = 2× 105, P = P1

Figure 2.10: Experiments on synthetic data: detailed execution time, all TopBuckets
strategies

Workload Distribution. We conduct experiments to validate our workload distribu-
tion approach. We analyze executions of TKIJ using DTB , our workload distribution
algorithm, and using a more straightforward algorithm.

LPT. In the context of task scheduling, the LPT (Longest Processing Time) heuris-
tic aims to minimize scheduling time on parallel machines [39]. LPT executes tasks in
descending order of processing time. In our context, a naive approach would minimize the
maximum number of candidate join results that a reducer has to process, so as to reduce
the duration of the longest task. With LPT , bucket combinations are analogous to tasks
that we want to assign to a set of reducers. We sort the set of bucket combinations by
descending order of number of results (ω.nbRes) and assign each one to the least loaded
reducer.

2.3. Top-k Temporal Joins: Batch Processing 31

Results. Figure 2.9a presents the running time of the join phase on all queries, where
|Ci| varies from 1× 106 to 1.6× 106. On Qb,b, running time is identical for LPT and DTB ,
since a single bucket combination is selected and a large number of results with maximum
score can be quickly found during the join phase. On other queries, DTB outperforms
LPT for two reasons. Firstly, LPT incurs a higher shuffle cost (on average 43% higher).
When assigning a bucket combination to a reducer, DTB favors assignments that lessen
shuffle cost. LPT favors the assignment of bucket combinations with a large number of
results to the least loaded reducers. Hence, buckets have a higher probability to be sent to
several reducers with LPT than with DTB . Secondly, LPT does not necessarily give a fair
share of high-scoring results to each reducer. Figure 2.9b shows the running time of the
longest reducer task (we omit Qb,b where LPT and DTB perform equally for the reason
exposed above). DTB always outperforms LPT because it increases the probability that
all reduce tasks terminate early since they can all find high-scoring results. This difference
is exacerbated on query Qs,f,m with |Ci|=1M . Here, the few results that satisfy best all 3
predicates featured inQs,f,m are better distributed using DTB . On Figure 2.9c, we represent
the minimum score of the kth result among the results returned by reducers. These results
support our observation: the score of returned results is higher when distribution is defined
using DTB , while unnecessary results with lower scores are returned with LPT .

TopBuckets Strategies. We conduct experiments on the TopBuckets strategies exposed
in Section 2.3.2.3. We vary the number of collections n using queries Qb*, Qo* and Qm*.

Figure 2.10 summarizes the results. We do not report results where running time
exceeds 1 hour. Experiments show the inefficiency of brute-force and two-phase.
On these strategies, n-tuples of buckets, where n ∈ 3 . . . 5, are assigned a score bound by
the solver. With brute-force, the running time of TopBuckets quickly increases (solid
black box on Figure 2.10) with n, because the solver needs to compute score bounds for
a large number of bucket combinations, each one requiring to assign 2n variables. The
two-phase strategy only beats brute-force on Qb* (Figure 2.10a) where its first phase
prunes a large share (more than 99% for any n) of possible bucket combinations, thus
limiting the running time of the second phase, that computes exact bounds using a smaller
set of bucket combinations. On others queries, two-phase does not improve running
time: the first phase does not prune enough combinations (e.g. 52% on Qm* for n = 4) to
lessen the cost of the second phase where remaining combinations need to be assigned tight
score bounds. The loose strategy is the most efficient: (i) loose bounds do not impact
significantly join processing time as a large share of potential results (e.g. 81% on Qo* for
n = 4) remained pruned and (ii) TopBuckets scales with the number of collections n. In
the remainder of our experiments, we use loose as the TopBuckets strategy.

Number of Granules. Since the second phase of TKIJ relies on collected statistics to
prune the input space and distribute the workload, we expect TKIJ to depend on the

32 2. Monitoring Temporal Data

granularity of statistics (e.g. coarse or fine-grained). We conduct experiments to validate
this intuition, varying the number of granules g.

We present respectively on Figures 2.11a, 2.11b and 2.11c the total running time of a
range of queries, the load imbalance of the join phase computed using Max Time Reducer

Average Time Reducer
and the detailed running time for query Qo,m. We do not report results for executions
where the total running time exceeds 1 hour. On queries that return the fewest high-
scoring results (Qo,m, Qs,f,m), we observe on Figure 2.11a that with a lower g (coarse
statistics), running time degrades. TKIJ suffers here from poor workload distribution.
This is expected as with fewer granules, we have fewer bucket combinations and especially
fewer high-scoring ones. As TKIJ relies on a round-robin distribution of high-scoring
buckets combinations, there is a lower probability to provide each reducer high-scoring
results. Hence, we can observe on Figure 2.11b the imbalance that is more variable when
g decreases. As illustrated on Figure 2.11c, when g increases, the local join processing
is faster, thanks to a better workload distribution and to a larger pruning of unnecessary
results. 81% of potential results are pruned for g=20, while it is 96% for g=100 (grey filled
curve on Figure 2.11c). Yet, the pruning process TopBuckets is slower when g increases
and thus worsen the overall response time. Note that because it features more predicates,
query Qs,f,m requires to evaluate more bucket pairs during the TopBuckets process. Thus,
TopBuckets running time increases faster with g than on others queries, hence the impact
on the overall response time.
For queries Qb,b and Qo,o, coarse statistics have nearly no effect since a large number
of high-scoring results can be found during the join phase (except when g = 5 where
workload distribution fails for query Qo,o: a reducer does not quickly find high-scoring
results). Finally, we observe that a number of granules g≈ 40 provides the best trade-off
for the various queries that we experimented. Future investigations include the design of
benchmark approaches or the adaptation of optimization techniques [35] to compute the
optimal number of granules that minimizes execution time of TKIJ .

Scalability. We vary the size of collections |Ci| to evaluate the scalability of TKIJ . We
compare TKIJ to state-of-the-art competitors.
As a baseline, we borrow algorithms from related work on processing interval joins on
Map-Reduce [29]. In this work, algorithms RCCIS and All-Matrix are designed to process
interval joins using Allen predicates. In our settings, we use these algorithms to return
only results that satisfy all the Boolean predicates of a RTJ query (i.e. a subset of top-k
results). We also impose reducers to stop join processing if k results are found. Then, we
merge and sort local results using a final Map-Reduce phase, identically to TKIJ .
RCCIS handles only colocation predicates where intervals intersect (e.g. overlaps, meets).
All-Matrix handles only sequence predicates (before, after). RCCIS and All-Matrix also
partition the temporal range using contiguous granules. For RCCIS , we set the number
of granules to 24 which implies that 24 reducers are used. For All-Matrix , the number

2.3. Top-k Temporal Joins: Batch Processing 33

3600

 100

 1000

 0 20 40 60 80 100 120 140 160

R
u

n
n

in
g

 t
im

e
 (

s
)

g

Run. Time >1h:
(g=5, Qo,m)
(g=5, Qo,o)
(g=5, g>140, Qs,f,m)

Qb,b
Qf,b

Qo,o
Qo,m

Qs,f,m

(a) Running time

 1

 3

 5

 7

 9

 0 20 40 60 80 100 120 140 160

Im
b

a
la

n
c
e

g

Run. Time >1h:
(g=5, Qo,m)

(g=5, Qo,o)

(g=5, g>140, Qs,f,m)

Qb,b
Qf,b

Qo,o
Qo,m

Qs,f,m

Qs,f,m
(g=15: 13.26)

(b) Imbalance

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

 50

 60

 70

 80

 90

 100

R
u

n
n

in
g

 t
im

e
 (

s
)

%
 r

e
s
u

lt
s
 p

ru
n

e
d

g

TopBuckets
Distribution

Join
Merge

%results pruned

(c) Detailed running time for Qo,m

Parameters: k = 100, |Ci| = 2× 106, P = P1, TopBuckets: loose

Figure 2.11: Experiments on synthetic data: effect of number of granules g

 80

 90

 100

 110

 120

 130

 1 2 3 4 5

R
u

n
n

in
g

 t
im

e
 (

s
)

|Ci| (x10
6
)

AllMatrix−PB
TKIJ−PB
TKIJ−P1

(a) Qb,b

 100

 200

 300

 400

 500

 1 2 3 4 5

|Ci| (x10
6
)

RCCIS−PB
TKIJ−PB
TKIJ−P1

(b) Qo,o

 100

 200

 300

 400

 500

 1 2 3 4 5

|Ci| (x10
6
)

RCCIS−PB
TKIJ−PB
TKIJ−P1

(c) Qs,m

Parameters: g = 40, k = 100, TopBuckets: loose

Figure 2.12: Experiments on synthetic data: scalability

of reducers depends on the number of granules and of collections. We used 4 granules
with n = 3, yielding 20 reducers. For TKIJ , we conduct a first set of experiments with
score parameters PB = {(0, 0), (0, 0)} (see Table 2.2). We are hence using a Boolean
interpretation of predicates. Because TKIJ must return k results, if only k′ < k results
satisfy the Boolean predicates (with S(t) = 1.0), k − k′ other results that do not satisfy
at least one predicate will be returned (with S(t)<1.0). Thus, TKIJ may need to return
more results than All-Matrix or RCCIS , that only return results fully satisfying all Boolean
predicates. Hence, results of each algorithm are not directly comparable. For TKIJ , we
conduct a second set of experiments using scored predicates with the score parameters P1.

Results. We present total running times on Figure 2.12. For query Qb,b (Figure
2.12a), TKIJ remains nearly constant since TopBuckets returns only 1 bucket combina-
tion. Thus, TKIJ processes only a small share of input data. All-Matrix shuffles intervals
belonging to all possible results, hence running time increases with |Ci|. For query Qo,o

(Figure 2.12b), TopBuckets selects more combinations to process. As the number of inter-
vals per bucket increases with |Ci|, more data is shuffled and processed during the local join

34 2. Monitoring Temporal Data

 0.1

 1

 10

 100

 0 20 40 60 80 100

#
tu

p
le

s
 (

%
)

Start Point (%Max.)

(a) Start point

 1e−05
 0.0001
 0.001
 0.01
 0.1

 1
 10

 100

 0 20 40 60 80 100

#
tu

p
le

s
 (

%
)

Length (%Max.)

(b) Length

Figure 2.13: Network traffic data distribution

processing, hence the running time increases linearly with |Ci|. Figure 2.12b also shows
that TKIJ outperforms RCCIS on |Ci|> 3.5×106. In RCCIS, a first Map-Reduce phase
builds intermediate results to determine which intervals need to be replicated to ensure
output correctness in the join phase. Thus, its running time increases with |Ci|. Mean-
while, TKIJ decides which tuples should be combined on the basis of TopBuckets , which
does not depend on |Ci| and is on average 93% faster than the first phase of RCCIS. On
Qs,m (Figure 2.12c), we do not observe this phenomenon anymore: RCCIS first phase is
faster (there are fewer intermediate results), while TKIJ ’s join phase is longer (there are
fewer high-scoring results). We observe a notable difference on query Qs,m with scored and
with Boolean predicates. The local join processing explains this difference. In the Boolean
case, TKIJ focuses on building results where join conditions are satisfied (whose score is
strictly positive), thus limiting the search space. With the approximate interpretation of
predicates, more combinations need to be considered because tolerance on endpoints incurs
a higher number of results with a strictly positive score. Thus, more intermediate results
are computed. On query Qo,o, a large number of results have the highest score (Figure 2.8)
which incurs major pruning. That justifies the absence of a significant difference between
the scored and Boolean cases.

Effect of k. We conducted experiments where k varies in [10, 105] on a range of queries
(Qb,b, Qo,o, Qs,f,m, Qf,b, Qo,m) with |Ci|=2×106. We observed that TKIJ is almost constant
on all queries and all values of k. Actually, a large number (> 1013) of potential results
fall in each bucket combination. Thus, the set of selected bucket combinations remains the
same for k∈ [10, 105] since we can always guarantee to return the correct top-k results.

2.3.3.4 Network Traffic Data

Data. We use network traffic data collected on firewall logs of a data hosting company.
Each log contains packets exchanged between servers and clients (≈ 5GB, 100M packets
per day). Each packet has a timestamp (seconds). We selected one log and built a list of
connections by grouping packets exchanged between a pair (server, client). Only consecu-

2.3. Top-k Temporal Joins: Batch Processing 35

 500

 4500

 100

 1000

 0.5 1 1.5 2 2.5

R
u

n
n

in
g

 t
im

e
 (

s
)

|Ci| (x10
6
)

Qb,b
Qf,b

Qo,o
Qo,m

Qs,f,m
QjB,jB

QsM,sM

Parameters: g = 40, k = 100,P = P3, TopBuckets: loose

Figure 2.14: Experiments on network traffic data: scalability

tive packets whose timestamps are within a time interval [0, 60] are grouped. A connection
[client, server, start, end] represents the activity of client on server, where the first packet
was sent or received at timestamp start and the last one at timestamp end. The dataset
obtained includes 3,636,814 intervals (≈ 83MB), whose minimum, maximum, and average
length are respectively 1, 86,459 and 54 seconds. Figure 2.13 shows the distribution of
start points and lengths. Then, we copy each list of connections 3 times and process 3-way
queries. We are interested in real-life scenarios occurring in network traffic analysis, hence
we process queries QjB,jB and QsM,sM (Table 2.1). Query QjB,jB returns the sequences of
connections that closely follow each other, while QsM,sM returns sequences where a delay
was observed between two connections.

Scalability. We verify that TKIJ scales with various dataset sizes. When generating
connections, we use various randomly selected samples on the log file used. We pick from
5% to 35% of input data. We obtain collections of connections whose number of intervals
varies from 0.58×106 to 2.31×106.

We present total running times on Figure 2.14. We note that running time increases
faster than what was observed on synthetic data. Here, when we use larger samples on
input data, we have more buckets containing at least an interval. When |Ci|=0.58×106,
there are 151 buckets containing at least an interval, while there are 296 for |Ci|=2.31×
106. Thus, TopBuckets has to process more bucket combinations with higher |Ci|. On
query Qs,f,m, that features more predicates, the time taken by TopBuckets is dominant
(e.g. 82% of overall response time for |Ci| = 1.38×106). Hence, overall response time
increases faster on query Qs,f,m than on all other queries. We also observe that while
Qo,o lasts longer on synthetic data, TKIJ performs similarly on Qb,b and Qo,o on real
data. That can be explained by the fact that the real dataset contains long intervals
(Figure 2.13). These intervals fall into buckets built with granules that are far apart (e.g.
b1=([2160, 4320], [19440, 21600]) or b2=([8640, 10800], [38880, 41040])). Thus, we can find
bucket combinations (e.g. ω=(b1, b2)) whose results (x, y) are guaranteed to have a high

36 2. Monitoring Temporal Data

 500

 100

 1000

 10 100 1000 10000 100000

R
u

n
n

in
g

 t
im

e
 (

s
)

k

Qb,b
Qf,b

Qo,o
Qo,m

Qs,f,m
QjB,jB

QsM,sM

Param.: |Ci| = 1.03× 106, g = 40, P = P3, TopBuckets: loose

Figure 2.15: Experiments on network traffic data: effect of k

score s-overlaps(x, y). Then, TopBuckets returns less bucket combinations, reducing the
search space while guaranteeing correctness.

Effect of k. We verify TKIJ on various values of k. We present running times on Figure
2.15. For all queries except Qo,o, we observe that TKIJ remains nearly constant when
k≤5000. Then, the running time increases slowly when k>5000: as more results need to
be returned, more intermediate results are built before termination especially with queries
having fewer high-scoring results. On Qo,o we observe that TKIJ increases slightly between
k=1000 and k=5000. That is explained by an increase (from 643 to 41,272) in the number
of bucket combinations |Ωk,S | necessary to return the correct top-k results, which in turn
increases the number of intermediate results.

2.3.4 Related Work on Batch Temporal Joins

Three research areas relate to our work, however none of them addresses the RTJ problem.

Interval Joins

The closest work to ours [29] addresses the processing of multi-way joins on Map-Reduce
for Allen Boolean predicates [7]. The first algorithm, RCCIS, solves colocation queries,
where all predicates require intervals to have a non-empty intersection (e.g. overlaps,
meets). RCCIS reduces the amount of data shuffled in Map-Reduce by sending to the same
reducer intervals that are most likely to be collocated and produce a join result. The second
algorithm, All-Matrix handles sequence queries. Because such queries imply unavoidable
replication, All-Matrix focuses on load balancing. Chawda et al. [29] also design algorithms
to evaluate hybrid queries that feature combination of colocation predicates, sequence
predicates or use interval attributes other than interval bounds. In a centralized setting,
Gao et al. [54] investigated various join algorithms. They handle a variety of join predicates,

2.3. Top-k Temporal Joins: Batch Processing 37

including Allen’s predicates. None of those algorithms is applicable to solving the RTJ
problem as they do not handle scored results.

Several studies investigated efficient processing of queries involving the intersects2 pred-
icate [35, 44, 78, 100, 113, 132]. The idea is to combine events that share a common period
of validity. A recent investigation proposed a compound index structure using segment
trees to find intervals that intersect a query-interval in a key-value cloud-store [113]. Kauf-
mann et al. [78] designed a space-efficient index that allows to optimize the evaluation
of a range of temporal queries, including temporal aggregation or temporal joins. This
index can be efficiently compressed, which allows to query large amounts of temporal data
using in-memory databases. Dignös et al. [35] focused on optimizing partitioning of the
time range to improve join processing using the intersects predicate. They assume the
time range is uniformly partitioned into granules. A partition is a sequence of one or more
adjacent granules and an interval is assigned to the smallest partition that contains this
interval. Partitioning is leveraged to evaluate efficiently intersection joins: only intervals
from some combinations of partitions have to be joined. Dignös et al. focused on limiting
the number of false hits (when a partition is fetched, but does not yield join results) and
partition accesses. They propose an approach to find the optimal number of granules, that
maximizes the efficiency of join processing. Recently, Piatov et al. [100] focused on design-
ing an efficient data structure for intersection joins for in-memory processing. The goal is to
have a structure that is as compact as possible (that fits in cache/memory) and optimizes
CPU usage. A series of work on spatio-temporal data also focused on efficiently retrieving
overlapping objects with Boolean semantics. Objects are stored in partitions [35, 88], or
tree structures [44], such as the R-Tree [14, 61] or the quadtree [52]. All these studies are
not applicable to our settings since we focus on richer semantics, including an approximate
interpretation of Allen’s meets or before.

A line of work in approximate reasoning investigated flexible interpretations of Allen
predicates [41, 96, 111]. Dubois et al. [41] propose a flexible approach for scoring Allen
predicates. These approaches [41, 96, 111] both support a crisp interpretation of intervals,
where the intervals bounds are assumed to be known and exact, and a fuzzy interpretation,
where an interval is represented using a fuzzy set. These studies only focused on semantics
and none of them designed join algorithms.

Snodgrass proposed the TSQL2 temporal query language [117]. TSQL2 includes a
set of boolean operators that allow to compare periods, datetimes and intervals (here,
unanchored periods of time). Since (i) the Snodgrass model subsumes Allen’s [117] and (ii)
Allen’s temporal predicates are used in a recent work on distributed evaluation of interval
joins [29], we started our investigation with Allen’s predicates. We could extend our work
to support the flexibility of Snodgrass (e.g., supporting predicates that compare datetimes).

2In some studies [35, 44, 100, 113], “intersects” is also known as “overlaps”, although it does not has the
same semantics as Allen’s “overlaps” [7]. In our work, we use Allen’s semantics.

38 2. Monitoring Temporal Data

Top-k Processing

In top-k selection queries [73] the score of an object is given by a function that aggregates
objects’ base scores over several dimensions and the query returns the k objects with the
best score (e.g. the highest). Fagin et al. [45, 46] developed several notorious instance-
optimal algorithms to evaluate efficiently top-k selection queries, that avoid evaluating
unnecessary results.

These investigation gave rise to another line of work: rank-join3 processing [37, 51, 71,
72, 94, 95, 110]. Here, the query returns the top-k join results and the score of a result
is the aggregation of objects’ individual scores. Rank-join queries are usually expressed
in SQL using a STOP AFTER clause, that was proposed in the seminal work of Carey and
Kossmann [23]. Ilyas et al. [72] designed HRJN, an instance-optimal algorithm. They
assume that we can access input relations in descending of score. This algorithm avoids
computing unnecessary results and relies on the monotonicity of the aggregation function to
terminate early. This work led to the design of Pull-Bound Rank Join algorithms [51, 110]
that focused on obtained better guarantees on I/O costs. All these studies rely on the
fact that objects’ scores are known a priori. In our settings, these scores are predicate-
dependent, which make these techniques inapplicable.

Some studies investigated distributed or highly distributed settings [37, 95, 126]. Specif-
ically, in NoSQL databases, the BFHM algorithm [95] places each tuple in a bucket that
depends on its score. Tuples are compressed using Bloom-filters allowing to select the best
buckets first then retrieve tuples to be joined from the database. Because a Bloom-filter
yields false positives, BFHM may require several iterations. Our work differs in two as-
pects. First, this study assumes that the score are known a priori. Second, reiterating join
processing in our case would incur too high an overhead.

Chang and Hwang [27] studied how to minimize the number of expensive ranking pred-
icates that need to be evaluated to return top-k results. An expensive ranking predicate
may be a user-defined function that gives the score of a pair of objects (e.g. how close
are two objects). They study fuzzy joins that combine objects from several collections. A
distinctive feature of their work is that scores are hence predicate-dependent. However, our
work has several differences. First, they assume that at least one cheap ranking predicate
allows a sorted access, which enables optimizations in their algorithm. We do not assume
the existence of such predicate. Second, they essentially focus on a centralized setting.
They propose an extension where data is partitioned, but it requires several iterations
during top-k processing, which is a too high overhead in our context.

Li et al. [85] investigate a special kind of top-k queries on temporal data. Here, the
score of objects are given by score functions, that evolve over time. This is useful when the
data that is monitored is modeled using piecewise linear function that approximate real
measures (e.g. a stock price, sensor readings). Their query returns the top-k functions and
hence differs from our work.

3Also known as top-k join [73].

2.4. Top-k Temporal Joins: Stream Processing 39

Distributed Join Processing

Because it is an expensive operation, join has been extensively studied in distributed set-
tings. This raises well-known challenges, such as load balancing or limiting replication.
RanKloud [20] computes data statistics to retrieve an estimation of the kth join score.
Then, only the part of input data whose score is above the estimated one is uniformly
distributed and processed in parallel on a set of workers. Similarly, we rely on computing
statistics to avoid processing useless data. However, while RanKloud outputs approximate
results, our algorithm guarantees to return exact top-k results. Another work [36] proposes
a partitioning scheme on Map-Reduce based on partitioning for parallel skyline query pro-
cessing [125]. The angle-based partitioning distributes evenly the volume that contains
points near the best possible point, increasing the probability that skyline points will fall
evenly in each partition. This idea is reintroduced in the context of top-k joins [36] and
is shown to be superior to a cardinality-based partitioning. Although we share the same
intuition, we cannot directly apply this technique since it assumes that partial scores are
known a priori while in our case they are predicate-dependent.

Since it was introduced by Dean and Ghemawat [34] the Map-Reduce paradigm and
its open-source implementation Hadoop Map-Reduce became popular for distributed pro-
cessing on a cluster of (commodity) machines. Although its relevance is questionable on
some applications [118], many studies focused on join processing using Map-Reduce [5, 17,
29, 97, 134], including k-nearest neighbor joins [89] or similarity joins [81]. Okcan and
Riedewald [97] proposed to use matrix model to optimize load balance for 2-way joins.
Zhang et al. [134] partitioned data using an hypercube model and leveraged the properties
of Hilbert curves to optimize both load balance and replication for multi-way joins. Afrati
et al. [4] focused on limiting replication for multi-way equi-joins. All these studies are not
directly applicable to our setting and focus on different query models that do not leverage
temporal semantics.

2.4 Top-k Temporal Joins: Stream Processing

In this section, we present a preliminary study for monitoring temporal data using stream
processing. We present detailed investigation directions that are a basis for designing a
distributed query evaluation approach for top-k temporal stream joins.

Motivation

Our work is a direct extension of our investigations on batch processing of top-k tempo-
ral joins. Batch processing is best suited to applications where all data is given at once
and a response time in minutes is acceptable. In this context, we evaluate queries over a
fixed dataset. We showed how an analyst could collect data from firewalls and query large
datasets using our evaluation approach TKIJ . However, in some applications, including

40 2. Monitoring Temporal Data

in network traffic monitoring, an analyst also needs to query data as it arrives, in the
forms of streams, and she requires a response time in seconds or sub-seconds. For instance,
TKIJ runs in a single round with three Map-Reduce jobs and collects statistics on the
whole dataset to guarantee the correctness of results. Repeating top-k processing to up-
date statistics and results would require a high number of I/O accesses, which is expensive.
Moreover, it returns results in minutes for large datasets, and it is based on an implemen-
tation on Map-Reduce that is best suited for batch processing and ETL operations [118].
This motivates the need for investigating stream processing of top-k temporal joins. In
this setting, we aim at evaluating continuous queries that are continuously returning most
recent results using continuous datasets.

Previous studies on stream join processing has considered the notion of recency in two
main flavors. Some studies advocated the need to process full-history joins [43, 87]. In this
setting, all input tuples are joined with tuples that have already arrived and are stored on
the system. This is best suited to applications that “require maintaining large historical
states” [43]. Other studies considered window-based joins [58, 60, 76, 77, 120, 123, 127].
Here, queries are continuous and they operate on continuous datasets. We propose to study
window-based joins with a time-based window: only tuples that have a recent timestamp
are valid. This approach is compatible with the requirement of temporal data monitoring
and top-k join processing: we will return the top-k most recent results.

Challenges

We aim at designing a distributed query evaluation approach. In this context, stream join
processing raises specific challenges. First, a distributed query evaluation approach must
ensure load balancing and limit replication. Streams are by nature dynamic and “possibly
unpredictable” [12], which requires to build an approach that adapts to the stream dynam-
ics. Previous studies have investigated various approaches to tackle this problem [43, 87],
however they focused on 2-way joins using hash or random partitioning. These techniques
are not applicable in our setting where we aim at joining more than 2 input streams. Sec-
ond, we aim to minimize system latency which is a natural requirement for monitoring data
in real-time. We can define latency as the difference between the time an input tuple enters
the system and the time at which the first corresponding join result is returned [43](i.e.
added to the top-k results). In our setting, because of the approximate semantics, every
combination of intervals from different input streams is a potential join result. However,
we aim at returning the correct top-k results, based on the whole data. Moreover, because
of the window semantics, a result that was not included in the top-k results at time t1
may need to be included later at time t2 > t1. This enforces maintaining the top-k results
using results that need to be formerly stored. Therefore, at any time t, a large number of
interval combinations are potentially in the top-k results. To minimize latency, we need to
(i) avoid evaluating unnecessary results and (ii) efficiently store and maintain the potential
top-k results. This can be achieved by leveraging the top-k semantics. As a summary, we

2.4. Top-k Temporal Joins: Stream Processing 41

need to devise an efficient query evaluation approach that is able to quickly ingest input
tuples and update top-k results.

2.4.1 Data Model and Problem for Stream Temporal Joins

2.4.1.1 Data Model

We are given m streams S1, . . . , Sm. A stream Si is a continuous, unbounded sequence of
intervals denoted xi. Each interval xi ∈ Si has a unique identifier xi.id, a start time xi and
an end time xi.

Our model assumes that the sources of streams Si are able to extract interval bounds
based on raw point-based events. Such a process can be achieved either by low level
physical sensors with sufficient computing resources, either by middlewares. This is a
reasonable assumption that covers a wide range of scenarios. For instance, in network
traffic monitoring, a firewall monitors packets exchanged between servers and clients in the
form (timestamp, client.IP, server.IP, portNumber). A middleware could monitor clients
connected to the server and emit a tuple (client.IP&server.IP, t1, t2) that represent the
client connection during interval [t1, t2]. A connection would be obtained by grouping
consecutive packets exchanged between a client and a server. The fact that streams emit
intervals was also assumed by Li et al. [86] who proposed to support interval events in the
domain of Complex Event Processing (CEP). To the best of our knowledge, no previous
study on stream join processing focused on supporting temporal intervals.

2.4.1.2 Stream Ranked Temporal Join

We are interested in expressing m-ary join queries on streams S1, . . . , Sm. Each stream
Si is associated a window size Wi. The sliding window on stream Si is coined Si[Wi]. To
the best of our knowledge, all previous studies that used time-based windows assumed
that each tuple has a single timestamp. In our setting, streams feature temporal intervals,
thus we need to devise proper semantics. At time t, we consider that xi ∈ Si[Wi] if and
only if xi ∈ [t−Wi, t]. This definition implies that an interval xi is valid if it was recently
completed. This is consistent with with previous approaches on query processing on interval
data [35, 44, 113] that considered a tuple xi to be valid at time t when t ∈ [xi, xi]. Therefore,
our model is based on the application timestamp4 xi that is given by stream sources [12].
This approach contrasts with the assignment of a system timestamp5 to a tuple when it
arrives [60, 87, 91].

We adopt the semantics of window joins made explicit by Ji et al. [76]: when a new
interval xi ∈ Si arrives, (i) we invalidate expired intervals in all windows Sj[Wj] where j ̸= i

using the timestamp of xi and (ii) we produce valid results using valid input intervals. We

4Also known as explicit timestamp.
5Also known as a implicit timestamp.

42 2. Monitoring Temporal Data

denote valid result a tuple (x1, . . . , xm) ∈ S1× . . .×Sm where each xi is valid at some time
t. The procedure above implicitly defines the semantics of a valid result [76]:

Valid Result. A result (x1, . . . , xm) is valid with respect to sliding windows Si[Wi] i ∈
1, . . . ,m if ∀i, j ∈ 1, . . . ,m , j ̸= i : xj −Wi ≤ xi ≤ xj +Wj.

This definition ensures that if xi ∈ Si arrives before (resp. after) xj ∈ Sj where j ̸= i,
then xi ∈ Si[Wi] (resp. xj ∈ Sj[Wj]). We assume that streams have no intra-stream nor
inter-stream disorder [76]: intervals arrive in non-decreasing order of timestamp. How to
handle stream disorder is orthogonal to our work. We assume a lazy evaluation: new query
results are returned each time a new interval arrives6. This is a common assumption in
stream join processing [76, 77, 120, 127].

Then, we extend RTJ queries to define a Stream Ranked Temporal Join query (S-RTJ).
We adapt the model developed for RTJ queries (Section 2.3.1). We model S-RTJ queries
using a graph, where vertices are streams and edges are labeled with scored temporal
predicates. The score of each tuple is computed using a function S that aggregates the
partial scores assigned by each predicate. The S-RTJ problem is thus the following:

S-RTJ Problem. At any time, evaluating a S-RTJ query requires to return a top-k set of
valid results of the form (x1, . . . , xm) ∈ S1 × . . . × Sm ranked by (descending) order of
S(i,j)∈E(s-p(i,j)(xi, xj)).

We aim to evaluate continuously S-RTJ queries: when a new interval arrives, (i) we
invalidate expired intervals and results that include expired intervals and (ii) we return the
current S-RTJ results.

2.4.2 Preliminary Study for Processing Stream Temporal Joins

2.4.2.1 Overview

We propose to adapt TKIJ , our approach for batch processing of RTJ queries. This new
approach is based on 4 main components shown in Figure 2.16. A first phase (a) collects
statistics. It uses the same idea as TKIJ (Section 2.3.2.2): partitioning time into granules
and collecting the number of intervals that fall into each bucket (a pair of granules). This
phase is executed online, as data arrives continuously. A second phase (b) leverages these
statistics to prune unnecessary results. This is similar to TKIJ approach (Section 2.3.2.3).
This phase has to leverage the time-based window semantics to determine if a bucket can
be invalidated. For instance, given a query, we may decide if intervals from a bucket can be
safely invalidated if we are sure that they will never be included in top-k results. A third
phase (c) distributes the workload on a set of processing nodes. It leverages the collected
statistics and the results of the previous phase. It decides on which processing node(s) a
bucket has to be sent so as to evaluate locally a full S-RTJ query (d). Finally, on notable
difference with TKIJ is that we can transmit the score of the k-th result to the pruning

6An active evaluation would compute results at any time or at a given period.

2.4. Top-k Temporal Joins: Stream Processing 43

Collect
Statistics

(a)

Prune
(b)

Distribute
(c)

workload

Unecessary Results

Join
(d)

top-k results

k
-t

h
sc

or
e

(e
)

Figure 2.16: Overview of distributed stream top-k join processing

phase (e) since we are evaluating results continuously. The rationale is to use this score
to prune more results: only results with a potential score above the k-th score need to be
evaluated.

2.4.2.2 Future Investigations

We identified several investigation directions to tackle our two main challenges.

Distributed Processing. Our first challenge is to optimize load balancing and data
replication in the context of stream join processing.

• One-hop vs multi-hop routing. Previous studies have investigated different rout-
ing schemes to compute join results in a distributed settings. Gu et al. [60] proposed
two routing schemes for distributed join processing. A first scheme, ATR is a single-
hop scheme where no intermediate join results are passed between nodes. A pro-
cessing node thus receives input tuples from all streams and evaluate a full join.
A second scheme, CTR is a multi-hop scheme, where intermediate join results are
passed between nodes. Each processing node evaluates a partial join, and emits in-
termediate results or full join results. Gu et al. conducted experiments showing
that ATR performs better than CTR when join selectivity is high. Later, Wang and
Rundensteiner [127] designed a multi-hop scheme that outperforms both ATR and
CTR. Zhou et al. [136] proposed an algorithm that chooses the best routing scheme
based on streams arrival rate. In our settings, we advocate for building a single-hop
scheme. Our query naturally returns a high number of intermediate results, since any
combination is a potential result. This is akin to a query that has a high selectivity.

44 2. Monitoring Temporal Data

Zhou et al. [136] showed that when join selectivity is high, their optimized plan was
equivalent to this plan, which confirms the need for a single-hop scheme.

• Workload distribution. To optimize load balance and limit replication, we can
adapt the idea developed for TKIJ : leverage collected statistics. In this approach,
intervals are grouped by buckets and all intervals from the same bucket are sent to
the same node(s). The distribution uses in input the bucket combinations that were
not pruned by the pruning phase and ensures that each combination will be evaluated
on a processing node. A first naive approach is to evenly distribute buckets from one
stream and map buckets from others streams to the required processing nodes. This
is akin to using random partitioning for intervals from one input stream, and then
replicating intervals from other streams where needed. This approach incurs a lot of
data replication and a high communication overhead. Moreover, it is not adaptive.
A smarter approach has to adapt workload distribution to the dynamics of input
streams. We aim to investigate further in this direction.

• Data Storage. Because of the window semantics, we also need to store temporarily
intervals that could be joined later with other intervals. An interval that arrives
in the system has (i) to be joined with previously arrived intervals that were not
expired and (ii) to be stored and joined with intervals arriving afterward. Intervals
need to be stored in-memory to maximize efficiency. They are later discarded when
they expire. Designing a distributed system that limits replication while storing only
necessary input tuples and guaranteeing correctness is a tedious task. Lin et al. [87]
proposed a biclique model for 2-way joins: an input tuple is stored on one side of
the biclique (each graph node is a processing node) and sent to the other side to join
with intervals from the other relation. Adapting this approach to m-way joins is not
straightforward. We need to devise an approach that leverages the top-k and window
semantics to store (and discard) intervals efficiently.

Latency. Our second challenge is to minimize latency, which is tedious since every com-
bination is a potential join result in our settings.

• Pruning Unnecessary Results. Pruning unnecessary results is a key component
of our approach. For batch processing, we rely on a constraint programming solver
to compute score bounds of a bucket combination. Then, we leveraged these bounds
to prune unnecessary bucket combinations (and thus unnecessary results). In our
experiments on TKIJ , we observed that the solver’s response time could be high
if a large number of bucket combinations were considered. This was acceptable in
batch processing, where the overall response time may be in minutes. This is not
satisfactory for a low-latency system where latency should be in seconds or sub-
seconds. One possible improvement is to reuse previous computations. Indeed, given
that our predicates only compare the relative position of interval bounds, the score

2.4. Top-k Temporal Joins: Stream Processing 45

bounds of a bucket combination only depend on the relative position of buckets.
Therefore, the score bound of a combination ω1 = (b1,1,1, b2,1,1) may also be valid
for another combination ω2 = (b1,5,5, b2,5,5). Here, ω1 would concern intervals arrived
earlier than those in ω2. This happens when uniform partitioning of the time range
is used: the score bounds are similar on similar bucket combinations. We need to
leverage this idea to reduce the usage of the solver and thus prune unnecessary results
more efficiently.

• Local Join Processing. Even if workload if perfectly distributed, the latency still
depends on the evaluation of full S-RTJ queries on processing nodes. First, we need
to build efficiently join results. Many previous studies have investigated centralized
stream join processing [58, 77, 123]. We need to adapt techniques to our temporal
semantics. Second, how to efficiently maintain top-k results is not a straightforward
task given the time-based window semantics. A first approach could be to use the
k-skyband to store results. Then, we can efficiently compute top-k results using the
k-skyband. We could adapt previous work on continuous top-k queries [92, 115].

2.4.3 Related Work on Stream Temporal Joins

Three main research domains are related to our work. However, none addresses the S-RTJ
problem.

Stream Join Processing

Stream join processing has been extensively studied, especially in centralized settings [58,
63, 77, 123]. Viglas and al. [123] showed the superiority of a single multi-way join operator
over a tree of binary join operators. Golab et al. studied [58] several multi-way join
algorithms with sliding window and proposed an heuristic to optimize join ordering based
on stream arrival rates. Kang et al. [77] also proposed a cost model for 2-way joins and
investigated different combinations of join algorithms for each input. Our investigations
are orthogonal to these studies. We mainly focus on challenges induced by our distributed
setting. We could adapt these studies for the local processing of S-RTJ queries.

Distributed stream join processing was also investigated [43, 60, 87, 99, 127, 136]. Gu
et al. [60] proposed two routing schemes to distribute join processing over a set of nodes.
To partition input tuples, they group all tuples from a given stream that arrived within
a certain time period. The ATR scheme selects one input stream as the master stream,
distributes time segments for this stream and aligns slave streams with the master. This is
a single-hop scheme that does not transfer intermediate results between nodes. The CTR
scheme dynamically routes tuples to a set of least-loaded host. It uses an heuristic to find
a minimum set of nodes to achieve minimum overhead. This is a multi-hop scheme since
intermediate join results are transferred between nodes.

46 2. Monitoring Temporal Data

Wang and Rundensteiner [127] proposed the PSP model that slices “window states of a
join operator into fine-grained window slices”. In the PSP model, both tuples and interme-
diate results are passed between nodes. A probe tuple is passed through a ring structure to
purge expired tuples. A build tuple is used to construct join results. Intermediate results
are passed until being dropped, after completing a loop. They also study load balancing,
using workload smoothing and state relocation, and show the superiority of PSP over ATR
or CTR. Although PSP does not focus on temporal joins nor on ranked semantics, it is
a baseline query evaluation approach that handles any join predicates and thus could be
compared to our approach for S-RTJ processing.

Studies have also considered load balancing and data replication, that are natural con-
cerns in a distributed setting. Elseidy et al. [43] proposed an adaptive 2-way join operator
that repartitions and relocate input data on a cluster. They use the notorious join-matrix
model to partition data, and design a migration algorithm with performance guarantees.
Lin et al. [87] designed the biclique model where processing nodes are organized using a
biclique (a complete bipartite graph). Each side of the biclique corresponds to a relation,
where tuples are stored. Random routing or hash partitioning are used to route input
tuples. These studies are not applicable to our setting as they focus only on 2-way joins
and it is not straightforward to adapt these techniques to multi-way joins.

A number of systems have been developed to handle streaming data, including Bo-
realis [2], Flink [21], Heron [83], Photon [9], Spark [131], Squall [124], Storm [121] or
TimeStream [105]. While most studies focus on general-purpose systems, some of them es-
pecially investigated join processing. Squall [124] includes join operators that leverage the
Hybrid-Hypercube partitioning scheme. It is based on a combination of hash and random
partitioning. In our settings, any combination is a potential join result, therefore it would
require to partition one collection and replicate the others, which would not be efficient.
Photon [9] was developed by Google to join streams of events (clicks and queries during
web search). A strong emphasis was put on exactly-once semantics, fault-tolerance and
latency. It relies on a registry that stores the id of events that have already been joined. It
does not aims at supporting any kind of join predicate. In summary, these systems focus
on supporting generic join queries and do not aim at tackling the specific challenges raised
by our semantics.

Top-k Queries

In the top-k monitoring domain [13, 129], a set of sensors, that are distributed over a
network, emit readings (e.g. temperature, pollution, network traffic measures). One may
be interested in retrieving the top-k objects with the highest scores. For instance, Babcock
and Olson [13] consider that each sensor emits a reading for a given object and that the
object score is the sum of these readings. In these studies, a coordinator node fetches data
from monitoring nodes and computes the top-k results. The main challenge considered is
to minimize the communication cost and to avoid querying too often sensors since this may

2.4. Top-k Temporal Joins: Stream Processing 47

drain their batteries. This differs from our setting, where data processing is distributed,
hence these algorithms are not applicable for S-RTJ queries.

In the domain of top-k queries over sliding windows [92, 115], objects arrive in streams
and studies aims at returning the top-k objects that are in the sliding window. Mouratidis
et al. [92] proposed an algorithm that leverages a skyband to return top-k results. One
important remark is that the k-skyband contains the correct top-k results at any moment.
Shen et al. [115] aim at returning the top-k pairs of objects, using any function to aggregate
objects’ scores. They also use a skyband to store object pairs. They propose algorithms
to (i) efficiently compute top-k pairs using the skyband and to (ii) efficiently maintain
the skyband as objects arrive or expire. Although these studies are closely related to
our investigations, their techniques are not applicable to our setting. First, Mouratidis
et al. [92] aggregate the base score of objects, assuming they are known a priori. In our
settings, scores of results are predicate-dependent and thus are not known a priori. Shen et
al. [115] aggregate the score of objects, therefore they do not rely on the fact that scores
are known a priori. However, they do not focus on limiting the number of object pairs that
are built: this would cause too high an overhead in our context.

Complex Event Processing

Complex Event Processing (CEP) aims at filtering and combining notifications of events
to build complex events that help understanding real-world phenomenons [32]. In this
domain, a generic representation of an event is a tuple e = ⟨s, t⟩ where s is a list of content
attributes and t a list of time attributes that denote occurrences of e [53]. These events
are often emitted by physical sensors, and CEP helps monitoring complex events that are
combinations of events. A popular query model is proposed in SASE [128], whose structure
is:

EVENT <event pattern>
[WHERE <qualifications>]
[WITHIN <window>]

The EVENT clause describes the event pattern that is required. For instance, a sequence of
events of different types may be required. The WHERE clause filters events based on their
attributes, and is similar to the homonym in SQL. The WITHIN clause specifies the time
window during which combined events must occur. There has been a lot of research in
CEP [6, 128] including in distributed settings [112], on supporting interval-based events [86]
or imprecise timestamps [133]. CEP has natural similarities with stream processing. Cu-
gola et al. [32] propose an overview of both domains and a framework to reunite them. We
position our work in the domain of stream processing. We aim to transform input streams
since we aim at returning top-k results, that can be reused later. This is a distinctive fea-
ture of stream processing [32]. Moreover, stream processing studies have strongly focused
on tackling challenges raised by join processing, whereas it is not an explicit concern in

48 2. Monitoring Temporal Data

CEP systems. However, we notice that two studies in CEP are closely related to ours in
terms of semantics. Zhang et al [133] handle events with imprecise timestamps. They as-
sume that an event has a probability to occur in a given uncertainty interval. This allows to
tackle a number of challenges raised by imprecise measures or synchronization problems in
distributed settings. However, they do no aim at supporting events that are characterized
by intervals. Li et al. [86] focused on using interval-based events rather than point-based
events. They propose an interval-event sequence operator that supports Allen’s predicates.
However, they do aim at handling an approximate interpretation of temporal predicates
and do not support ranked semantics.

2.5 Conclusion

In this chapter, we investigated temporal data monitoring. We introduced a new kind of
interval join, that features scoring functions reflecting the degree of satisfaction of temporal
predicates.

First, we studied these joins in the context of batch processing [103]: we formalized
Ranked Temporal Join (RTJ), that combine collections of intervals and return the k best
results. We designed TKIJ , a distributed RTJ query evaluation approach on Map-Reduce.
TKIJ is a multi-way top-k interval join algorithm that relies on an offline collection of
statistics to prune the search space and a workload distribution scheme appropriate to
top-k processing. We conducted experiments on synthetic data that validate our approach
and showed the efficiency of TKIJ on various queries. We observed the same effectiveness
of TKIJ on real network traffic logs.

Second, we proposed a preliminary study to extend our work to stream processing.
We modeled S-RTJ queries, an extension of RTJ queries to stream processing, that com-
bine intervals arriving as streams. We exposed the challenges raised by distributed stream
processing of S-RTJ queries and we outlined investigation directions to tackle these chal-
lenges.

Chapter 3

Motivation-Aware Task Assignment

In Chapter 1, we introduced adaptive task assignment in crowdsourcing. In practice, adap-
tive task assignment was proposed to tackle the challenges raised by crowdsourcing that
can’t be addressed by self-appointment of workers to tasks (e.g. low crowdwork quality).
Interestingly, adaptive task assignment can be interpreted as the monitoring of workers’
activity since it requires to monitor task completion in order to improve task assignment.
We also introduced the need to incorporate worker motivation in task assignment: we aim
to study motivation-aware task assignment.

In this chapter, we first present our proposal for motivation-aware task assignment.
Then, we present our model and our investigations on two variants of motivation-aware
task assignment: Individual Task Assignment (Ita) and Holistic Task Assignment (Hta).

3.1 Our Proposal: Motivation-Aware Task Assignment

Existing literature has extensively studied how to perform task assignment to workers
on crowdsourcing platforms [47, 67, 68, 106, 109]. Task assignment considers goals such
as maximizing the quality of completed tasks, or minimizing task cost and latency to
complete tasks. More recently, some research has reported noticeable improvement in task
outcome quality when human factors, such as workers’ skills and expected wage, were used
in assigning tasks to workers [106, 109].

Yet, even when tasks are perfectly matched and assigned to workers initially, an im-
portant longstanding problem is how to keep motivating workers who are not well-engaged
in completing assigned tasks. Moreover, studies have shown that crowdsourcing platforms
should account for the “dynamic nature of motivation” and “support workers’ diverse mo-
tivations ”[82] and that research efforts, mostly driven towards requesters’ requirements,
should be driven towards workers’ needs [90]. To address this problem, some existing work
focused on incentivizing workers for long-lasting tasks [25, 69] or entertaining workers dur-
ing task completion [33]. Moreover, recent studies have experimentally demonstrated the
importance of intrinsic motivation in task completion [108].

49

50 3. Motivation-Aware Task Assignment

Capture
Motivation

Assign Tasks

Complete Tasks

Figure 3.1: Overview of motivation-aware task assignment

Proposal

While effective to some extent, previous studies do not perceive task completion as an
iterative process within which workers’ motivation evolves, neither do they model that in
the task assignment process. Therefore, it becomes increasingly important to understand
and model workers’ motivation appropriately in the task assignment step. We advocate the
need to account for the evolution of workers’ motivation as workers complete tasks and
incorporate motivation in task assignment.

In this thesis, we propose to capture worker motivation and leverage it in an iterative,
adaptive task assignment process. Figure 3.1 illustrates our idea. At each iteration, we
aim to assign tasks to a worker, let her completing tasks, and then capture her motivation.
In the next iteration, task assignment leverages worker’s motivation to assign motivating
tasks.

Scope

We study two natural variants of motivation-aware task assignment. The first one, In-
dividual Task Assignment (Ita), individually assigns tasks to one worker at a time.
The second one, Holistic Task Assignment (Hta), assigns tasks to all available workers,
holistically. In each variant, we study different models to capture workers’ motivation.
In Ita, we see motivation as a combination of task diversity, that quantifies how different
tasks are from each other, and task payment, that captures how well tasks pay. In Hta, we
combine task diversity and task relevance, that captures how proficient a worker believes
to be for a task.

3.1.1 Motivation-Aware Task Assignment: Challenges

Our first challenge is to model a worker’s motivation. While some workers may be driven
by fun and enjoyment, others may look to advance their human capital, or increase their

3.1. Our Proposal: Motivation-Aware Task Assignment 51

compensation. In fact, there are more than 13 factors that could be used to model mo-
tivation according to [79] (e.g., task payment, task diversity, task autonomy, task identity,
human capital advancement, pastime). In addition, in a given work session, a worker’s
motivation for a task may also depend on tasks that she has already completed and on
other available tasks.

Our second challenge, is to formulate motivation-aware task assignment. Previous
studies on adaptive task assignment did not include explicitly motivation in their model [47,
55, 67, 68, 135]. On the other hand, studies on workers’ motivation [25, 33, 79, 108,
114] did not investigate task assignment. Because we aim at studying two settings —
individual and holistic task assignment, we need to design two models. To the best of our
knowledge, no previous study has combined adaptive task assignment and motivation-aware
task assignment. We need to devise a model that combine these two ideas.

Our third challenge is to design efficient algorithms for task assignment. Previous
studies [106, 109] included the design of efficient approximation algorithms or leveraged
indices to speed up task assignment. In an online context, designing a responsive system
is crucial. Moreover, a worker should not remain idle while waiting for being assigned new
tasks. This motivates the need to study efficient assignment algorithms.

3.1.2 Overview of our Contributions

This chapter presents our investigations on motivation-aware task assignment. Our inves-
tigations are organized as follows:

(a) We formalize a general data model and study motivation factors in Section 3.2. As
a first attempt, we model three motivation factors: task diversity, task payment and
task relevance.

(b) We study Individual Task Assignment (Ita) in Section 3.3 [101]. Here, we consider
optimizing task assignment for each worker, individually.

(a) We define motivation as a combination of two motivation factors: task diversity
and task payment. We model the Ita problem and show it is NP-Hard.

(b) We design and compare three task assignment strategies: (1) relevance, a
strategy that chooses tasks that match a worker’s profile, (2) diversity, a
strategy that chooses matching and diverse tasks, and (3) div-pay, an adaptive
strategy that selects matching tasks with the best compromise between diversity
and payment.

(c) We conduct experiments with real workers hired from Amazon Mechanical
Turk (AMT) to evaluate these strategies. Our empirical validation shows that
different strategies prevail for different dimensions. relevance outperforms

52 3. Motivation-Aware Task Assignment

both div-pay and diversity on task throughput and worker retention. How-
ever, div-pay outperforms the other strategies on outcome quality, which con-
firms the need for an adaptive motivation-aware approach in crowdsourcing.

(c) We study Holistic Task Assignment (Hta) in Section 3.4 [102]. Here, we consider
assigning tasks holistically, to a set of workers.

(a) We define motivation as a combination of two factors: task diversity and task
relevance. We model Hta and show it is NP-Hard and also Max-SNP-Hard.

(b) We propose two approximation algorithms for Hta: Hta-App and Hta-Gre.
Both algorithms run in polynomial time and have 1/4th and 1/8th approximation
factors, respectively. Hta-App has a better approximation factor with the cost
of a higher running time. While Hta-App uses the Hungarian Algorithm as
a sub-routine to find an optimal solution for an auxiliary assignment problem,
Hta-Gre uses an approximation algorithm that has a better running time.

(c) We run a simulation with synthetic workers, to examine scalability and the value
of the objective function. We show that Hta-Gre outperforms Hta-App since
it has a better running time and returns solutions with a similar performance
with regard to the objective function.

(d) We conduct live experiments with real workers to study the end-to-end perfor-
mance of our system. We show that optimizing diversity results in the highest
crowdwork quality and relevance only is the worst. We find that Hta-Gre,
offers the best compromise between performance dimensions thereby assessing
the need for motivation-aware task assignment.

3.2 Data Model and Motivation Factors

In this section, we first describe our model for tasks and workers. Then, we present how we
model the adaptive task assigment process and we present three motivation factors. Our
model is applicable in our two variants of motivation-aware task assignment. Table 3.1
summarizes important notations used throughout this chapter.

Our investigation includes the formalization of three kinds of functions for motivation
factors. For each factor, we define the expected motivation induced by a set of tasks. Then,
we define how to capture the importance of each motivation factor after having observed a
worker completing tasks.

3.2.1 Data Model for Tasks and Workers

We consider a set of tasks T = {t1, . . . , tN}, a set of workers W = {w1, . . . , wQ} and a set
of keywords S = {s1, . . . , sR}.

3.2. Data Model and Motivation Factors 53

Notation Definition

T A set of tasks {t1, . . . , tN}
W A set of workers {w1, . . . , wQ}
S A set of skill keywords {s1, . . . , sR}
T i Tasks available at iteration i

W i Workers available at iteration i

T i
w Tasks assigned to worker w at iteration i

d(tk, tl) Pairwise task diversity between two tasks
TD(T ′) Task diversity of a set of tasks T ′ ⊆ T
TP(T ′) Task payment of a set of tasks T ′ ⊆ T

TR(T ′, w) Task relevance of a set of tasks T ′ ⊆ T for the worker w

motiv i
w(T i

w) Expected motivation of worker w on tasks T i
w

Xmax Maximum number of tasks assigned to a worker

Table 3.1: Motivation-aware task assignment: summary of important notations

Tasks. A task t is represented by a vector ⟨t(s1), t(s2), . . . , t(sR), ct⟩ where each t(si) is
a Boolean value that denotes the presence or absence of keyword si in task t. A keyword
associated to a task reflects its content and requirements. In Amazon Mechanical Turk,
for instance, an audio transcription task is often associated with keywords such as “audio”,
“English”, and “news”, while a video tagging task is associated with keywords such as
“Google street view” and “tagging”. In Crowdflower, a sentiment analysis task is often
associated to “sentiment analysis” and “English.”. The reward ct is given to a worker who
completes t.

Workers. A worker w is a vector w = ⟨w(s1), . . . , w(sR)⟩ where each w(si) is a Boolean
value capturing the expressed interest of w in tasks with keyword si.

Example (Tasks and Workers). Table 3.2 shows an example with 3 tasks, 2 workers and 5

skills. For instance, t1 is characterized by a vector ⟨true, true, false, false, false, 0.01⟩:
it is an audio transcription task with a $0.01 reward, and it is described by skill keywords
“audio” and “English”. w1 is a worker who expresses interest in tasks that feature the
keywords “audio” and “tagging”. We could suppose that only workers covering all task
skills are qualified to complete a task. In this example, w1 would only qualify for task t2,
while w2 would qualify for both t1 and t3.

54 3. Motivation-Aware Task Assignment

audio English French review tagging reward

($)

t1 ✓ ✓ 0.01

t2 ✓ 0.03

t3 ✓ ✓ 0.09

w1 ✓ ✓ N/A
w2 ✓ ✓ ✓ ✓ N/A

Table 3.2: Example of tasks and workers

3.2.2 Adaptive Task Assignment Model

We advocate a multi-step approach where the set of tasks assigned to a worker are revisited
at each step in order to best fit the worker’s motivation. Figure 3.2 illustrates our adaptive
process. At each iteration i a set of tasks T i

w ⊆ T i is assigned to a worker w. Here, T i ⊆ T
refers to the set of available tasks at iteration i. We aim to assign a set of tasks that best
match a worker’s motivation. Therefore we need to capture her motivation based on the
tasks that she completed during the previous iteration, when she was assigned tasks T i−1

w .

3.2.3 Motivation Factors

Several factors could be used to reflect workers’ motivation. While some workers look for
fun and enjoyment, others want to learn something new, pass time, or make some money.
The six factors that influence motivation the most are Payment, Task Autonomy, Task
Diversity (a.k.a. Skill Variety), Task Identity, Human Capital Advancement, Pastime [79].
In addition, since workers self-assign tasks to themselves, the relevance of a task to a worker
is always implicitly present.

In this thesis, we propose to define motivation as a balance between several factors.
As a first attempt, we propose to consider (i) task diversity, i.e., how different tasks are
from each other, (ii) payment, that characterizes how well a set of tasks pays, and (iii) task
relevance, i.e., how proficient a worker believes to be for a task. We aim to study two of
these factors in the two variants of motivation-aware task assignment.

These factors are easily measurable and can be updated on-the-fly as workers complete
tasks. Compared to other dimensions, only these dimensions are most relevant in micro-
tasks and in typical labor markets such as Amazon Mechanical Turk. Task autonomy and
task identity are often minimal since micro-tasks do not yield a high degree of freedom
and usually do not allow workers to have a tangible result of their work. Human capital
advancement, i.e., choosing a task for its capacity to increase one’s knowledge, is also
negligible. Finally, picking a task to pass time is difficult to measure.

3.2. Data Model and Motivation Factors 55

Compute T i
w

w completes
tasks in T i−1

w

At iteration i

Capture w’s
motivation

12

3

Figure 3.2: Motivation-aware task assignment: model

Our formalization aims to quantify how diverse a set of task is (for the task diversity
factor), pays well (task payment) or how relevant it is to a given worker (task relevance).
Therefore, we aim to define a function for each factor, that takes a set of tasks as input
(and if necessary a worker) and returns a value indicating how well the given factor is
expected to motivate a worker.

Task Diversity. We first define d(tk, tl), the pairwise task diversity between two tasks tk
and tl. It essentially measures the aggregated differences of keywords between two tasks.
Task diversity has been qualified as a fun and enjoyment motivation factor [62]. In our
setting, we use the Jaccard similarity function J as follows:

d(tk, tl) = 1− J(⟨tk(s1), . . . , tk(sR)⟩, ⟨tl(s1), . . . , tl(sR)⟩)

In practice, we allow d() to be any distance function (e.g., Euclidean, Jaccard) as long as
it is a metric, i.e., it verifies the triangle inequality. The diversity TD(T ′) of a set of tasks
T ′ ⊆ T is captured in the usual manner, by aggregating the pairwise distances in T ′:

TD(T ′) =


(tk,tl)∈T ′

k>l

d(tk, tl) (3.1)

Task Payment. The total task payment of a set of tasks T ′ ⊆ T is the sum of individual
task payments in T ′:

TP(T ′) =
1

maxt∈T ct
×


t∈T ′

ct (3.2)

The denominator maxt∈T ′ ct normalizes each member of the sum in the interval [0, 1].

Task Relevance. Let rel(t, w) be the function that evaluates how relevant a task t is to
a worker w: We set:

rel(t, w) = 1− drel(⟨ts1 , . . . , tsR⟩, ⟨ws1 , . . . , wsR⟩)

56 3. Motivation-Aware Task Assignment

We also use Jaccard to express drel(). The relevance TR(T ′, w) of a set of tasks T ′ for a
worker w is captured by aggregating each pairwise distance for t ∈ T ′.

TR(T ′, w) =

t∈T ′

rel(t, w) (3.3)

3.2.4 Capturing Motivation

We have defined the expected motivation induced by a set of tasks for a given worker ac-
cording to a specific motivation factor. We now need to model how we capture a worker’s
actual motivation at each iteration i. Our end goal is to enable task assignment by cap-
turing workers’ motivation and incorporating it in task assignment in the next iteration.
Therefore, for each worker w we aim to leverage completed tasks in T i−1

w , that were assigned
during iteration (i− 1).

We propose to quantify how motivated a a worker is by a given factor each time she
completes a task. Our rationale is as follows. Each time w completes a task tj ∈ T i−1

w , we
can learn about her motivations: she may have preferred a task that differs from the tasks
previously completed, a task that pays high or a task that best matches her interests. She
may have also chosen a task that matches all these characteristics. We aim to leverage a
collection of such observations to capture her motivation.

Suppose that when worker w completes task tj ∈ T i−1
w , she has already completed tasks

{t1, . . . , tj−1} where j − 1 ∈ 1, . . . , |T i−1
w | − 1. We capture each factor as follows.

Task Diversity. Equation 3.4 shows how we capture the gain in task diversity that
a worker w seeks when picking a task tj in the remaining tasks T i−1

w \ {t1, . . . , tj−1}.

∆TD(tj) =


k∈1,...,j−1

d(tj, tk)

max
tk′∈T

i−1
w \{t1,...,tj−1}


tk∈{t1,...,tj−1}

d(tk′ , tk)
(3.4)

The numerator is the marginal gain in diversity when w selects a task tj. The denomi-
nator reflects the maximum possible marginal gain when w selects a task in the remaining
tasks T i−1

w \ {t1, . . . , tj−1}. When the denominator returns 0, we set ∆TD(tj) = 1.

Task Payment. We compute the list of all different task payments in T i−1
w \{t1, . . . , tj−1}

and sort it by descending order. Suppose that this list counts R elements and that r(tj) is
the rank of ctj in this list (if ctj is the highest then r(tj) = 1). We define TP-Rank(tj) ∈ [0, 1]

such that TP-Rank(tj) = 1 iff tj has the highest payment (0 if it has the lowest payment):

TP-Rank(tj) = 1−
r(ctj)− 1

R− 1
(3.5)

Equation 3.5 captures the willingness of w to choose tasks that pay highly among the
available tasks. When the denominator returns 0, we set TP-Rank(tj) = 1.

3.3. Individual Motivation-Aware Task Assignment 57

Example 2. Suppose that T i−1
w \ {t1, . . . , tj−1} = {t5, t6, t7, t8} with ct5 = $0.03, ct6 = ct7 =

$0.02, ct8 = $0.04. A worker w selects t5, which has the second highest task payment among
the remaining tasks. We obtain TP-Rank(t5) = 1− 2−1

3−1
= 0.5.

Task Relevance. We adopt the same rationale as in task diversity. Equation 3.6
shows how we capture the gain in task relevance that a worker w seeks when picking a task
tj in the remaining tasks T i−1

w \ {t1, . . . , tj−1}.

∆TR(tj, w) =
rel(tj, w)

max
tk∈T i−1

w \{t1,...,tj−1}
rel(tk, w)

(3.6)

The numerator is the marginal gain in relevance when w selects a task tj. The denomi-
nator reflects the maximum possible marginal gain when w selects a task in the remaining
tasks T i−1

w \ {t1, . . . , tj−1}. When the denominator returns 0, we set ∆TR(tj, w) = 1.

3.3 Individual Motivation-Aware Task Assignment

In this section, we present a first variant of Motivation-Aware Task Assignment: Individual
Task Assignment (Ita) [101]. First, we formalize the Ita problem and show that it is NP-
Hard. Then we present assignment strategies to solve Ita and we conduct live experiments
with real workers to evaluate these strategies.

3.3.1 Individual Task Assignment Problem (Ita)

We aim to assign tasks to workers, individually. Therefore, each worker is related to an
independent series of assignment iterations. Equivalently, an assignment iteration is related
to a single worker. Consequently, we would need to revisit our model and consider that
each worker w is assigned a set of tasks T iw

w at each iteration iw. For the sake of simplicity,
we do not use this notation and denote as T i

w the set of tasks assigned to worker w at
iteration i.

We first define the expected motivation of worker w on tasks T i
w. In Ita, we propose

to focus on task diversity and task payment. We define the function motiv i
w as a linear

combination of diversity and payment of tasks in T i
w:

motiv i
w(T i

w) = 2αi
w × TD(T i

w) + (|T i
w| − 1)(1− αi

w)× TP(T i
w) (3.7)

αi
w ∈ [0, 1] is a worker-specific parameter that reflects the relative importance between

task diversity and task payment. It represents the compromise a worker w is looking for
in choosing tasks to complete at each iteration i. This parameter hence captures the
motivation of worker w at iteration i.

58 3. Motivation-Aware Task Assignment

Compute T i
w

w completes
tasks in T i−1

w

At iteration i

Compute αi
w

12

3

Figure 3.3: Task assignment in Ita

We normalize the two components of the function with the factors (|T i
w|−1) and 2, since

the first part of the sum counts |T i
w|(|T i

w|−1)
2

numbers and the second part |T i
w| numbers [59].

Note that we define the function as a linear formula between diversity and payment of
a task, instead of a more complex non-linear formula, since a linear formula is likely to give
rise to algorithms with theoretical guarantees as we show later, and is easier to interpret
and explain.

Example (Worker’s compromise in Ita). A worker w1 with αi
w = 0.1 would be interested

more in high-paying tasks with similar keywords (i.e., less diversity). This worker w1 would
choose tasks with a variety of keywords only if the payment is high enough. On the other
hand, a worker w2 with αi

w = 0.9 would be more motivated by task diversity.

Now, we formally define the individual motivation-aware ask assignment problem, Ita,
as follows:

Problem 1 (Individual Motivation-Aware Task Assignment — Ita). For any worker w ∈
W , at each iteration i, choose a set of tasks T i

w ⊆ T i such that:

max motiv i
w(T i

w)

such that ∀t ∈ T i
w matches(w, t) (C1)

|T i
w | ≤ Xmax (C2)

The function matches(w, t) in constraint C1 returns true if the task t matches worker w.
We can use various definitions for matches(w, t). For instance, we can define matches(w, t) =
true iff the skill keywords of w and t are identical. In our setting, we suppose that
matches(w, t) captures how well the skill keywords of w cover the skill keywords of t. This
allows us to capture cases where w matches t only if w expresses interest in at least 50%

of the skill keywords of t. Xmax is used in constraint C2 to avoid assigning too many tasks
to workers with varied interests, and reflects the ability of a worker to explore only a few
tasks at a time (akin to limiting Web search results).

3.3. Individual Motivation-Aware Task Assignment 59

We suppose that each time we solve the Ita problem for a given worker w, w matches
at least Xmax tasks. Thus, given that the objective function is positive and monotonically
increasing, w will be assigned exactly Xmax tasks. That is a realistic assumption when Xmax

is chosen to be reasonably small (e.g., 20) in a context where we have a large collection of
tasks to assign.

The Ita problem considers each worker individually. When a worker w requires a new
set of tasks T i

w, Ita is solved and tasks in T i
w are dropped from T i. Thus, a task is assigned

to at most one worker. Figure 3.3 illustrates our process in Ita.

3.3.1.1 NP-Hardness of Ita

Intuitively, the Ita problem is difficult since it aims at finding a set that maximizes a
sum of pairwise distances, a common feature in several well-known NP-hard problems. In
particular, Ita is closely related to the maximum dispersion problem (MaxSumDisp) [26, 49,
65, 107].

Theorem 1. The motivation-aware task assignment problem (Ita) is NP-hard.

Proof. At each iteration and for each worker, the decision version of Ita is as follows.
Instance: Tasks T i, worker w and her αi

w, Xmax and an objective value Z. Question: Is
there a set T i

w ⊆ T such that C1 is satisfied, |T i
w| = Xmax and motiviw(T i

w) ≥ Z ? Ita ∈ NP
since a non-deterministic algorithm needs only to guess a set Tw and it can verify the
question in polynomial time.

Reduction of Max Dispersion. To prove the NP-hardness, we consider the maximum sum
dispersion problem (MaxSumDisp) [26, 49, 65, 107] (also known as Maximum Edge Sub-
graph)1. The decision version of this problem is as follows.

Instance: a complete weighted graph G = (V,E, ω), an integer k ∈ [2, |V |], an objective
value Y . Question: Is there V ′ ⊆ V such that |V ′| = k and


{v1,v2}∈E∩{V ′×V ′} ω(v1, v2) ≥

Y ?
Note that MaxSumDisp is well-known to be NP-hard2 [18, 26, 49, 107] using a reduction

from MaxClique [56]. Because a non-deterministic algorithm can guess a solution V ′ and
easily verify it in polynomial time, MaxSumDisp ∈ NP. Thus, MaxSumDisp is also NP-
Complete. The reduction works as follows: each vertex v ∈ V is mapped to a task
tv ∈ T . The weight of an edge {v1, v2} ∈ E is mapped to skill variety between two tasks:
ω(v1, v2) = 2 ∗ d(tv1 , tv2). We consider that αi

w = 1. We set Xmax = k and Z = Y . This
creates an instance of Ita in polynomial time. This instance has the objective function
2 ∗


tk,tl∈T i

w k>l d(tk, tl). MaxSumDisp has a solution if and only if this instance of Ita has
a solution. This proves the NP-hardness.

1http://www.nada.kth.se/~viggo/wwwcompendium/node46.html
2MaxSumDisp is NP-Hard even if the weights satisfy the triangle inequality [107].

http://www.nada.kth.se/~viggo/wwwcompendium/node46.html

60 3. Motivation-Aware Task Assignment

3.3.2 Our Approach for Ita

In this section, we present the two main components of motivation-aware task assignemnt.
First, we present how we capture the expected motivation of a worker. For a given worker
w, we show how we define αi

w at each iteration. Second, in order to study the effect of
different dimensions in our problem, we explore approaches that exploit different objectives
in the Ita problem. First, we design relevance, a diversity and payment-agnostic strategy.
This strategy focuses on assigning to workers tasks that best match their interests. Second,
we present div-pay, that optimizes the objective function of the Ita problem. div-pay is
hence both diversity and payment-aware. Third, we present diversity, that focuses only
on assigning diverse tasks to workers and is hence payment-agnostic.

3.3.2.1 Computing αi
w

In Section 3.2, we defined how to capture the importance of each factor (Equations 3.4
and 3.5) when a worker chooses a task in the set of available tasks. We now need to define
αij
w , that captures the compromise between task diversity and task payment that worker w

seeks when selecting task tj ∈ T i−1
w . We set:

αij
w =

∆TD(tj) + 1− TP-Rank(tj)
2

(3.8)

αij
w is defined as the average of ∆TD(tj) and 1−TP-Rank(tj). The asymmetry comes from

the fact that the higher αi
w is, the lower is the importance of the task payment factor. We

can observe that if both ∆TD(tj) and TP-Rank(tj) return the same value, αij
w will be equal

to 0.5.
Having defined each αij

w , we are now ready to capture αi
w. Suppose that during iteration

i − 1 worker w chose J tasks where J ≤ |T i−1
w |. We compute αi

w as the average of all αij
w

for j ∈ 2, . . . , J :
αi
w = avg

j∈2,...,J
αij
w (3.9)

We skip the case where j = 1 that corresponds to the first completed task, since the
marginal gain in task diversity would return 0 (Equation 3.4).

3.3.2.2 Relevance strategy

We first propose the relevance approach (Algorithm 5), that assigns Xmax random tasks
that match workers’ interests. relevance enforces constraints C1 and C2 and ignores
task diversity and task payment. At each iteration i and for each worker w, relevance
(i) filters the tasks Tmatch(w) that match w and (ii) selects randomly Xmax tasks among
Tmatch(w). In this strategy, a worker’s motivation is therefore interpreted as matching her
interests.

3.3. Individual Motivation-Aware Task Assignment 61

Algorithm 5 relevance

Input: T i, w,Xmax, i

Output: T i
w

1: T i
w ← ∅

2: Tmatch(w) ← {t ∈ T i | matches(w, t)}
3: while |T i

w| < Xmax

4: T i
w ← T i

w ∪ {nextRandomTask(Tmatch(w) \ T i
w)}

return T i
w

Algorithm 6 div-pay

Input: T i, w,Xmax, i, T i−1
w , {t1, . . . , tJ} tasks completed in iteration i− 1

Output: T i
w

1: αi
w ← avgk∈J2,JK α

ij
w

2: Tmatch(w) ← {t ∈ T i | matches(w, t)}
3: T i

w ← greedy(Tmatch(w), Xmax, w)

4: return T i
w

3.3.2.3 Diversity and payment-aware strategy

We present div-pay, a strategy that is both diversity and payment-aware. div-pay relies
on both the on-the-fly estimation of a worker’s motivation, and the online iterative task
assignment. The motivation of a worker w is captured in the value of αi

w, which represents
the compromise a worker w is looking for in choosing tasks to complete at each iteration i.

Assigning Tasks. At each iteration i, the div-pay strategy aims to solve the Ita problem
for each worker. We now present the div-pay algorithm that returns a solution with an
approximation ratio of 2 for the Ita problem.

Algorithm. Because it is an NP-hard problem, Ita is prohibitively expensive to solve
on large instances. In our scenario, response time is important since Ita has to be solved
online, at each iteration i. The good news is that approximation algorithms exist for
some related problems, such as MaxSumDisp [64, 65, 107] if the distance d satisfies the
triangle inequality. The assumption that the distance obeys triangle inequality is not an
overstretch, as many real world distances satisfy this assumption [16]. We note that the
pairwise task diversity defined in Section 3.2 is a metric and follows triangle inequality.

We adapt an existing algorithm for the maximum diversification problem MaxSumDiv
(which includes MaxSumDisp as a special case). We design div-pay (Algorithm 6) that
assigns a set of tasks T i

w to a worker w. First, div-pay captures the motivation of a worker
w in the value of αi

w. Then div-pay computes a set of matching tasks (line 2) and runs

62 3. Motivation-Aware Task Assignment

Algorithm 7 greedy [18]
Input: Tmatch(w), Xmax, w, i

Output: T i
w

1: T i
w ← ∅

2: while |T i
w| < Xmax

3: t← argmax
t′∈Tmatch(w)\T i

w

g(T i
w, t

′)

4: T i
w ← T i

w ∪ {t}
return T i

w

greedy that returns T i
w (line 3). greedy (Algorithm 7) is a 1

2
-approximation algorithm

for the MaxSumDiv problem [18]. In the MaxSumDiv problem, the objective is to find a set
S of p elements that maximizes

λ


{u,v}:u,v∈S

d(u, v) + f(S)

λ is a weight parameter, f(S) is a normalized, monotone submodular function measuring
the value of S and d() is a distance function evaluating the diversity between two elements.
Since Ita simplifies to finding a set of size exactly Xmax, the objective function can be
rewritten as:

motiv i
w(T i

w) = 2αi
w × TD(T i

w) + (1− αi
w)(Xmax − 1)× TP(T i

w)

Now, we map our problem to the MaxSumDiv problem by setting f(T i
w) = (Xmax−1)×

(1 − αi
w) × TP(T i

w), λ = 2αi
w and p = Xmax. It can be easily seen that f is normalized

(f(∅) = 0). f is monotone since ∀T1, T2 ⊆ T s.t. T1 ⊆ T2 we have f(T1) ≤ f(T2). It is also
submodular since ∀T1, T2 ⊆ T s.t. T1 ⊆ T2 and ∀t ∈ T , we have:

f(T1 ∪ {t})− f(T1) = (Xmax − 1)(1− αi
w)×

1

maxt′∈T ct′
× ct

= f(T2 ∪ {t})− f(T2)

At each iteration, greedy inserts in T i
w the task t that maximizes the function g(T i

w, t) =
1
2
(f(T i

w ∪ {t}) − f(T i
w)) + λ


t′∈T i

w
d(t, t′) which is equal to g(T i

w, t) = (Xmax − 1)(1 −
αi
w)TP({t})/2 + 2αi

w


t′∈T i

w
d(t, t′).

We run greedy using tasks that verify the constraint C1 (Algorithm 6, line 2), thus
the algorithm returns a correct solution for the Ita problem. Because greedy is a 1

2
-

approximation algorithm for the MaxSumDiv problem, div-pay is a 1
2
-approximation for

the Ita problem. Borodin et al. [18] observe that the greedy algorithm runs in time linear
in the number of input elements when the desired size of the set is a constant. In our
setting, we can conclude that div-pay runs in O(Xmax ∗ |T |) time.

3.3. Individual Motivation-Aware Task Assignment 63

Algorithm 8 diversity

Input: T i, w,Xmax, i

Output: T i
w

1: αi
w ← 1

2: Tmatch(w) ← {t ∈ T i | matches(w, t)}
3: T i

w ← greedy(Tmatch(w), Xmax, w)

4: return T i
w

One may wish to extend the motivation model used in Ita. We observe that the perfor-
mance guarantee and the running time of greedy hold as long as our objective function
has the form λ


{u,v}:u,v∈S d(u, v)+ f(S) where f is a normalized, monotone and submod-

ular function.

3.3.2.4 Diversity strategy

We propose diversity (Algorithm 8), a strategy that is diversity-aware and payment-
agnostic. diversity considers a variant of the Ita problem where the objective includes
only the task diversity sum. diversity employs greedy as a subroutine with αi

w = 1 at
every iteration. We can follow the same reasoning exposed for Ita: constraint C1 is enforced
on line 2 and greedy is a 1

2
-approximation for the considered problem, so diversity is

a 1
2
-approximation for this variant of the Ita problem.

3.3.3 Experiments

3.3.3.1 Workflow

To achieve adaptability, we developed a new platform, GACS (Grenoble Adaptive Crowd-
Sourcing). During a work session, a (i) worker chooses keywords to build her keyword
vector, (ii) completes tasks and (iii) is (re)assigned tasks using one the three strategies
relevance, div-pay, diversity when a new assignment iteration is performed. An iter-
ation happens only if a worker has completed 5 tasks. Appendix A.2 presents the workflow
in details.

Assignment Iterations. For the strategies relevance and diversity, we run the
according algorithm at each iteration. For the strategy div-pay, we need to consider
the first iteration (i = 1) where w arrives for the first time on our platform. In this
case, we cannot compute her α1

w since she has not yet completed tasks. We hence use
relevance as a cold-start assignment strategy in the first iteration. We aim to learn w’s
preference between diversity and payment using a strategy that does not favor any factor.
Our rationale is to get an accurate estimation of α1

w. At the next iterations, since w has

64 3. Motivation-Aware Task Assignment

Figure 3.4: Example screenshot of user interface – e.g., task grid

already completed tasks, we run div-pay. We compute her αi
w and return the new set of

tasks T i
w.

3.3.3.2 Settings

Tasks. We used a set of 158, 018 micro-tasks released by Crowdflower. It includes 22

different kinds of tasks. Appendix A.1 presents this dataset. We ran experiments using a
sample of 5, 000 tasks.

Task assignment. We conducted experiments with all task assignment strategies, rel-
evance, div-pay, and diversity. We adapted the relevance strategy because the
distribution of tasks is not uniform in our dataset (some kinds of tasks are over repre-
sented). The random task selection was achieved by first selecting a random kind of task,
and then selecting a random task of this particular kind. We set Xmax = 20. We set
matches(w, t) = true iff w is interested by at least 10% of the keywords of task t. Work-
ers were asked to provide at least 6 keywords. We also verified the response time of our
algorithms: any approach returned a solution in a few milliseconds upon a worker request.
This makes our approaches suitable for an online setting: new workers and tasks can be
easily handled by computing assignments from scratch.

Workers and Payment. We published 30 HITs on Amazon Mechanical Turk (AMT)
to recruit workers. Each HIT invites a worker to complete tasks on our platforms. Our
HITs were completed by 23 different workers. We assigned 10 HITs for each task assign-
ment strategy. Appendix A.2 gives more details on workers recruitment. We set a HIT
reward to $0.1 and each worker was granted a bonus equivalent to the total reward of the

3.3. Individual Motivation-Aware Task Assignment 65

tasks she completed. Additionally, we encouraged workers who completed many tasks: we
granted them a $0.2 bonus each time they completed 8 tasks. We required workers to have
previously completed at least 200 HITs that were approved, and to have an approval rate
above 80%. We also required HITs to be completed within 20 minutes: our rationale is to
encourage workers to choose quickly tasks that they prefer.

User Interface. We conducted a first set of experiments where the T i
w were displayed

as a ranked list. We observed that most workers selected the top task first, completed
it, and walked down the list in order. This created a bias and defeated our purpose:
observing workers making choices based on their motivation. In order to reduce the effect
of ranking, we changed the interface by showing a grid with 3 tasks per row (Figure 3.4).
That mitigated the effect of ranking and workers stopped choosing the task in their order
of appearance. We used the grid-based presentation in all our experiments.

Evaluation measures. We evaluate our task assignment strategies using three main
performance measures. First, we evaluate outcome quality that reflects the quality of a
worker’s contribution to a task with regard to a ground truth. Then, we evaluate the
number of completed tasks per session and per unit of time (i.e. task throughput). The
higher the number of completed tasks and the higher the throughput, the faster a requester
can have crowdwork completed. We also evaluate worker retention that characterizes the
willingness of workers to work on our tasks. Additionally, we compare our strategies on task
payment and we measure the worker-specific parameter αi

w that captures the compromise
worker w is looking for at iteration i between task diversity and task payment.

3.3.3.3 Summary of Results

We summarize our results and provide a rationale for why different strategies prevail for
different measures. We observe that relevance is the strategy that provides the best
number of completed tasks and task throughput. This could be explained by the fact
that relevance requires less effort from workers than diversity and div-pay. Indeed,
since relevance is based on selecting tasks that best match a worker’s profile and since a
worker’s profile is quite homogeneous, tasks recommended by relevance are quite similar
to each other. Therefore, a worker does not do much context switching between tasks and
is hence faster overall. We also observe that div-pay slightly outperforms diversity
on number of completed tasks and task throughput. That shows the importance of task
payment as an incentive. Results are different if we consider crowdwork quality. div-pay
is the strategy that obtains the best quality, followed by relevance. div-pay is the only
strategy that is both adaptive and motivation-aware: this contributes to providing a better
incentive to workers. Quality comes at a price though: div-pay is the strategy where the
average task payment among completed tasks is the highest and it does not provide the
highest task throughput (it is better than diversity but worse than relevance). Thus,

66 3. Motivation-Aware Task Assignment

depending on the platform, one should study trade-offs between these strategies when
designing task assignment algorithms.

We observe that div-pay rewarded workers higher. This could be expected since it is
the only payment-aware strategy. Worker retention is better with relevance: workers
performed longer work sessions with relevance than with other strategies. This finding
is related to the fact that most workers do not have a clear preference for task diversity
or task payment. They prefer tasks that match their interests and require fewer context
switching, hence they did not necessarily stay longer when task diversity or task payment
were favored (with div-pay or diversity). We also observe workers’ motivation and we
notice that some workers carefully choose task diversity or task payment. In that case,
we could accurately capture their preferences with appropriate αi

w values. That allowed
div-pay to slightly outperform diversity on both task throughput and worker retention.

3.3.3.4 Results

23 different workers completed 711 tasks in 30 work sessions. On average, each worker
spent 13 minutes to submit a HIT and completed 23.7 tasks. On average, 73% of workers
chose fewer than 10 keywords (6 is the minimum possible).

Quality. For each kind of task, we sampled 50% of completed tasks and we manually
evaluated their ground truth. We chose tasks for which defining a ground truth was not
controversial (e.g., a task that asks for the presence or not of a pattern on an image). Then,
we compared each worker’s contribution to a task to its ground truth. Figure 3.5a presents
the cumulative percentage of tasks that were correctly completed for each strategy (see
Table 3.5d for the total percentage). We observe that workers performed better with div-
pay (73% of correct answers) than with other strategies (diversity: 64%, relevance:
67%). The superiority of div-pay over diversity is confirmed at the significance level
0.1 using two-proportion Z-test on the proportions of correct answers. This shows that
assigning tasks that best match workers’ compromise between task payment and task
diversity encourages them to produce better answers. We observe that considering only
task diversity (diversity) is not efficient. Including task payment is therefore important.

Number of Completed Tasks. Figure 3.5b presents the cumulative number of com-
pleted tasks (see Table 3.5d for the total). Overall, relevance clearly outperforms div-
pay, which is slightly better than diversity. Figure 3.5e details the number of completed
tasks for each work session hk, k ∈ J1, 30K. We observe that with relevance, 5 sessions
had more than 40 completed tasks. With div-pay and diversity, most workers com-
pleted fewer than 30 tasks. The superiority of relevance over div-pay and diversity
is confirmed at the significance level 0.01 using Mann-Whitney U test on the number of
completed task per session. We also measured the task throughput (i.e., number of com-
pleted tasks per minute). We considered the total time spent on our application, including

3.3. Individual Motivation-Aware Task Assignment 67

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

%
 C

o
rr

e
c
t

A
n

s
w

e
rs

 (
c
u

m
u

l.
)

Elapsed Time (min)

div−pay
diversity
relevance

(a) Crowdwork quality

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20

#
C

o
m

p
le

te
d

 T
a

s
k
s
 (

c
u

m
u

l.
)

Elapsed Time (min)

div−pay
diversity
relevance

(b) Number of completed tasks

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

%
 o

f
s
e
s
s
io

n
s
 t
h
a
t
e
n
d
e
d

 a
ft
e
r
x
 m

in
u
te

s

Elapsed Time (min)

div−pay
diversity
relevance

(c) Worker retention

Strategy % Correct Avg. Avg. session # Completed Total task Avg. task
answers # completed duration tasks/min. payment payment

tasks/session (min.) ($) ($ cents)

div-pay 72.7% 19.1 12.8 1.5 14.3 7.5

diversity 63.8% 15.0 10.5 1.4 9.8 6.5

relevance 66.9% 37.0 15.7 2.4 20.9 5.7

(d) Aggregated measures

 0

 10

 20

 30

 40

 50

 60

 70

h
3

h
4

h
1

h
7

h
2

h
6

h
5

h
1
0

h
8

h
9

h
2
0

h
1
8

h
1
9

h
1
5

h
1
4

h
1
7

h
1
6

h
1
2

h
1
1

h
1
3

h
2
7

h
2
9

h
2
8

h
2
4

h
3
0

h
2
3

h
2
5

h
2
6

h
2
2

h
2
1

#
c
o
m

p
le

te
d
 t
a
s
k
s

relevancediversitydiv−pay

(e) Number of completed tasks per
work session

 0

 10

 20

 30

 40

 50

 60

1 2 4 6 8 10 12 14

#
c
o
m

p
le

te
d
 t
a
s
k
s

i

div−pay
diversity
relevance

(f) Number of completed tasks per it-
eration

Figure 3.5: Ita online experiments: results

the time spent selecting a task to complete. The total time was higher with relevance
(157 min) than with div-pay (127 min). However, workers who were assigned tasks with
relevance were more efficient (2.4 tasks/min. vs 1.5 tasks/min.). This could be ex-
plained by the fact that very little context switching is required from workers in the case of
relevance (since tasks are both relevant to the worker and are potentially very similar
to each other). diversity on the other hand, is slightly inferior to div-pay. That leads
us to the conclusion that workers did not necessarily appreciate diverse tasks, possibly
for context-switching reasons. div-pay slightly outperformed diversity, showing that
including task payment as a motivating factor improves task throughput.

68 3. Motivation-Aware Task Assignment

Worker retention. Figure 3.5c shows worker retention as the percentage of work ses-
sions (vertical axis) that ended after x minutes (horizontal axis). We find that workers
stayed longer when they were assigned tasks using relevance, hence this approach clearly
outperforms div-pay and diversity. The average session duration using relevance was
greater than with div-pay and diversity (for the latter comparison the significance level
is 0.1 using Mann-Whitney U test on session duration). Figure 3.5f supports this observa-
tion: more iterations were performed by workers with relevance. Although the number
of completed tasks is roughly the same with all approaches on the first 2 iterations, this
number fell quickly for div-pay and diversity when i > 2. We also observe that div-pay
has a better worker retention than diversity. A plausible explanation is that workers
are most comfortable completing similar tasks in a row. Therefore, they stay longer. They
are least comfortable completing tasks with very different skills and tend to leave earlier.
However, given that the quality of crowdwork reaches its best with div-pay, we can say
that optimizing for task relevance alone does not provide the best outcome quality even if
workers are retained longer in the system.

Task Payment. We evaluate how rewarded workers were during their work sessions
using our different assignment strategies. In crowdsourcing, both requesters and workers
look for a fair treatment when it comes to compensation. Requesters look to obtain high-
quality contributions at a reasonable rate, and workers expect to be adequately paid for
their efforts. Table 3.5d presents the total task payment and the average payment per
completed task for each strategy. The total payment is greater with relevance than
with other approaches. This could be expected given the number of completed tasks
(Section 3.3.3.4). However, the average task payment is the greatest with div-pay. That
is explained by the fact that div-pay is the only strategy that is payment-aware. Thus,
it is likely to assign higher-paying tasks to workers that prefer task payment over task
diversity.

Workers’ motivation. We now turn to workers and study their motivation in detail. In
order to make a fair comparison, we compute αi

w for each strategy and for each iteration
i ≥ 2 (even if it is only used by div-pay). Figure 3.6 shows the values of αi

w for each
work session hk, k ∈ 1 . . . 30. We omit session h13 (with the diversity strategy) where
only 3 tasks were completed. We observe that in most work sessions, αi

w oscillates around
0.5. Given the definition of αi

w, this value indicates that most workers do not steadily favor
task diversity over task payment. This is particularly observable on long work sessions in
Figure 3.6a, where tasks were assigned using relevance. Figure 3.7 shows the distribution
of αi

w. It supports our observation: most workers do not make sharp choices. Most of the
computed αi

w values (72%) are in the interval [0.3, 0.7], meaning that most workers do not
favor task diversity over task payment, nor do they favor payment over diversity.

However, we do observe some sharp preferences for some workers. For instance, the

3.4. Holistic Motivation-Aware Task Assignment 69

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

α
i w

i

h27
h29
h28

h24
h30
h23

h25
h26
h22

h21

(a) relevance

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

i

h3
h4
h1

h7
h2
h6

h5
h10
h8

h9

(b) div-pay

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7

i

h20
h18
h19

h15
h14
h17

h16
h12
h11

(c) diversity

Figure 3.6: Ita online experiments: evolution of αi
w (hk is k-th work session)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

[0,0.1]

[0.1,0.2]

[0.2,0.3]

[0.3,0.4]

[0.4,0.5]

[0.5,0.6]

[0.6,0.7]

[0.7,0.8]

[0.8,0.9]

[0.9,1]

fr
e

q
u

e
n

c
y

α
i
w

Figure 3.7: Ita online experiments: distribution of αi
w

worker in session h2 (Figure 3.6b) clearly favored high-paying tasks. She completed 1.6

different tasks at each iteration (maximum possible: 5) that have an average reward of $0.11
(maximum possible reward: $0.12). Hence, her αi

w was close to 0. Since she was assigned
tasks using div-pay, she received high-paying tasks. On the other hand, the worker in
session h25 (Figure 3.6a) favored task diversity (her αi

w is close to 0.8). She completed
4.12 different tasks at each iteration, that paid $0.05 on average. This shows that our
formulation allowed to accurately capture workers’ preferences between task diversity and
task payment.

3.4 Holistic Motivation-Aware Task Assignment

In the previous section, we presented our investigations on Individual Task Assignment (Ita).
Our experiments gave a first insight of the impact of motivation-aware task assignment on
various performance dimensions. Specifically, we discovered that (i) relevance, an ap-
proach that assigns random tasks that match a worker’s profile, is best for the number of

70 3. Motivation-Aware Task Assignment

completed tasks, task throughput and worker retention and (ii) that quality comes at a
price: div-pay offers the best crowdwork quality and pays workers the highest.

Based on these observations, we propose to explore another variant of motivation-aware
task assignment. First, we aim to study how we can obtain higher workers performances
if we isolate task payment and do not include it in our problem objective. We propose
to keep task diversity and combine it with task relevance, since relevance showed good
performance in Ita.

Second, we propose to study a different setting, where we assign tasks to all available
workers, holistically. In Ita, we assign tasks to one worker at a time. However, several
workers may complete tasks simultaneously, which is what we actually observed in our
experiments in Ita. However, in Ita, workers are assigned tasks in an arbitrary order
that may not enable optimal task assignment: some workers may be assigned tasks that
would have best matched other workers. To optimize task assignment, we thus need to
study Holistic Task Assignment (Hta) [102], where we assign tasks to several workers,
simultaneously. Intuitively, Hta is a more complex problem than Ita since it aims at finding
several sets of tasks at each iteration, one for each worker. Therefore, the performance
guarantees of algorithms developed for Ita are not likely to hold on Hta. Such a difference
also exists between similar pairs of problems such as between the single and multiple version
of the Knapsack Problem [80] or between the variants of Maximum Dispersion [64, 65].

In this section, we first formalize the Hta problem and show that it is NP-Hard. Then
we present two approximation algorithms for Hta. Finally, we conduct (i) experiments on
synthetic data to verify the efficiency of our algorithms and (ii) live experiments with real
workers to evaluate the performance of various assignment strategies.

3.4.1 Holistic Task Assignment Problem (Hta)

First, we define the expected motivation of worker w on tasks T i
w at iteration i. In Hta,

we define motivation as a balance between task diversity and task relevance. We define the
function motiv i

w as a linear combination of diversity and relevance of tasks in T i
w:

motiv i
w(T i

w) = 2αi
w × TD(T i

w) + (|T i
w| − 1)× βi

w × TR(T i
w, w) (3.10)

Then, we study the following problem:

Problem 2 (Holistic Task Assignment — Hta). Given a set of workers W i ⊆ W , that are
available at iteration i, choose |W i| subsets of tasks T i

w ⊆ T i, one for each worker w ∈ W i,
such that:

argmax

w∈Wi

motiv i
w(T i

w)

∀w ∈ W i, |T i
w | ≤ Xmax (C1)

∀w,w′ ∈ W i, T i
w ∩ T i

w′ = ∅ (C2)

3.4. Holistic Motivation-Aware Task Assignment 71

Compute T i
w

w completes
tasks in T i−1

w

At iteration i,

Compute αi
w, β

i
w

for all w ∈ W i

12

3

Figure 3.8: Task assignment in Hta

Constraint C1 is the same constraint as C2 in Ita: it prevents task overload for workers
and reflects the ability of a worker to explore only a few tasks at a time (akin to limiting
Web search results). Constraint C2 guarantees that each task is assigned to at most one
worker. To ensure adaptive task assignment, we solve Hta per iteration. As a result, a task
is assigned at most once per iteration, and tasks in


w∈Wi T i

w, once assigned, are dropped
from available tasks T i+1 in the next iteration. Figure 3.8 illustrates our process.

3.4.1.1 NP-Hardness

Hta is a difficult problem since it relates to several well-known NP-Hard problems. We
bring here the formal proof of NP-completeness.

Theorem 2. Hta is NP-complete.

Proof. The decision version of Hta is as follows.
Instance: tasks T i, workers W i, and their (αi

w, β
i
w), Xmax and an objective value Z

Question: are there |W i| disjoint sets, T i
w ⊆ T i, for each worker w, of size Xmax, such that

w∈Wi motiv i
w(T i

w) ≥ Z?

(1) Hta ∈ NP : Since a nondeterministic algorithm needs only to guess |W i| sets and can
verify the question in polynomial time, Hta ∈ NP.
(2) Hta is NP -hard : Let us consider the k-partitioning problem kPart [50]. The decision
version of this problem is as follows.

Instance: A weighted graph G = (V,E, ω), integers δ and k s.t. δ ≥ 3 and |V | = k× δ,
an objective value Y ; and Question: is there a partition of V into k disjoint sets V1, . . . , Vk

with |Vl| = δ, ∀l ∈ J1, kK s.t.


l∈J1,kK


{v1,v2}∈E∩{Vl×Vl} ω(v1, v2) ≥ Y ?
kPart is known to be NP-complete3 [50] using a reduction from graph partitioning [56].

The reduction works as follows. Each vertex v ∈ V is mapped to a task t ∈ T i. The
weight of an edge (v1, v2) ∈ E is mapped to skill diversity between two tasks: ω(v1, v2) =

3kPart is NP-Complete even if the weights satisfy the triangle inequality [50].

72 3. Motivation-Aware Task Assignment

2 ∗ d(tv1 , tv2). If there is no edge {v1, v2} ∈ E, we set d(tv1 , tv2) = 0. We consider |W i| = k

highly-skilled workers who prefer skill diversity by setting for each w ∈ W i αi
w = 1, βi

w = 0.
We set Xmax = δ and Z = Y . An instance of kPart thus defines an instance of Hta
where k workers are assigned δ tasks and where the objective function is simplified to
2 ∗


w∈Wi


tk,tl∈T i

w k>l d(tk, tl). Note that in such an instance k × δ = |T i|, therefore,
all tasks are assigned. This transformation can be done in polynomial time. kPart has a
solution if and only if this instance of Hta has a solution. This proves NP-hardness.

3.4.1.2 MaxSNP-Hardness

We show that in addition to being NP-complete, Hta does not admit a polynomial time
approximation scheme (PTAS). Hta is related to several well-known problems that cannot
be approximated in some cases. In particular, Hta is similar to the Maximum Quadratic
Assignment Problem (MaxQap), which is known to be MaxSNP-Hard [10].

Theorem 3. Hta is MaxSNP-Complete.

Proof. (Sketch) To prove MaxSNP-Hardness, we use an L-reduction (linear reduction)
using the maximum quadratic assignment problem (MaxQap), which is MaxSNP-Hard [10].
An L-reduction in this case is a polynomial-time mapping taking each instance I of MaxQap
to an instance I ′ of Hta such that there are positive constants a and b that make the
following statements true:

• (L1) OPT (I ′) ≤ a×OPT (I)

• (L2) For any solution of I ′ with objective function value OBJ ′, we can, in polynomial
time, find a solution of I with value OBJ such that (OPT (I) − OBJ) is no more
than b× (OPT (I ′)−OBJ ′)

We describe the maximum quadratic assignment problem (MaxQap). We adopt the
formulation of Arkin et al. [10]. In MaxQap, three M×M non-negative symmetric matrices
A = (ak,l), B = (bk,l), C = (ck,l) are given, and the objective is to compute a permutation
π() of Y = {1, . . . ,M} that maximizes:


k,l∈Y, k ̸=l aπ(k),π(l)bk,l +


k∈Y ck,π(k). Intuitively,

when A and B are the adjacency matrices of two graphs, this formulation of MaxQap is
equivalent to finding a subgraph in B that is isomorphic to A such that the total weight
is maximized. We now consider an instance I of MaxQap where matrices A, B and C are
defined as follows. We set A as the M ×M adjacency matrix of Y cliques of size X and
M−Y ∗X isolated vertices. All edges of the same clique are labeled with the same weight.
We set B as the M ×M adjacency matrix of a complete graph with M vertices and edges
labeled with a weight satisfying the triangle inequality. We set C as a M ×M matrix with
the same values in each group of X consecutive columns up to the M − Y ∗X-th column.
All other values are 0. We suppose that weights A and B are not zero and Z ≥ 3. Now, we
transform this MaxQap instance I to an instance I ′ of Hta using the following steps: (1)

3.4. Holistic Motivation-Aware Task Assignment 73

We set Xmax = X; (2) We set |T i| = M tasks that satisfy ∀k, l ∈ 1, . . . , |T i| d(tk, tl) = bk,l;
(3) We set |W i| = Y workers and ∀q ∈ 1, . . . , |W i| αi

wq
= aXmax(q−1)+1,Xmax(q−1)+1, β

i
wq

=

c1,Xmax∗(q−1)+1/(Xmax − 1) and, ∀k ∈ 1, . . . , |T i| rel(wq, tk) = 1; (4) We set T i
wq

= {tk |
⌈π(k)/Xmax⌉ = q}. Clearly, such a transformation is done in polynomial time. Now, we
present two lemmas that are crucial for the proof.

Lemma 1. OPT (I ′) = a×OPT (I), where a = 1.

Lemma 2. (OPT (I)−OBJ) = b× (OPT (I ′)−OBJ ′), where b = 1.

We omit the proofs of both lemmas for brevity and refer to Section 3.4.2.2 where we
show that the values of the objective functions of these two seemingly different problems are
actually identical (Equation 3.17). Therefore, given an instance of I of Hta, its optimum
objective function value is the same as that of I ′ of MaxQap. In addition, the gap in the
objective function value between the optimum and any other solution is the same for both
problems. From these two aforementioned lemmas, we verify the conditions specified in
(L1) and (L2) above that are necessary for the proof.

3.4.2 Our Approach for Hta

In this section, we present our two main components for motivation-aware task assignment.
First, we present how we capture the expected motivation of a worker. We show how we
define αi

w and βi
w at each iteration.

Then, we investigate task assignment. Since Hta is NP-hard and even hard to approx-
imate, it is prohibitively expensive to solve on large instances. In our scenario, response
time is important since task assignment has to be solved online, at each iteration i. The
challenge is to design efficient algorithms that also have provable factors. We propose two
algorithms. They both rely on the assumption that the distance function used to model
diversity is a metric. That is not an overstretch as Jaccard is indeed a metric [16]. When
that property is not assumed, Hta remains largely inapproximable [10, 19, 93]. Our algo-
rithms have provable approximation factors - the first one has a better approximation factor
but incurs a higher running time. The second compromises slightly on the approximation
factor to ensure a faster running time.

3.4.2.1 Computing αi
w and βi

w

In Section 3.2, we defined how to capture the importance of each factor (Equations 3.4 and
3.6) when a worker chooses a task in the set of available tasks. We now need to define the
two parameters αi

w and βi
w. Suppose that during iteration i − 1 worker w chose J tasks

where J ≤ |T i−1
w |. We define αi

w and βi
w as follows:

αi
w = avg

j∈J2,JK
∆TD(tj) (3.11)

74 3. Motivation-Aware Task Assignment

βi
w = avg

j∈J2,JK
∆TR(tj, w) (3.12)

Equations 3.11-3.12 are just the average of each observation made when w was completing
tasks in T i−1

w . We skip the case where j = 1 that corresponds to task completed first, since
the marginal gain in task diversity would return 0 (Equation 3.4).

3.4.2.2 MaxQap and Hta

Before presenting the actual algorithms, we show that the objective functions of MaxQap
and Hta are actually identical. We first describe the maximum quadratic assignment prob-
lem (MaxQap) using the formulation of Arkin et. al[10]. In MaxQap, three M×M non-
negative symmetric matrices A = (ak,l), B = (bk,l), C = (ck,l) are given, and the objective
is to compute a permutation π() of Y = {1, . . . ,M} that maximizes:

k,l∈Y, k ̸=l

aπ(k),π(l)bk,l +

k∈Y

ck,π(k)

MaxQap has several special cases that are popular problems [10, 19, 93], especially when
A and B are adjacency matrices of graphs.

Recall that Hta admits tasks T i = {t1, . . . , t|T i|} and workers W i = {w1, . . . , w|Wi|}.
First, we define A to be the |T i|×|T i| adjacency matrix of |W i| disjoint cliques of Xmax

vertices and |T i| − |W i| ∗ Xmax isolated vertices. Each clique corresponds to a worker.
In each clique, edges are labeled with αi

w. Thus, in the graph whose adjacency matrix is
A, each worker is mapped to a set of vertices. We set B to be the adjacency matrix of
the complete graph where vertices are mapped to tasks in T i and edges are labeled with
pairwise task diversities. We define the |T i|×|T i| matrix C to represent the linear part
of our objective function, i.e., the relevance part. If l is a column that corresponds to a
worker w in matrix A, then ck,l equals rel(w, tk) multiplied by βi

w ∗ (Xmax − 1). Formally:

∀k, l ∈ 1, . . . , |T i|, ak,l =
αi
w⌈l/Xmax⌉

if ⌈l/Xmax⌉ ≤ |W i| ∧ ⌈k/Xmax⌉ = ⌈l/Xmax⌉
0 else

(3.13)

∀k, l ∈ 1, . . . , |T i|, bk,l = d(tk, tl) (3.14)

∀k, l ∈ 1, . . . , |T i|, ck,l =
βi
w⌈l/Xmax⌉

rel(w⌈l/Xmax⌉, tk)(Xmax − 1) if l ≤ |T i| − |W i| ∗Xmax

0 else

(3.15)

3.4. Holistic Motivation-Aware Task Assignment 75

rel(t, w)t1 t2 t3 t4 t5 t6 t7 t8

w1 0.28 0.25 0.2 0.43 0.67 0.4 0 0.4

w2 0.3 0 0.2 0.25 0.25 0 0 0.4

Table 3.3: Hta: example of tasks and workers

0.2

0.60

0

3

6

3 6

0
8

8 3 6

2× 0.8× 0.28

8

2× 0.8× 0.25

2× 0.8× 0.4
2× 0.8× 0

2× 0.3× 0.3

2× 0.3× 0

2× 0.3× 0.4
2× 0.3× 0

0

0

A C

Figure 3.9: Example of mapping to MaxQap: matrices A and C

Example 3. Suppose that we have 2 workers and 8 tasks as exposed in Table 3.3. Let
Xmax = 3, αi

w1
= 0.2, βi

w1
= 0.8, αi

w2
= 0.6 and βi

w1
= 0.3. Figure 3.9 shows matrices A

and C, as defined by Equations 3.13 and 3.15.

Given that A and B are adjacency matrices, solving our MaxQap instance is equivalent
to finding a subgraph in B that is isomorphic to A such that the objective function is
maximized [10]. Indeed, a permutation π of {1, . . . , |T i|} maps each vertex of B to a
vertex of A. In our settings, this maps a task to a vertex in A, which may be associated
to a worker. Then, let us consider a pair of tasks (tk, tl) that is assigned to the pair of
vertices (π(k), π(l)). The profit induced by this pair is aπ(k),π(l) ∗ bk,l+ ck,π(k)+ cl,π(l). Thus,
if a worker wq is associated to both vertices π(k) and π(l) in A, the profit induced by this
pair is:

αi
wq
∗ d(tk, tl) + βi

wq
(Xmax − 1)(rel(wq, tk) + rel(wq, tl))

The left part αi
wq
∗ d(tk, tl) corresponds to task diversity. Since A is composed of |W i|

cliques and given the objective function, αi
wq
∗d(tk, tl) is counted for each pair of tasks that

is associated to the same worker (if clause in Equation 3.13). The right part βi
wq
(Xmax −

1)(rel(wq, tk)+ rel(wq, tl)) corresponds to task relevance. It is counted for each task that is
associated to a worker (if clause in Equation 3.15).

Now, we can map the output of the MaxQap instance to the output of Hta. For all
workers wq in W i, we set:

T i
wq

= {tk | ⌈π(k)/Xmax⌉ = q} (3.16)

76 3. Motivation-Aware Task Assignment

Algorithm 9 Hta-App

Input: W i = {w1, . . . , w|Wi|}, T i = {t1, . . . , t|T i|}
Output: |W i| sets of tasks {T i

w1
, . . . , T i

w|Wi|
}

1: Build matrices A,B,C (Equations 3.13, 3.14 and 3.15)
2: MB ← maximum weight matching in B

3: for k ∈ 1, . . . , |T i|
4: degAk =


l∈1,...,|T i|\{k} ak,l

5: if tk is covered by MB

6: bM(tk) = weight of the edge in MB incident to tk
7: else
8: bM(tk) = 0

9: for k, l ∈ 1, . . . , |T i|
10: fk,l = bM(tk)degAl + ck,l

11: π′ ← an optimal solution to the linear assignment problem maxσ


k fk,σk

12: for (tk, tl) ∈MB

13: π(k) = π′(k) and π(l) = π′(l) with probability 1/2

14: π(k) = π′(l) and π(l) = π′(k) otherwise
15: if k /∈MB

16: π(k) = π′(k)

17: for wq ∈ W i

18: T i
wq
← {tk | ⌈π(k)/Xmax⌉ = q}

19: return {T i
w1
, . . . , T i

w|Wi|
}

Equation 3.16 partitions T i into |W i| sets using the solution π of the MaxQap instance.
We obtain a solution for Hta by solving its corresponding MaxQap instance.

Example 4. We continue with Example 3. Suppose that the solution of the MaxQap instance
returns π(1) = 4, π(4) = 1 and ∀k ∈ 1, . . . , |T i|, k /∈ {1, 4} π(k) = k. Given Equation 3.16,
we have T i

w1
= {t4, t2, t3} and T i

w2
= {t1, t5, t6}. Tasks t7 and t8 are left unassigned.

Following the previous observations, we can show that:


w∈Wi

motiv i
w(T i

w) =


k,l∈1,...,|T i|
k ̸=l

aπ(k),π(l)bk,l +


k∈1,...,|T i|

ck,π(k)
(3.17)

This shows that the value of the objective function of our Hta instance is same as the
MaxQap instance that we built. We prove Equation 3.17 in Appendix B.1.

3.4. Holistic Motivation-Aware Task Assignment 77

3.4.2.3 Approximation Algorithm Hta-App

In Section 3.4.2.2, we showed how we can map an instance of Hta to an instance of MaxQap.
Here, we adapt to our settings the algorithm of Arkin et al. [10] that was designed for
MaxQap. We present Hta-App (Algorithm 9). First Hta-App maps tasks and workers to
matrices (Line 1 in Algorithm 9). Matrix A is the weighted adjacency matrix of |W i| cliques
(one per worker). Matrix B is the weighted adjacency matrix of the graph where vertices
are mapped to tasks and edges are labeled with their pairwise task diversity. Matrix C

represents the task relevance part, where each row represents a task and each column a
possible assignment for this task. Then, from Lines 2 to 16, Hta-App uses only these
matrices. First, it finds a maximum weight matching MB with respect to task diversity
using matrix B. This step identifies a set of task pairs whose aggregated diversity value is
maximized. Then, Hta-App builds an auxiliary problem using MB and matrices A and C.
This problem is an instance of the Linear Sum Assignment Problem(Lsap) [19]. On Line
10, Hta-App combines the profit associated to task diversity and task relevance. Observe
that if a vertex k is not associated to a worker in matrix A, then ∀k ∈ 1, . . . , |T i| fk,l = 0.
If k is associated to worker wq and if task tk is incident to the edge (tk, tl) ∈MB, we have
fk,l = d(tk, tl) ∗ (Xmax− 1) ∗αi

wq
+βi

wq
∗ (Xmax− 1) ∗ rel(wq, tk). The rationale behind using

this auxiliary problem with those weights is to build a linear problem that is easier to
solve since our original problem is inherently quadratic. Intuitively, fk,l is an approximated
profit obtained when assigning task tk to vertex l. On Line 11, Hta-App solves the Lsap
instance. Then, it uses a slightly modified version of the solution π′ of the Lsap problem.
For each edge (tk, tl) in the maximum matching MB, it randomly permutes the assignation
of tk and tl (Lines 12-14). If a task is not in the matching, it is not permuted (Lines 15-16)
further. Finally, Hta-App builds a solution for Hta using Equation 3.16 (Lines 17-18).

Example 5. We run Hta-App using workers and tasks from Example 3. Suppose that
MB = {(t4, t8), (t1, t6), (t3, t2), (t7, t5)} and d(t4, t8) = 1, d(t1, t6) = 1, d(t3, t2) = 0.86,

d(t7, t5) = 0.8 (Algorithm 9 - Line 2). Then, Hta-App will set f1,1 = 1∗0.4+0.448 = 0.848.
This profit is used in the Lsap instance on Line 11. It is an approximation of the profit
obtained when assigning task t1 to vertex 1, which is associated to worker w. Then, Hta-
App solves Lsap and we obtain π = (4, 7, 1, 6, 3, 8, 2, 5) (Line 16). Therefore, worker w1 is
assigned tasks t3, t5, t7 and worker w2 tasks t1, t4, t8.

Theorem 4. Hta-App is a 1
4
-approximation algorithm for the Hta problem.

Proof. We use an approximation-preserving reduction to prove the approximation fac-
tor [11]. In Section 3.4.2.2, we exposed how to map any instance of Hta to an instance of
MaxQap. We also showed that an optimal solution for the obtained instance of MaxQap
is an optimal solution for Hta. With this one to one mapping between Hta and MaxQap,
an approximation algorithm for MaxQap will also solve Hta with the same approximation
guarantee. Hta-App is an adaptation of the approximation algorithm proposed by Arkin

78 3. Motivation-Aware Task Assignment

Algorithm 10 Hta-Gre

Input: W i = {w1, . . . , w|Wi|}, T i = {t1, . . . , t|T i|}
Output: |W i| sets of tasks {T i

w1
, . . . , T i

w|Wi|
}

1: Build matrices A,B,C (Equations 3.13, 3.14 and 3.15)
2: MB ← maximum weight matching in B

3: . . . (Lines 3-10 of Algorithm 9)
11: π′ ← greedy matching in the completed bipartite graph associated to the Lsap problem

maxσ


k fk,σk

12: . . . (Lines 12-18 of Algorithm 9)
19: return {T i

w1
, . . . , T i

w|Wi|
}

et al [10] (Algorithm 9 - Lines 2-16), which is proved to have an 1
4
-approximation factor

for the MaxQap problem. Therefore, Hta-App is also a 1
4
-approximation for Hta4.

Lemma 3. Hta-App runs in O(|T i|3) time

Proof. The cubic time complexity comes from the linear assignment problem that the
algorithm needs to solve (Algorithm 9 - Line 11). This kind of problem is typically solved
using the Hungarian algorithm that runs in O(|T i|3) time [19]. The matching step (Line
2) can be done in O(|T i|2 log |T i|) time using a greedy matching [10].

3.4.2.4 Approximation Algorithm Hta-Gre

Although Hta-App tackles the complexity of our problem by returning, in polynomial time,
a solution that verifies a performance guarantee, its running time may not be satisfactory.
We now propose an alternative algorithm Hta-Gre that runs in O(|T i|2 log |T i|) time,
where the approximation factor is slightly compromised.

In Lemma 3, we observed that the time complexity of Hta-App is dominated by
the time complexity of the algorithm that solves the Lsap problem (Algorithm 9 - Line
11). This step can be done in O(|T i|3) time, using improved versions of the well-known
Hungarian algorithm [19]. To the best of our knowledge O(|T i|3) is the best polynomial
time complexity we can obtain to solve this assignment step. There also exists a number of
algorithms that solve Lsap in pseudo-polynomial time [19] (e.g. cost-scaling algorithms that
run in O(|T i| 52 log(|T i|C)) time where C = maxk,l∈1,...,|T i| fk,l). Since our goal is to reach
a polynomial time approximation, those algorithms are not applicable. Our proposed
Hta-Gre algorithm (Algorithm 10) improves the cubic running time complexity. Our
rationale is the following: rather than solving optimally the Lsap problem, we aim to find
an approximate solution in polynomial time (Algorithm 10 - Line 11). Specifically, we find

4The performance guarantee holds even if the matrix C is not symmetric: the proof of Arkin et al. [10]
only relies on the symmetry of A and B.

3.4. Holistic Motivation-Aware Task Assignment 79

Algorithm 11 GreedyMatching

Input: G = (V,E), w : E → R+

Output: M greedy matching on G
1: M← ∅
2: while E ̸= ∅
3: e← heaviest edge in E

4: M←M∪ e

5: remove e and all edges incident to e from E

6: returnM

a greedy matching in the complete weighted bipartite graph associated to the Lsap instance.
The rest of the algorithm remains unchanged. In the next paragraph, we describe how we
find this approximation. Then, we show that Hta-Gre is a 1

8
-approximation algorithm

that runs in O(|T i|2 log |T i|) time.

Approximation for Lsap. We present an approximation algorithm to solve Lsap. For
that, we first redefine the Lsap problem using graph theory [19]. Lsap can be modeled using
a weighted complete bipartite graph GLsap = (U, V,E, f). We set U = V = {1, . . . , |T i|}.
Each edge e = (k, l), k ∈ U, l ∈ V has the weight fk,l. Solving Lsap becomes equivalent to
solving a Maximum Weight Perfect Matching Problem (Mwpmp) [19, 40]. In graph theory,
the problem of finding a matching, i.e., a set of vertex-disjoint edges, with the maximal
weight is called the maximum weight matching problem (Mwmp) [40]. A maximum weight
perfect matching is a maximum weight matching that covers all vertices. To solve Mwpmp,
we employ the well-known GreedyMatching algorithm [40] (Algorithm 11), that selects
the heaviest edge e ∈ E, removes e and edges incident to e, and reiterates until no edges
are left. It is well-known that GreedyMatching is a 1

2
-approximation for Mwmp [38, 40].

We just need to show that this performance guarantee holds for the Mwmp on GLsap.

Lemma 4. GreedyMatching is a 1
2
-approximation for the Mwmp on GLsap.

Proof. (sketch) Because GLsap is complete and counts an even number of vertices (2|T i|), it
is easy to see that GreedyMatching returns a set of edges that cover all vertices. Thus,
GreedyMatching returns a perfect matching. This completes the proof.

Performance guarantee of Hta-Gre. We show that Hta-Gre is a 1
8
-approximation

for the Hta problem.

Theorem 5. Hta-Gre algorithm is a 1
8
-approximation for the Hta problem.

Proof. (sketch): The proof structure is analogous to that of the approximation preserving
reduction presented to prove Theorem 4. Once an instance of Hta is reduced to an instance

80 3. Motivation-Aware Task Assignment

of MaxQap, the proof follows two parts. First, we show that the value of the optimal
solution for Hta is less than 4 times the solution value for the auxiliary problem Lsap.
Then, we show that the value of the solution returned by Hta-Gre is greater than 1

2

times the value of the optimal solution for Lsap. Appendix B.2 contains further details.
Combining both propositions completes the proof.

Lemma 5. The running time complexity of Hta-Gre is O(|T i|2 log |T i|).

Proof. The time complexity of Hta-Gre is dominated by its two matching steps (Algo-
rithm 10 - Lines 2 and 11). As observed by Arkin et al., the first matching step (Line 2)
can be completed using a greedy matching. It is well-known that a greedy matching can
be computed in O(|E| log |V |) time on a graph G = (V,E). The first matching runs on
|T i| vertices and |T i|(|T i|−1)

2
edges. The second matching (Line 11) runs on 2|T i| vertices

and on |T i|2 edges. The overall running time complexity is thus O(|T i|2 log |T i|).

3.4.3 Experiments

We run two kinds of experiments: (1) an offline simulation to stress the performance of our
algorithms, and (2) an online deployment where we capture workers’ motivation, perform
task assignment accordingly, and measure end-to-end performance.

3.4.3.1 Summary of Results

Our first set of experiments is based on simulated workers and evaluates scalability and
expected motivation, i.e., value of objective function. We find that Hta-Gre performs
better than Hta-App thanks to its greedy strategy that depends mainly on the number of
tasks, not on the number of workers. The Hungarian algorithm on which Hta-App relies is,
on the other hand, more expensive. We find that Hta-Gre has an acceptable response time
and could hence be executed in the background while workers complete tasks, to prepare
the next round of assignments. We also find that the greedy strategy of Hta-Gre does
not negatively affect the value for the objective function when compared to Hta-App.
Therefore, Hta-Gre should be the algorithm of choice for the holistic task assignment
problem as it runs faster while producing an assignment comparable to Hta-App.

Our second experiments rely on effectively deploying tasks with real workers. We com-
pare Hta-Gre with three other non-adaptive strategies: a random assignment Random,
one based on diversity only Hta-Gre-Div and another on relevance only Hta-Gre-Rel.
We first show that optimizing diversity only (Hta-Gre-Div) results in the highest crowd-
work quality and relevance only (Hta-Gre-Rel) is worst. We can therefore conjecture
that diversity addresses boredom. In fact, relevance only is consistently outperformed along
quality, number of completed tasks and retention. We also find that Hta-Gre offers the
best compromise between those dimensions thereby assessing the need for adaptability.

3.4. Holistic Motivation-Aware Task Assignment 81

3.4.3.2 Offline Simulation

We focus on one iteration at a time and measure scalability in terms of how fast tasks are
assigned, and motivation, in terms of the objective function. Ideally, a task assignment
algorithm should be quick and should maximize workers’ motivation. We compare the
performance of Hta-App and Hta-Gre.

Implementation. We implement Hta-App and Hta-Gre in Java and run them on
Oracle’s 1.8.0_91 JVM on a Debian 8.7 server with 2 Intel Xeon E5-2650@2.60 GHz and
128GB of RAM. For all sorting sub-routines, specifically when a greedy matching has to be
computed, we use Arrays.sort, an improved implementation of the Merge Sort algorithm
(know as “TimSort”, runs in O(n log n) time). To solve Lsap in Hta-App, we adapt the C
implementation of the Hungarian Algorithm of Carpaneto et al. [24] which runs in O(n3)

time (available online [19]). We report the average of 10 runs each time.

Data Sets. We use real tasks and synthetic workers. We crawled 152, 221 task groups
from Amazon Mechanical Turk (AMT). Each task group contains metadata about tasks
in that group. We vary the size and the features of groups and tasks, as exposed in
Appendix A.1. Our workers are synthetically generated. For each worker w, we use a
pseudo-random uniform generator to choose 5 keywords and we pick a random αi

w and βi
w

in the range of [0, 1].

Results. We conduct experiments where we vary three dimensions: (i) the number of
tasks |T i|, (ii) the number of workers |W i| and (iii) the diversity of tasks in T i.

Number of Tasks. We vary the number of tasks |T i| from 4, 000 to 10, 000, with
200 tasks per task group. Figure 3.10a shows the detailed response times of Hta-App
and Hta-Gre. As expected, Hta-App is outperformed by Hta-Gre as its response time
grows faster with the number of tasks. We can observe that the difference comes from the
second phase of the algorithm that solves the auxiliary problem Lsap. For this phase, the
response time of Hta-App is O(|T i|3) while Hta-Gre is O(|T i|2 log |T i|). The results in
Figure 3.10b show that both Hta-App and Hta-Gre report very similar values for the
objective function, confirming the benefit of Hta-Gre.

Number of Workers. Figure 3.10c shows the results response time as a function
of the number of workers. Here again, Hta-Gre outperforms Hta-App. The difference
comes from the Hungarian Algorithm in Hta-App whose response time increases with the
number of workers. That is due to the number of 0-weight edges used in its initialization
phase. The more 0-weight edges, the higher the chance to find an initial solution that
covers all vertices. This allows early termination and avoids running the expensive sub-
routine augment to find an augmenting path [19] (which runs in O(|T i|2) time). Even if the

82 3. Motivation-Aware Task Assignment

 0
 20
 40
 60
 80

 100
 120
 140
 160

h
ta

−
a
p
p

h
ta

−
g
re

h
ta

−
a
p
p

h
ta

−
g
re

h
ta

−
a
p
p

h
ta

−
g
re

h
ta

−
a
p
p

h
ta

−
g
re

h
ta

−
a
p
p

h
ta

−
g
re

h
ta

−
a
p
p

h
ta

−
g
re

h
ta

−
a
p
p

h
ta

−
g
re

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

|T
i
| (x10

3
)

Matching
Lsap

10987654

(a) X-axis: Number of tasks
|Wi| = 200

 24

 26

 28

 30

 32

 34

 4 5 6 7 8 9 10

O
b
j.
 F

u
n
c
ti
o
n
 V

a
lu

e
 (

x
1
0

3
)

|T
i
| (x 10

3
)

Hta−App
Hta−Gre

(b) X-axis: Number of tasks
|Wi| = 200

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

|W
i
|

Hta−App
Hta−Gre

(c) X-axis: Number of workers
|T i| = 8000

200 task groups, Xmax = 20

Figure 3.10: Hta synthetic experiments: scalability w.r.t. the number of tasks and workers

initial solution does not cover all vertices, more 0-weight edges also increase the chances
of finding a long alternating path, favoring early termination. For instance, the number
of calls to the augment sub-routine was 66 times higher when |W i| = 350 than when
|W i| = 30. This is because many edges have the same weight when there are fewer workers
(i.e. there are many k, l ∈ 1, . . . , |T i| where fk,l = 0), which in turn incurs 0-values in
the dual problem. The sub-routine GreedyMatching in Hta-Gre was less affected by
the number of workers since the response time of the sorting phase in GreedyMatching
increases slowly with the number of workers. We also observed similar results for the value
of the objective function.

Diversity of Tasks. We vary the number of task groups from 10 to 10, 000 with
a fixed number of tasks |T i| = 10, 000 (e.g. when there are 10, 000 task groups there is
one task per task group). Similarly to earlier, Hta-Gre outperforms Hta-App mainly
because of the Hungarian Algorithm in Hta-App (Figure 3.11). The more diverse the
tasks, the more diverse the fk,l values in the Lsap problem, and the smaller the chance
to build 0-weight edges in the dual problem. Therefore, the higher the number of diverse
tasks, the less likely the Hungarian Algorithm will terminate early. Our algorithm Hta-
Gre is oblivious to the diversity of tasks. Indeed, the running time of the sort phase in
the GreedyMatching sub-routine does not depend on the diversity of fk,l values.

3.4.3.3 Online deployment

The purpose of online deployment is to verify the behavior of Hta-Gre in practice and
assess the utility of diversity to model motivation, and the need for adaptability with
real workers. Each worker enters a work session during which several iterations occur.
Similarlty to Ita, we measure three main performance indicators: outcome quality that

3.4. Holistic Motivation-Aware Task Assignment 83

 0

 100

 200

 300

 400

 500

 600

 10 100 1000 10000
R

e
s
p

o
n

s
e

 t
im

e
 (

s
)

#task groups

Hta−App
Hta−Gre

|T i| = 103, |W i| = 300, Xmax = 20

Figure 3.11: Hta synthetic experiments: effect of task diversity

reflects the quality of a worker’s contribution to a task with regard to a ground truth,
number of completed tasks that measures the number of completed tasks per session and
per unit of time, and worker retention that characterizes how long workers stay motivated
during a work session.

Set-up. We compare Hta-Gre with 3 other assignment strategies: (i) Random, that
assigns a set of Xmax random tasks, (ii) Hta-Gre-Rel, that uses Hta-Gre and sets
αi
w = 0, βi

w = 1 ∀w ∈ W i hence optimizing relevance only, and (iii) Hta-Gre-Div, that
uses Hta-Gre with αi

w = 1, βi
w = 0∀w ∈ W i hence optimizing diversity only. Hta-Gre is

the only algorithm that is adaptive: it needs to compute αi
w and βi

w for each worker inW i.
For the first iteration of Hta-Gre, we assign random tasks using Random to address the
cold start.

Workflow. We employ our platform GACS, where workers hired from AMT can complete
tasks (see the workflow in GACS in Appendix A.2). One notable difference with Ita is that
Hta require to monitor all workers at once. A new assignment iteration occurs when at
least 5 tasks are completed overall and when at least one worker completes a minimum of
8 tasks. We set Xmax = 15 and display a total of 20 tasks per worker: we add 5 random
tasks to avoid falling into a silo by assigning only highly relevant tasks to each worker.

Tasks and Workers. We used a set of 158, 018 micro-tasks released by Crowdflower. It
includes 22 different kinds of tasks. Appendix A.1 presents this dataset in details. We ran
our experiments using a sample of 5, 000 tasks where each kind of task is equally repre-
sented. We published 160 HITs on AMT to recruit workers. The HIT reward is set to $0.1

and workers receive a bonus equivalent to the total reward of tasks that they completed.
To qualify for our experiment, we required workers to have previously completed at least
100 HITs that were approved, and to have an approval rate above 80%. We also required
HITs to be completed within 30 minutes. Then, we filtered results. We omit work sessions

84 3. Motivation-Aware Task Assignment

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

%
 C

o
rr

e
c
t

A
n

s
w

e
rs

 (
c
u

m
u

l.
)

Elapsed Time (min)

Hta−Gre
Hta−Gre−Div
Hta−Gre−Rel
Random

(a) Crowdwork quality

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

#
C

o
m

p
le

te
d

 T
a

s
k
s
 (

c
u

m
u

l.
)

Elapsed Time (min)

Hta−Gre
Hta−Gre−Div
Hta−Gre−Rel
Random

(b) Number of completed tasks

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

%
 o

f
s
e
s
s
io

n
s
 t
h
a
t
e
n
d
e
d

 a
ft
e
r
x
 m

in
u
te

s

Elapsed Time (min)

Hta−Gre
Hta−Gre−Div
Hta−Gre−Rel
Random

(c) Worker retention

Strategy % Correct Avg. Avg. session # Completed Total task Avg. task
answers # completed duration tasks/min payment payment

tasks/session (min.) ($) ($ cents)

Hta-Gre 75.5% 36.7 22.3 1.6 46.8 6.4

Hta-Gre-Div 81.9% 31.8 20.2 1.6 31.1 4.9

Hta-Gre-Rel 65.0% 33.3 18.3 1.8 37.3 5.6

Random 76.5% 34.0 22.7 1.5 46.0 6.8

(d) Aggregated measures

Figure 3.12: Hta online experiments: results

where workers did not follow instructions or complete enough tasks to be re-assigned new
tasks5. In order to make our strategies comparable, we selected, for each strategy, the 20

work sessions with the highest number of completed tasks. Overall, 58 different workers
completed 2, 715 tasks in 80 work sessions (4 strategies).

Results. We collected three main performance measures: (i) crowdwork quality, that
measures the quality of workers’ contributions, (ii) number of completed tasks and (iii)
worker retention, that reflects how workers are prone to stay longer on our platform to
complete more tasks.

Quality. We measure the quality of individual contributions from the crowd. 4, 473

questions were asked for the 2, 715 tasks that were completed (a task may have several
questions). For a sample of 1, 137 questions, we used the ground truth provided by Crowd-
flower. Figure 3.12a presents the cumulative percentage of questions that were correctly
completed for each strategy (see Table 3.12d for the aggregated measures). We observe that
workers performed better with Hta-Gre-Div (81.9% of correct answers) than with other
strategies. This is confirmed at the significance level 0.06 using two-proportions Z-test on
the proportions of correct answers in each strategy. Hta-Gre and Random were slightly
below (75.5% and 76.5%) and outperform Hta-Gre-Rel (significance level: 0.01) that has

5Some workers left after one task. Others stayed for over 3 hours!

3.4. Holistic Motivation-Aware Task Assignment 85

the worst ratio (65%). In fact, with Hta-Gre, the rate at which correct answers are pro-
vided is constant, while it starts to drop for Hta-Gre-Rel after 21 minutes. This result
validates our choice of using diversity in the expression of workers’ motivation. It raises
however the utility of adaptability. If workers perform best along the quality dimension
with Hta-Gre-Div, what do we need Hta-Gre for?

Number of completed tasks. Figure 3.12b presents the cumulative number of com-
pleted tasks for each strategy (see Table 3.12d for the aggregated measures). Overall, Hta-
Gre outperforms all others: 734 tasks were completed with Hta-Gre, 679 with Random,
666 with Hta-Gre-Rel and 636 with Hta-Gre-Div. The fact that Hta-Gre outper-
formed Hta-Gre-Div is confirmed at the significance level 0.05 using Mann-Whitney U
test on the average number of completed tasks per session. Although Hta-Gre-Rel has
the highest task throughput (1.8 tasks/min vs ≈ 1.6 tasks/min for other strategies), it has
the lowest number of completed tasks since workers quickly dropped their work sessions
when they were assigned tasks using Hta-Gre-Rel (average duration: 18.3 minutes).
Also, the number of completed tasks for Hta-Gre grows steadily. This shows the superi-
ority of Hta-Gre as it maintains workers’ efficiency throughout their work session. At the
very end, all curves decrease since workers need to submit their HIT before the allotted
time expires (30 minutes).

We observed that workers who were assigned tasks using Hta-Gre completed 36.7

tasks per work session, with an average session length of 22.3 minutes and an average task
reward of $0.064. Although workers who were assigned tasks using Random stayed slightly
longer (22.7 minutes/session), they were less efficient (34 tasks/session) even though they
chose tasks that pay slightly better (average task reward was $0.068). So far, in addition to
showing that Hta-Gre is superior in terms of number of completed tasks per session, we
show that while Hta-Gre-Div provided the best outcome quality, it has the worst number
of completed tasks. We conjecture that too much diversity results in overhead in choosing
tasks. Similarly, providing relevant tasks only may induce boredom. A balance needs to be
found with adaptability.

Worker retention. Figure 3.12c shows worker retention as the percentage of work
sessions (vertical axis) that ended after x minutes (horizontal axis). This measure is akin
to a survival rate, showing if workers are motivated to stay longer in a session. Ran-
dom and Hta-Gre outperform Hta-Gre-Rel and Hta-Gre-Div. For instance, 85% of
workers stayed over 18.2 minutes with Hta-Gre (and only 75% for Random). The fact
that Random and Hta-Gre outperform Hta-Gre-Rel is confirmed at the significance
level 0.1 using a Mann-Whitney U test on average session duration. Hta-Gre slightly
outperforms Random for most of the time (up to 22 minutes exactly), while the average
session duration is similar to Hta-Gre (Table 3.12d). We can therefore answer our ini-
tial question: Hta-Gre offers the best compromise between crowdwork quality and overall
performance in terms of number of completed tasks and worker retention.

86 3. Motivation-Aware Task Assignment

3.5 Ita and Hta Experiments: Discussion

In both Ita and Hta, we conducted experiments with real workers hired from AMT and
we redirected them to our home-grown platform where they completed real tasks that we
extracted from Crowdflower. In this section, we first compare the results obtained in our
two sets of experiments. Then, we discuss our experimental setting and the challenges
raised by conducting experiments on task assignment in crowdsourcing.

Results. First, our experiments show the need to enable adaptability. Our adaptive
strategies div-pay (Ita) and Hta-Gre (Hta) both offer good compromises on various per-
formance dimensions when compared to other non-adaptive strategies. Additionally, in
Ita, we observed that several workers had an evolving motivation while performing tasks:
some of them clearly favored a motivation factor over another. This confirms the need for
accounting for the evolution of motivation in task assignment.

Second, we observe that task relevance is important for maximizing the number of
completed tasks, task throughput and worker retention. In Ita, task relevance is ensured
in all strategies using an hard constraint on the tasks that could be assigned to a worker.
The strategy relevance, that only optimizes task relevance, performed best on both task
throughput and worker retention. In Hta, task relevance is only optimized in Hta-Gre
and Hta-Gre-Rel. The Hta-Gre strategy outperformed other strategies on number
of completed tasks and worker retention. The number of completed tasks was lower for
Hta-Gre-Rel, but this strategy provided the best task throughput. This result is not
surprising, as workers are naturally more efficient when completing tasks that best match
their interest. We also observe that optimizing only diversity impacts negatively worker
retention: diversity and Hta-Gre-Div performed worse on this dimension. This sug-
gests that workers do not like completing diverse tasks during a long time, without being
motivated by another factor (payment or relevance).

We also observe surprising results: in Ita, diversity performs the worst on crowdwork
quality while Hta-Gre-Div is the best in Hta. Both diversity and Hta-Gre-Div only
optimize task diversity, hence we could expect similar results. We conjecture that it is an
empirical effect and we also note that these strategies slightly differ: diversity enforces
an hard constraint on task relevance to a worker while Hta-Gre-Div is relevance-agnostic.
Hence, we cannot carry out a direct comparison.

Finally, our experiments showed the efficiency of our algorithms. Although we did not
report performance experiments in Ita, we verified the responsiveness of our algorithms:
they can return tasks to a worker in less than a second when |T i| = 5000. We showed the
efficiency of Hta-Gre in Hta in our performance experiments. Our online experiments
confirmed the applicability of our algorithms in a web application with a real workload.
This shows that we can enable motivation-aware task assignment under the constraints
raised by an online context.

3.6. Related Work on Motivation-Aware Task Assignment 87

Discussion. Designing and conducting experiments on task assignment in crowdsourcing
is not a straightforward task. We discuss the challenges raised by designing an experimental
setting and their impact on our experiments.

First, the novelty of our approach required to design key components for implementing
and evaluating our assignment strategies. We introduced various performance dimen-
sions that are best relevant to an holistic approach and consider the objectives of both
requesters and workers. Previous approaches on task assignment [47, 55, 135] mainly fo-
cused on requester-centric measures such as crowdwork quality or task throughput. Studies
on workers’ motivation also included worker retention [33]. We proposed to adopt these
performance dimensions to evaluate task assignment. We believe they provide a compre-
hensive insight of a system’s performance. Our work also required to define an assignment
iteration. We performed an iteration every time x tasks were completed (see Appendix A.2
for more details). We could also consider a time-based approach, that performs an assign-
ment iteration every m minutes. This problem is orthogonal to our work.

Second, crowdsourcing is still a maturing domain of investigation and we inherit some
of its longstanding challenges. A number of studies [15, 82, 116] list challenges raised in
crowdsourcing and demonstrate that designing an efficient crowdsourcing system is not
a straightforward task. In our work, we designed and developed a home-grown platform
to enable adaptive task assignment. In our experiments, we observed that most workers
were comfortable with the proposed workflow. Some of them told us that they liked
completing tasks on our platform (they sent an email). However, some workers did not
follow instructions, dropped their work session without completing any task, worked longer
than the allotted time or were affected by the way tasks are displayed (Section 3.3.3.2).
To mitigate that, we ran additional experiments to obtain a coherent experimental setting.
However, this shows the need to investigate how to design a proper crowdsourcing system
and leverage the guidelines that were proposed in several previous studies [15, 82, 116]. This
observation also raises the question of experiments reproducibility. On popular platforms
such as AMT, the crowd is by nature volatile and the degree of commitment of workers
varies [82] as well as their demographics and their skills. In this context, reproducing
experimental results is difficult. Some of the surprising results that we observed support
this idea. Therefore, our results should be interpreted as insights on the impact of various
assignment strategies.

3.6 Related Work on Motivation-Aware Task Assign-
ment

Task Assignment in Crowdsourcing

Task assignment in crowdsourcing was largely studied. Previous studies include the design
of adaptive algorithms, that focus on maximizing the quality of crowdwork [47, 67, 68, 135].

88 3. Motivation-Aware Task Assignment

For instance, Fan et al. [47] leverage the similarity between tasks and the past answers of
workers to design an adaptive algorithm that aims at maximizing the accuracy of crowd-
work. Their work includes two main components. First, they estimate workers’ accuracy
by leveraging the similarity between tasks. The idea is that workers should perform simi-
larly on similar tasks. Then, they design an adaptive task assignment framework that (i)
identifies top workers, (ii) assigns tasks to top workers and (iii) assigns test tasks to other
workers, whose accuracy is not precisely known or insufficient. Ho et al. [67] study an on-
line setting, where the workers who are going to arrive on the platform have unknown skill.
They design an algorithm where the skill level of sampled workers is learned and leveraged
to assign all other workers to tasks. Zheng et al. [135] designed QASCA, an adaptive task
assignment framework. They focus on optimizing crowdwork quality and incorporating di-
rectly two popular evaluation metrics in task assignment (accuracy, F-score). They tackle
two natural challenges: the lack of ground truth for crowdsourced tasks and the need for
an efficient assignment algorithms in an online context. They adopt a probabilistic model
which require to adapt evaluation metrics and propose efficient assignment algorithms that
are adapted to these metrics. None of these studies includes motivation factors in their
model.

Other investigations focused on dynamically adjusting the task reward [48, 55] so as
to satisfy a deadline or a budget constraint. They modeled the willingness of a worker
to choose a task as a task acceptance probability featuring task reward as a parameter.
These studies do not focus on task assignment as workers self-appoint themselves to tasks
and they do not include task diversity in their model. Recently, Rahman et al. [106]
focused on assigning tasks to groups of diverse workers in collaborative crowdsourcing.
Moreover, Wu et al. aim at finding sets of workers with diverse opinions [130]. None of
those studies assigns diverse tasks to workers or includes motivation factors. Moreover,
Rahman et al. [106] consider a setting which is not adaptive: task assignment does not
leverage previous answers to improve the main objective.

Motivating Workers

A range of studies point out the importance of suitably motivating workers in crowdsourc-
ing [15, 82, 90]. Obviously, reward is an important factor, and crowdsourcing platforms
should follow some guidelines that would solve wage issues [15]. Kittur et al. [82] underlines
the interest of designing frameworks that include incentive schemes other than financial
ones. In particular, they notice that a system should “achieve both effective task completion
and worker satisfaction”. Worker motivation was first studied in physical workplaces [62].
Recent studies [79] investigated the importance of 13 motivation factors for workers on
Amazon Mechanical Turk. Although task payment remains the most important factor,
Kaufmann et al. [79] point out that workers are also interested in skill variety or task
autonomy.

Some efforts were driven towards experimenting motivation factors in crowdsourc-

3.7. Conclusion 89

ing [25, 33, 108, 114]. In a recent study [33], Dai et al. inserted diversions in the workflow
such that workers were presented with some entertainment contents between two task
completions. Dai et al. showed that such a motivational scheme improved worker reten-
tion. Chandler and Kapelner [25] conducted experiments showing that workers perceiving
the “meaningfulness” of task improved throughput without degrading quality. Another
study [108] assessed the effect of extrinsic and intrinsic motivation factors. They demon-
strated that workers were more accurate on meaningful tasks posted by a non-profit or-
ganization than on tasks posted by a private firm and less explicit about their outcome.
This suggested that intrinsic factors help improve quality of crowdwork. Shaw et al. [114]
assessed 14 incentives schemes and found that incentives based on worker-to-worker com-
parisons yield better crowdwork quality. None of the above studies leverages motivation
factors to optimize task assignment, and thus they do not tackle the motivation-aware
task assignment problem. Hata et al. [66] studied how work quality changes over extended
periods of time.

Diversity Formulations and Algorithms

Diversity is a widely studied subject that finds its roots in Web search with a goal similar to
ours. For example, it was used in text retrieval and summarization to balance document
relevance and novelty [22]. Most approaches fall into two cases: content-based [22] and
intent-based [28]. Gollapudi and Sharma [59] adopt an axiomatic approach to diversity to
address user intent. They show that no diversity function can satisfy all axioms together.
Our formulation is content-based as it relies on a distance function between tasks. Other
content-based functions, such as ones based on taxonomies, are possible [8]. In our work,
it is essential to use a metric to obtain our approximation results.

In the database context, Chen and Li [98] propose to post-process structured query
results to enforce diversity. Similarly, in recommendations [42, 137], intermediate results
are post-processed, using pairwise item similarity, to generate accurate and diverse rec-
ommendations. Vee et al. [122] introduced a hierarchical notion of diversity in databases
and proposed efficient top-k processing algorithms. Abbar et al. [3] proposed an algorithm
with provable approximation guarantees to find relevant and diverse news articles.

3.7 Conclusion

In this chapter, we investigated monitoring in crowdsourcing. We advocated the need
to incorporate motivation in task assignment. Our approach is adaptive as it relies on
observing workers in task completion, capturing their motivation and using it to determine
the next tasks to assign to them.

We modeled three motivation factors: task diversity, task payment and task relevance.
Then, we studied two variants of task assignment where we define a worker’s expected
motivation using two combinations of these factors.

90 3. Motivation-Aware Task Assignment

First, we investigated Individual Task Assignment (Ita) [101], where we assign tasks to
workers individually, one worker at a time. In this variant, we defined motivation as a bal-
ance between task diversity and task payment. We modeled Ita and showed it is NP-Hard.
We designed three task assignment strategies that exploit various objectives: relevance
that assigns tasks matching a worker’s profile, diversity that chooses matching and di-
verse tasks and div-pay an adaptive strategy that selects matching tasks with the best
compromise between diversity and payment. In practice, our experiments showed that
different strategies prevail. relevance offers the best task throughput and worker reten-
tion since it requires less context switching for workers. div-pay, however, has the best
outcome quality, since it accounts for workers’ motivation by allowing them to achieve the
best compromise between diversity and compensation. This confirms the need for adaptive
motivation-aware task assignment.

Second, we studied Holistic Task Assignment (Hta) [102], where we assign tasks to all
available workers, holistically. We defined motivation as a combination of task diversity
and task relevance. We modeled Hta and showed it is both NP-Hard and MaxSNP-Hard.
We developed Hta-App and Hta-Gre, two approximation algorithms for Hta, that have 1

4

and 1
8

approximation factors, respectively. Our offline experiments examined the response
time and the value of the objective function for both algorithms and showed that Hta-
Gre is faster than Hta-App, without compromising motivation (i.e. the value of the
objective function). We also deployed online experiments with real workers and compared
Hta-Gre with various non-adaptive assignment strategies. We showed that optimizing
diversity only results in the highest crowdwork quality and optimizing relevance only is
worst. We also found that Hta-Gre offers the best compromise between those dimensions
thereby assessing the need for adaptability.

Chapter 4

Summary and Perspectives

In this thesis, we developed algorithms for monitoring activity traces. Section 4.1 concludes
our work and Section 4.2 discusses some perspectives and future investigations.

4.1 Summary

In Chapter 1, we showed the importance of designing scalable algorithms for monitoring
activity traces. We introduced two kinds of activity traces that are of interest to us:
temporal data and traces of human activity in crowdsourcing. For temporal data, we
discussed the need to study temporal joins featuring an approximate interpretation of
temporal predicates. In crowdsourcing, we advocated the need to incorporate motivation
in adaptive task assignment to account for the evolution of workers’ motivation and improve
overall performance.

In Chapter 2, we studied the efficient evaluation of temporal joins using two different
processing paradigms. In Section 2.3, we investigated batch processing and formalized
Ranked Temporal Join (RTJ), that are often best interpreted as top-k queries where only
the best matches are returned. In Section 2.3.2, we showed how to exploit the nature
of temporal predicates and the properties of their associated scoring semantics to design
TKIJ , an efficient RTJ query evaluation approach on a distributed Map-Reduce architec-
ture. In Section 2.3.3, we presented extensive experiments conducted on synthetic and real
datasets showing that TKIJ outperforms state-of-the-art competitors and provides very
good performance for n-ary RTJ queries on temporal data.

We proposed a preliminary study for extending our work to stream processing (Sec-
tion 2.4). We revisited the RTJ model and outlined several directions to design an efficient
distributed query evaluation approach. We focused on tackling challenges raised by dis-
tributed processing and by the need for a low-latency system.

In Chapter 3, we studied a motivation-aware task assignment approach in crowdsourc-
ing. First, we introduced and modeled three motivation factors: task diversity, task pay-

91

92 4. Summary and Perspectives

ment and task relevance (Section 3.2). Then, we studied two variants of task assignment:
Individual Task Assignment (Ita) and Holistic Task Assignment (Hta).

First, we modeled Ita, where we define motivation as a balance between task diver-
sity and task payment (Section 3.3). We showed that Ita is NP-Hard (Theorem 1). We
proposed three assignment strategies for Ita: relevance, div-pay and diversity. We
conducted experiments (Section 3.3.3) with real workers showing that div-pay, an adap-
tive motivation-aware approach that optimizes both task diversity and task payment leads
to higher quality contribution. relevance, a motivation-agnostic strategy that assigns
tasks matching a worker’s profile, leads to higher task throughput and worker retention.

Second, we modeled Hta (Section 3.4), where motivation is defined as a combination
of task diversity and task relevance. We show that Hta is both NP-Hard and MaxSNP-
Hard (Theorems 2 and 3). We studied two approximation algorithms for Hta: Hta-App
and Hta-Gre. The algorithm Hta-App has a better approximation factor with the cost
of a higher running time (Section 3.4.2). We conducted experiments on synthetic data
showing that Hta-Gre outperforms Hta-App (Section 3.4.3). Then, we conducted ex-
periments with real workers and compared Hta-Gre with various non-adaptive strategies.
We showed that Hta-Gre offers the best compromise between performance dimensions.

In both Ita and Hta, we conducted live experiments using a home-grown platform
(GACS) to enable adaptive task assignment (Appendix A). We recruited workers from
Amazon Mechanical Turk and published real tasks released by Crowdflower.

4.2 Perspectives

We envision three main perspectives for future work. The first is immediate future work
and aims to improve the way we tackle problems related to our main line of investigation.
We also outline future work that require deeper investigations: we could explore monitoring
using other platforms and extend our study using wider semantics.

4.2.1 Optimizations

In our two research areas, we identified possible improvements for solving problems that
are related to our main line of investigation.

Data Partitioning. Our work on temporal data monitoring aims at scaling to large
datasets by leveraging parallel processing in distributed systems. We believe that parti-
tioning is a natural solution to enable parallel join processing on a set of small independent
tasks that can be executed simultaneously. In the context of temporal joins, time-based
partitioning is acknowledged as an effective method [29, 35]. In our work, we defined the
granularity of partitioning empirically, by finding a sweet spot for the number of granules
g. One possible improvement is to derive analytically or algorithmically the optimal value

4.2. Perspectives 93

for g using a cost-based approach. Previous work [35] has investigated how to derive the
optimal number of granules for “intersection” joins1. We could adapt these techniques to
our setting to find the optimal value for g.

Capturing Motivation. We could investigate various ways to capture a worker’s moti-
vation at iteration i. In our work, we leveraged a collection of observations, made each time
a worker completes a task. For each completed task, we simply computed the marginal
gain in a given factor (Section 3.2) and aggregated these measures to compute αi

w or βi
w.

First, we could ask directly workers their preference for the given factors. This has
the advantage of simplicity and ensures accuracy. However, workers may not be able to
identify what actually motivates them and they may prefer completing tasks rather than
answering a question they are not compensated for. We could use other techniques for
capturing automatically αi

w and βi
w. For instance, we could map the completed tasks in a

vector space and use the centroid of these tasks to obtain worker’s preferences. Suppose
that a worker w completed tasks {t1, . . . , tJ} where ∀j ∈ {1, . . . , J} tj ∈ T i−1

w during
iteration iteration i− 1. Suppose that we adopt the Hta variant of motivation-aware task
assignment, where the parameter αi

w (resp. βi
w) captures the preference of w for task

diversity (resp. task relevance). We adopt a vector space with one dimension for each
factor preference. We represent each task tk ∈ T i−1

w using a vector utk = ⟨rel(w, tk), dtk⟩.
Here, dtk =


tl∈{t1,...tJ} d(tk, tl) refers to the gain in task diversity brought by tk. Then,

we compute the centroid of all completed tasks and we use its coordinates to compute αi
w

and βi
w (some normalization will be necessary).

Another possible investigation is to leverage the sequence of task completed by a worker.
We may consider that the order and the characteristics of tasks in this sequence character-
izes which factor best motivates the worker during iteration i. We could leverage Hidden
Markov Models (HMM) to model a sequence of completed tasks. Indeed, a sequence of
completed tasks can be seen as a sequence of observations. Each state could represent a
motivation factor, that leads a worker to choose a specific task during iteration i.

Suppose now that we have a set of HMM, where each HMM is associated to a worker
that would have a given compromise between motivation factors. For instance, one HMM
may be associated to a worker who is equally motivated by task diversity and task relevance.
This HMM models the sequence of tasks that such a worker is likely to complete. Given a
sequence of observations (i.e. a sequence of completed tasks), we could find the HMM that
generates this sequence with the highest probability. This allows to classify each worker
based on the tasks that she completed and capture her compromise between motivation
factors. However, we still need to learn each HMM that is associated to a given compromise
between motivation factors. To do so, we could collect training data by observing workers
completing tasks and asking them their preferences between motivation factors (i.e. their
profile). The sequence of completed tasks and the collected profiles are the examples used

1Also known as “overlap” joins.

94 4. Summary and Perspectives

to train each HMM. Then, we each profile is associated to a HMM that is learned using
the Baum-Welch algorithm [31].

We could compare these approaches to discover which one best matches workers’ mo-
tivation and study their impact on performance dimensions such as task throughput.

4.2.2 Platforms

Our investigations on temporal data monitoring focused on optimizing the evaluation of a
new kind of query (RTJ). We aimed at designing a distributed query evaluation approach,
and our main contribution is TKIJ , an efficient RTJ query evaluation approach on a Map-
Reduce architecture. We present future investigation for evaluating RTJ queries using
other distributed platforms.

Leveraging Communication Between Workers. In TKIJ , reducers do not commu-
nicate between them. Broadcasting the score of the k-th result would allow to terminate
earlier join processing. Indeed, each reducer evaluates locally a full RTJ query, which is
akin to a top-k query. During top-k processing, it is natural to compare the score of the
current k-th result to the maximum possible score of results that are not yet evaluated :
if the k-th result has a high score, we can terminate top-k processing and return results.
Therefore, communicating the current k-th score would allow to terminate earlier the re-
duce phase in TKIJ . However, since Map-Reduce does not support natively communication
between reducers, the use of other distributed platforms would be necessary.

Stream Processing. Evaluating RTJ queries in the context of stream processing is a
natural extension of our work on batch processing (TKIJ). We propose a detailed prelim-
inary study in Section 2.4.

4.2.3 Semantics

In our two research areas, we studied new problems that were not previously investigated.
We formalized these problems and, as a first attempt, we focused on supporting specific
semantics that are of interest to us. We identified three main research areas where we can
extend our investigation using wider semantics.

Supporting Hybrid Queries. In temporal data monitoring, we proposed to study a
new kind of query coined RTJ. RTJ queries feature predicates that only compare interval
endpoints. We could support richer semantics by including other interval attributes in
the query. For instance, in network traffic monitoring, a connection is characterized by
its endpoints but also by the IP addresses of the client and of the server. An analyst
could be interested in obtaining pairs of connections that have the same client IP address.
Therefore, she would need to formulate equi-join queries, that use the client IP address in

4.2. Perspectives 95

the join condition. Our queries would be hybrid and feature RTJ semantics and other join
conditions, such as equality. These queries were studied in previous work on interval joins
using Map-Reduce [29], that only support a Boolean interpretation of Allen predicates.

A key challenge for evaluating such queries is to efficiently return correct results. In
TKIJ , we rely on statistics’ collection and on the TopBuckets process to prune only unnec-
essary results. We would need to adapt these components to handle hybrid queries. For
instance, for equi-joins, we could use histograms to record, in each histogram bucket, the
number of intervals that correspond to a distinct value of a given attribute. Then, we could
use these statistics to prune unnecessary results. One pitfall of this approach is that an at-
tribute may have a high cardinality domain, which would cause an overhead [37]. To tackle
this problem, we could use approximate statistics [37]. However we aim at returning exact
top-k results. We could also leverage Bloom filters, that allow to have a compact structure
storing interval attributes [95]. However, Bloom filters incur false positives, which would
require several processing iterations, causing an overhead in our Map-Reduce context.

Collaborative Tasks. In our work on monitoring human activity in crowdsourcing,
we focused on micro-tasks that are completed independently by workers. Yet, a number
of tasks require collaboration. For instance, writing a news summary or a Wikipedia
article requires collaboration and organization between workers. Other examples include
generation of subtitles2 [106] or collaborative maps (OpenStreetMap, CrowdMap).

We could extend our investigations on motivation-aware task assignment to collabo-
rative tasks. In this context, task assignment would need to account for the presence of
several workers in forming the most motivated team to complete a task.

Forming motivated teams require to devise a proper model. We need to define a team’s
motivation, that can be seen as a combination of individual and collective motivation. Pre-
vious work [79] identified community identification and social contact as community-based
motivation factors. Although these factors are not team-based, they show the importance
of relations between workers in motivation. In collaborative task assignment, Rahman et
al. [106] modeled affinity between workers to find the most efficient team to complete a
task. Here, affinity is seen as similarity between workers using socio-demographic attributes
such as gender, age or region. For each task, they aim at finding a group that minimizes its
affinity diameter. They also propose to split that group into sub-groups if its critical mass
is exceeded. Rahman et al. also propose approximation algorithms for their problem which
is proven to be NP-Hard. This shows that motivation-aware collaborative task assignment
would probably require to design efficient algorithms to solve hard problems: this is our
second challenge.

To the best of our knowledge, no previous study has investigated motivation-aware task
assignment for collaborative tasks. The work of Rahman and al. [79] is the closest to this

2Also known as “Fan-subbing” https://en.wikipedia.org/w/index.php?title=Fansub&oldid=
766250166.

https://en.wikipedia.org/w/index.php?title=Fansub&oldid=766250166
https://en.wikipedia.org/w/index.php?title=Fansub&oldid=766250166

96 4. Summary and Perspectives

problem. However, they do not include explicitly motivation in their model and they do
not study adaptive task assignment: they do not leverage previous answers.

Motivation Model. In our investigation on monitoring in crowdsourcing, we defined
the expected motivation of a worker as a combination of three main motivation factors:
task diversity, task payment and task relevance. We could investigate the impact of other
motivation factors and adopt a different model.

First, we could study other factors that were identified by Kaufman et al. [79]. For
instance, task autonomy refers to “the degree of freedom that a worker is allowed during
task execution”. Task autonomy is not relevant to micro-tasks that do not allow a high
degree of freedom. However, it could be interesting to study in the context of creative
tasks (e.g. writing an article). Other examples include human capital advancement, that
captures the possibility of a worker to learn or perfect a skill when completing a task. This
may be the case for tasks that require specific knowledge (e.g. text translation task).

Another model developed for commerce search [84] is leveraged in task assignment [55]
to capture the willingness of a worker to complete a task. Specifically, Gao et al [55]
modeled the task acceptance probability that captures how prone a worker is to choose a
task. They focus on adjusting task reward so as to meet deadlines, hence task acceptance
only depends on task reward. We could revisit the original model proposed by Li et al. [84]
and include other task characteristics.

Bibliography

[1] Crowdflower - data for everyone. https://www.crowdflower.com/
data-for-everyone/.

[2] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch Cher-
niack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther
Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik. The design of the
borealis stream processing engine. In CIDR, pages 277–289, 2005.

[3] Sofiane Abbar et al. Real-time recommendation of diverse related articles. In WWW,
pages 1–12, 2013.

[4] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environment.
In EDBT, pages 99–110, 2010.

[5] Foto N. Afrati and Jeffrey D. Ullman. Optimizing multiway joins in a map-reduce
environment. IEEE Trans. Knowl. Data Eng., 23(9):1282–1298, 2011.

[6] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient pat-
tern matching over event streams. In SIGMOD, pages 147–160, 2008.

[7] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

[8] Aris Anagnostopoulos et al. Sampling search-engine results. WWW, 2006.

[9] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das, Ashish Gupta, Haifeng
Jiang, Tianhao Qiu, Alexey Reznichenko, Deomid Ryabkov, Manpreet Singh, and
Shivakumar Venkataraman. Photon: fault-tolerant and scalable joining of continuous
data streams. In SIGMOD, pages 577–588, 2013.

[10] Esther M. Arkin et al. Approximating the maximum quadratic assignment problem.
Inf. Process. Lett., pages 13–16, 2001.

[11] Giorgio Ausiello et al. Approximation preserving reductions. In Complexity and
Approximation. Springer, 1999.

97

https://www.crowdflower.com/data-for-everyone/
https://www.crowdflower.com/data-for-everyone/

98 Bibliography

[12] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.
Models and issues in data stream systems. In PODS, pages 1–16, 2002.

[13] Brian Babcock and Chris Olston. Distributed top-k monitoring. In SIGMOD, pages
28–39. ACM, 2003.

[14] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
r*-tree: An efficient and robust access method for points and rectangles. In SIGMOD,
pages 322–331, 1990.

[15] Benjamin B. Bederson and Alexander J. Quinn. Web workers unite! addressing
challenges of online laborers. In CHI, pages 97–106, 2011.

[16] AS Besicovitch. On a general metric property of summable functions. Journal of the
London Mathematical Society, 1(2):120–128, 1926.

[17] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and
Yuanyuan Tian. A comparison of join algorithms for log processing in mapreduce.
In SIGMOD, pages 975–986, 2010.

[18] Allan Borodin, Hyun Chul Lee, and Yuli Ye. Max-sum diversification, monotone
submodular functions and dynamic updates. In PODS, pages 155–166, 2012.

[19] Rainer E. Burkard et al. Assignment Problems. SIAM, 2009.

[20] K. Selçuk Candan, Jong Wook Kim, Parth Nagarkar, Mithila Nagendra, and Ren-
wei Yu. Rankloud: Scalable multimedia data processing in server clusters. IEEE
MultiMedia, 18(1):64–77, 2011.

[21] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and
Kostas Tzoumas. Apache flinkTM: Stream and batch processing in a single engine.
IEEE Data Eng. Bull., 38(4):28–38, 2015.

[22] J. G. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for
reordering documents and producing summaries. In Research and Development in
Information Retrieval, 1998.

[23] Michael J. Carey and Donald Kossmann. On saying "enough already!" in SQL. In
SIGMOD, pages 219–230, 1997.

[24] Giorgio Carpaneto et al. Algorithms and codes for the assignment problem. Annals
of operations research, pages 191–223, 1988.

[25] Dana Chandler and Adam Kapelner. Breaking monotony with meaning: Motivation
in crowdsourcing markets. CoRR, abs/1210.0962, 2012.

Bibliography 99

[26] Barun Chandra and Magnús M. Halldórsson. Approximation algorithms for disper-
sion problems. J. Algorithms, 38(2):438–465, 2001.

[27] Kevin Chen-Chuan Chang and Seung-won Hwang. Minimal probing: supporting
expensive predicates for top-k queries. In SIGMOD, pages 346–357, 2002.

[28] Olivier Chapelle et al. Intent-based diversification of web search results: metrics and
algorithms. Information Retrieval, pages 572–592, 2011.

[29] Bhupesh Chawda, Himanshu Gupta, Sumit Negi, Tanveer A. Faruquie, L. Venkata
Subramaniam, and Mukesh K. Mohania. Processing interval joins on map-reduce.
In EDBT, pages 463–474, 2014.

[30] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. MONET, 19(2):171–
209, 2014.

[31] Antoine Cornuéjols and Laurent Miclet. Apprentissage artificiel: concepts et algo-
rithmes. Editions Eyrolles, 2011.

[32] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From
data stream to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62,
2012.

[33] Peng Dai, Jeffrey M. Rzeszotarski, Praveen Paritosh, and Ed H. Chi. And now
for something completely different: Improving crowdsourcing workflows with micro-
diversions. In ACM CSCW, pages 628–638, 2015.

[34] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI, pages 137–150, 2004.

[35] Anton Dignös, Michael H. Böhlen, and Johann Gamper. Overlap interval partition
join. In SIGMOD, pages 1459–1470, 2014.

[36] Christos Doulkeridis and Kjetil Nørvåg. On saying "enough already!" in mapreduce.
In Cloud-I, 2012.

[37] Christos Doulkeridis, Akrivi Vlachou, Kjetil Nørvåg, Yannis Kotidis, and Neoklis
Polyzotis. Processing of rank joins in highly distributed systems. In ICDE, pages
606–617, 2012.

[38] Doratha E. Drake and Stefan Hougardy. A simple approximation algorithm for the
weighted matching problem. Inf. Process. Lett., pages 211–213, 2003.

[39] Maciej Drozdowski. Scheduling for Parallel Processing. Computer Communications
and Networks. Springer, 2009.

100 Bibliography

[40] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight match-
ing. J. ACM, 2014.

[41] Didier Dubois, Allel HadjAli, and Henri Prade. Fuzziness and uncertainty in temporal
reasoning. J. UCS, 9(9):1168, 2003.

[42] Khalid El-Arini et al. Turning down the noise in the blogosphere. In SIGKDD, pages
289–298, 2009.

[43] Mohammed Elseidy, Abdallah Elguindy, Aleksandar Vitorovic, and Christoph Koch.
Scalable and adaptive online joins. PVLDB, 7(6):441–452, 2014.

[44] Jost Enderle, Matthias Hampel, and Thomas Seidl. Joining interval data in relational
databases. In SIGMOD, pages 683–694, 2004.

[45] Ronald Fagin. Combining fuzzy information from multiple systems. In PODS, pages
216–226, 1996.

[46] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. In PODS, pages 102–113, 2001.

[47] Ju Fan, Guoliang Li, Beng Chin Ooi, Kian-lee Tan, and Jianhua Feng. icrowd: An
adaptive crowdsourcing framework. In SIGMOD, pages 1015–1030, 2015.

[48] Siamak Faradani, Bjoern Hartmann, and Panagiotis G. Ipeirotis. What’s the right
price? pricing tasks for finishing on time. In AAAI, 2011.

[49] Sándor P. Fekete and Henk Meijer. Maximum dispersion and geometric maximum
weight cliques. CoRR, cs.DS/0310037, 2003.

[50] Thomas A. Feo and Mallek Khellaf. A class of bounded approximation algorithms
for graph partitioning. Networks, pages 181–195, 1990.

[51] Jonathan Finger and Neoklis Polyzotis. Robust and efficient algorithms for rank join
evaluation. In SIGMOD, pages 415–428, 2009.

[52] Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for retrieval
on composite keys. Acta Inf., 4:1–9, 1974.

[53] Ioannis Flouris, Nikos Giatrakos, Antonios Deligiannakis, Minos N. Garofalakis,
Michael Kamp, and Michael Mock. Issues in complex event processing: Status and
prospects in the big data era. Journal of Systems and Software, 127:217–236, 2017.

[54] Dengfeng Gao, Christian S. Jensen, Richard T. Snodgrass, and Michael D. Soo. Join
operations in temporal databases. VLDB J., 14(1):2–29, 2005.

Bibliography 101

[55] Yihan Gao and Aditya G. Parameswaran. Finish them!: Pricing algorithms for
human computation. PVLDB, 7(14):1965–1976, 2014.

[56] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[57] Lukasz Golab and M. Tamer Özsu. Issues in data stream management. SIGMOD
Record, 32(2):5–14, 2003.

[58] Lukasz Golab and M. Tamer Özsu. Processing sliding window multi-joins in contin-
uous queries over data streams. In VLDB, pages 500–511, 2003.

[59] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversi-
fication. In WWW, pages 381–390, 2009.

[60] Xiaohui Gu, Philip S. Yu, and Haixun Wang. Adaptive load diffusion for multiway
windowed stream joins. In ICDE, pages 146–155, 2007.

[61] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
SIGMOD, pages 47–57, 1984.

[62] J. Hackman and G. R. Oldham. Motivation through the design of work: Test of a
theory. Organizational Behavior and Human Performance, 16(22):250–279, 1976.

[63] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elmagarmid. Query processing
of multi-way stream window joins. VLDB J., 17(3):469–488, 2008.

[64] Refael Hassin and Shlomi Rubinstein. An improved approximation algorithm for
the metric maximum clustering problem with given cluster sizes. Inf. Process. Lett.,
98(3):92–95, 2006.

[65] Refael Hassin, Shlomi Rubinstein, and Arie Tamir. Approximation algorithms for
maximum dispersion. Oper. Res. Lett., 21(3):133–137, 1997.

[66] Kenji Hata et al. A glimpse far into the future: Understanding long-term crowd
worker quality. In CSCW, 2017.

[67] Chien-Ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. Adaptive task as-
signment for crowdsourced classification. In ICML, pages 534–542, 2013.

[68] Chien-Ju Ho and Jennifer Wortman Vaughan. Online task assignment in crowd-
sourcing markets. In AAAI, 2012.

[69] John Joseph Horton and Lydia B. Chilton. The labor economics of paid crowdsourc-
ing. In ACM EC, pages 209–218, 2010.

102 Bibliography

[70] Jeff Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.

[71] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Joining ranked inputs in
practice. In VLDB, pages 950–961, 2002.

[72] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting top-k join
queries in relational databases. In VLDB, pages 754–765, 2003.

[73] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k
query processing techniques in relational database systems. ACM Comput. Surv.,
40(4):11:1–11:58, 2008.

[74] Panagiotis G. Ipeirotis. Analyzing the amazon mechanical turk marketplace. ACM
Crossroads, 17(2):16–21, 2010.

[75] Adam Jacobs. The pathologies of big data. Commun. ACM, 52(8):36–44, 2009.

[76] Yuanzhen Ji, Jun Sun, Anisoara Nica, Zbigniew Jerzak, Gregor Hackenbroich, and
Christof Fetzer. Quality-driven disorder handling for m-way sliding window stream
joins. In ICDE, pages 493–504, 2016.

[77] Jaewoo Kang, Jeffrey F. Naughton, and Stratis Viglas. Evaluating window joins over
unbounded streams. In ICDE, pages 341–352, 2003.

[78] Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter M. Fischer, Don-
ald Kossmann, Franz Färber, and Norman May. Timeline index: a unified data
structure for processing queries on temporal data in SAP HANA. In SIGMOD,
pages 1173–1184, 2013.

[79] Nicolas Kaufmann, Thimo Schulze, and Daniel Veit. More than fun and money.
worker motivation in crowdsourcing - A study on mechanical turk. In AMCIS, 2011.

[80] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer,
2004.

[81] Younghoon Kim and Kyuseok Shim. Parallel top-k similarity join algorithms using
mapreduce. In ICDE, pages 510–521, 2012.

[82] Aniket Kittur, Jeffrey V. Nickerson, Michael S. Bernstein, Elizabeth Gerber,
Aaron D. Shaw, John Zimmerman, Matt Lease, and John Horton. The future of
crowd work. In CSCW, pages 1301–1318, 2013.

[83] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kel-
logg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
Twitter heron: Stream processing at scale. In SIGMOD, pages 239–250, 2015.

Bibliography 103

[84] Beibei Li, Anindya Ghose, and Panagiotis G. Ipeirotis. Towards a theory model for
product search. In WWW, pages 327–336, 2011.

[85] Feifei Li, Ke Yi, and Wangchao Le. Top-k queries on temporal data. VLDB J.,
19(5):715–733, 2010.

[86] Ming Li, Murali Mani, Elke A. Rundensteiner, and Tao Lin. Complex event pattern
detection over streams with interval-based temporal semantics. In DEBS, pages 291–
302, 2011.

[87] Qian Lin, Beng Chin Ooi, Zhengkui Wang, and Cui Yu. Scalable distributed stream
join processing. In SIGMOD, pages 811–825, 2015.

[88] Hongjun Lu, Beng Chin Ooi, and Kian-Lee Tan. On spatially partitioned temporal
join. In VLDB, pages 546–557, 1994.

[89] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient processing of k nearest
neighbor joins using mapreduce. PVLDB, 5(10):1016–1027, 2012.

[90] David B. Martin, Benjamin V. Hanrahan, Jacki O’Neill, and Neha Gupta. Being a
turker. In CSCW, pages 224–235, 2014.

[91] Gianmarco De Francisci Morales and Aristides Gionis. Streaming similarity self-join.
PVLDB, 9(10):792–803, 2016.

[92] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Continuous monitor-
ing of top-k queries over sliding windows. In SIGMOD, pages 635–646, 2006.

[93] Viswanath Nagarajan and Maxim Sviridenko. On the maximum quadratic assign-
ment problem. In SODA, pages 516–524, 2009.

[94] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and Jeffrey Scott
Vitter. Supporting incremental join queries on ranked inputs. In VLDB, pages 281–
290, 2001.

[95] Nikos Ntarmos, Ioannis Patlakas, and Peter Triantafillou. Rank join queries in nosql
databases. PVLDB, 7(7):493–504, 2014.

[96] Hans Jürgen Ohlbach. Relations between fuzzy time intervals. In TIME, pages 44–51,
2004.

[97] Alper Okcan and Mirek Riedewald. Processing theta-joins using mapreduce. In
SIGMOD, pages 949–960, 2011.

[98] Zhiyuan Chen others. Addressing diverse user preferences in sql-query-result navi-
gation. In SIGMOD, 2007.

104 Bibliography

[99] Wenceslao Palma, Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. Dhtjoin:
processing continuous join queries using DHT networks. Distributed and Parallel
Databases, 26(2-3):291–317, 2009.

[100] Danila Piatov, Sven Helmer, and Anton Dignös. An interval join optimized for
modern hardware. In ICDE, pages 1098–1109, 2016.

[101] Julien Pilourdault, Sihem Amer-Yahia, Dongwon Lee, and Senjuti Basu Roy.
Motivation-aware task assignment in crowdsourcing. In EDBT, pages 246–257, 2017.

[102] Julien Pilourdault, Sihem Amer-Yahia, Senjuti Basu Roy, and Dongwon Lee. Holistic
motivation-aware task assignment in crowdsourcing. Under Review.

[103] Julien Pilourdault, Vincent Leroy, and Sihem Amer-Yahia. Distributed evaluation of
top-k temporal joins. In SIGMOD, pages 1027–1039, 2016.

[104] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco3 Documen-
tation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2014.

[105] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang,
Lidong Zhou, Yuan Yu, and Zheng Zhang. Timestream: reliable stream computation
in the cloud. In EuroSys, pages 1–14, 2013.

[106] Habibur Rahman, Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-
Yahia, and Gautam Das. Task assignment optimization in collaborative crowdsourc-
ing. In IEEE ICDM, pages 949–954, 2015.

[107] Sekharipuram S Ravi, Daniel J Rosenkrantz, and Giri Kumar Tayi. Heuristic and
special case algorithms for dispersion problems. Operations Research, 42(2):299–310,
1994.

[108] Jakob Rogstadius, Vassilis Kostakos, Aniket Kittur, Boris Smus, Jim Laredo, and
Maja Vukovic. An assessment of intrinsic and extrinsic motivation on task perfor-
mance in crowdsourcing markets. In ICWSM, 2011.

[109] Senjuti Basu Roy, Ioanna Lykourentzou, Saravanan Thirumuruganathan, Sihem
Amer-Yahia, and Gautam Das. Task assignment optimization in knowledge-intensive
crowdsourcing. VLDB J., 24(4):467–491, 2015.

[110] Karl Schnaitter and Neoklis Polyzotis. Evaluating rank joins with optimal cost. In
PODS, pages 43–52, 2008.

[111] Steven Schockaert, Martine De Cock, and Etienne E. Kerre. Fuzzifying allen’s tem-
poral interval relations. IEEE T. Fuzzy Systems, 16(2):517–533, 2008.

Bibliography 105

[112] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter R. Pietzuch. Dis-
tributed complex event processing with query rewriting. In DEBS, 2009.

[113] George Sfakianakis, Ioannis Patlakas, Nikos Ntarmos, and Peter Triantafillou. In-
terval indexing and querying on key-value cloud stores. In ICDE, pages 805–816,
2013.

[114] Aaron D. Shaw, John J. Horton, and Daniel L. Chen. Designing incentives for
inexpert human raters. In CSCW, pages 275–284, 2011.

[115] Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, and Haixun
Wang. A generic framework for top-k pairs and top-k objects queries over sliding
windows. TKDE, 26(6):1349–1366, 2014.

[116] Aleksandrs Slivkins and Jennifer Wortman Vaughan. Online decision making in
crowdsourcing markets: theoretical challenges. SIGecom Exchanges, 12(2):4–23,
2013.

[117] Richard T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer, 1995.

[118] Michael Stonebraker, Daniel J. Abadi, David J. DeWitt, Samuel Madden, Erik Paul-
son, Andrew Pavlo, and Alexander Rasin. Mapreduce and parallel dbmss: friends or
foes? Commun. ACM, 53(1):64–71, 2010.

[119] Michael Stonebraker, Ugur Çetintemel, and Stanley B. Zdonik. The 8 requirements
of real-time stream processing. SIGMOD Record, 34(4):42–47, 2005.

[120] Jens Teubner and René Müller. How soccer players would do stream joins. In
SIGMOD, pages 625–636, 2011.

[121] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthikeyan Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy V. Ryaboy. Storm@twitter. In SIGMOD,
pages 147–156, 2014.

[122] Erik Vee et al. Efficient computation of diverse query results. In ICDE, pages 228–
236, 2008.

[123] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output rate of
multi-way join queries over streaming information sources. In VLDB, pages 285–296,
2003.

[124] Aleksandar Vitorovic, Mohammed Elseidy, Khayyam Guliyev, Khue Vu Minh, Daniel
Espino, Mohammad Dashti, Yannis Klonatos, and Christoph Koch. Squall: Scalable
real-time analytics. PVLDB, 9(13):1553–1556, 2016.

106 Bibliography

[125] Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis. Angle-based space parti-
tioning for efficient parallel skyline computation. In SIGMOD, pages 227–238, 2008.

[126] Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørvåg, and Michalis Vazirgiannis. On
efficient top-k query processing in highly distributed environments. In SIGMOD,
pages 753–764, 2008.

[127] Song Wang and Elke A. Rundensteiner. Scalable stream join processing with ex-
pensive predicates: workload distribution and adaptation by time-slicing. In EDBT,
pages 299–310, 2009.

[128] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event pro-
cessing over streams. In SIGMOD, pages 407–418, 2006.

[129] Minji Wu, Jianliang Xu, Xueyan Tang, and Wang-Chien Lee. Top-k monitoring in
wireless sensor networks. IEEE Transactions on Knowledge and Data Engineering,
19(7), 2007.

[130] Ting Wu, Lei Chen, Pan Hui, Chen Jason Zhang, and Weikai Li. Hear the whole
story: Towards the diversity of opinion in crowdsourcing markets. PVLDB, 8(5):485–
496, 2015.

[131] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Dis-
cretized streams: An efficient and fault-tolerant model for stream processing on large
clusters. In USENIX, 2012.

[132] Donghui Zhang, Vassilis J. Tsotras, and Bernhard Seeger. Efficient temporal join
processing using indices. In ICDE, pages 103–113, 2002.

[133] Haopeng Zhang, Yanlei Diao, and Neil Immerman. Recognizing patterns in streams
with imprecise timestamps. PVLDB, 3(1):244–255, 2010.

[134] Xiaofei Zhang, Lei Chen, and Min Wang. Efficient multi-way theta-join processing
using mapreduce. PVLDB, 5(11):1184–1195, 2012.

[135] Yudian Zheng, Jiannan Wang, Guoliang Li, Reynold Cheng, and Jianhua Feng.
QASCA: A quality-aware task assignment system for crowdsourcing applications.
In SIGMOD, pages 1031–1046, 2015.

[136] Yongluan Zhou, Ying Yan, Feng Yu, and Aoying Zhou. Pmjoin: Optimizing dis-
tributed multi-way stream joins by stream partitioning. In DASFAA, pages 325–341,
2006.

[137] Cai-Nicolas Ziegler et al. Improving recommendation lists through topic diversifica-
tion. In WWW, pages 22–32, 2005.

Appendix A

Motivation-Aware Crowdsourcing:
Experimental Setup

This appendix presents components of our experiments in crowdsourcing. First, we present
tasks datasets that are used in both synthetic and live experiments to evaluate our algo-
rithms and assignment strategies. Second, we developed a platform to enable adaptive
crowdsourcing and motivation-aware task assignment. We present the workflow on this
platform and how workers are recruited.

A.1 Tasks Datasets

Tasks for Live Experiments We employ a first set of tasks that we publish on our
platform: workers are paid to complete these tasks. We use a set of 158, 018 micro-tasks
released by Crowdflower [1]. It includes 22 different kinds of tasks, featuring tweet clas-
sification, searching information on the web, transcription of images, sentiment analysis,
entity resolution or extracting information from news. Each different kind of task is as-
signed a set of keywords that best describe its content and a reward, ranging from $0.01

to $0.12. Considered tasks are micro-tasks (they take from 5s to 60s to be completed,
depending on how well a worker knows its instructions). We set reward proportional to
the expected completion time.

Task for Synthetic Experiments We use real tasks for experiments with synthetic
workers. We crawled 152, 221 task groups from Amazon Mechanical Turk (AMT). Each
task group contains id, title, reward, description, requester name, and keywords describing
the metadata of all tasks in that group. As we vary the number of task groups and the
number of tasks per group, we have #task groups×#tasks per task group = |T i| tasks as
input to each experiment.

107

108 A. Motivation-Aware Crowdsourcing: Experimental Setup

Get w’sNew w Display T i
w

Complete
keywords

T i
w

Ita

Assignment Iteration Required ?

a task t

Notify
new w

Assignment Service
Notify t
completed

by w

Hta

true

Figure A.1: GACS crowdsourcing platorm - Workflow

A.2 Crowdsourcing Platform

To achieve adaptability, we develop a new platform, GACS (Grenoble Adaptive Crowd
Sourcing), where workers are hired from an external source, AMT in our case. Figure A.1
illustrates a work session within GACS for a given worker w. First, we ask a worker to
choose a minimum number of keywords to build her keyword vector. Then, we display the
first set of tasks T i

w assigned to w. At each iteration, w is shown a new set of tasks using
one the strategies that we investigate in the variants of motivation-aware task assignment
Ita or Hta.

We design an assignment service that assigns task to a worker only if necessary. When
a new worker arrives, we notify the assignment service that assigns a new set of tasks T i

w to
w. Each time w completes a task, the assignment service is notified. This service monitors
(i) the number of completed tasks for each worker and (ii) the overall number of completed
tasks. It decides if a new assignment iteration must occur.

This decision depends on the problem that is considered. For Ita, where tasks are
assigned to workers individually, a new assignment iteration is performed if the worker
has completed at least m tasks (e.g. 5). For Hta, an additional condition is used: an
iteration occurs when at least M tasks are completed overall since the previous iteration.
Therefore, an iteration may occur every time M are completed, and concerns only workers
who completed at least m tasks. Our rationale is: (i) to have a stable system, that does
not re-assign tasks to workers too frequently and (ii) to get sufficient input to accurately
estimate αi

w or βi
w. The additional condition in Hta allows to increase the probability to

assign tasks to several workers simultaneously (i.e. |W i| > 1), which enables holistic task
assignment.

The assignment service also manages the set of tasks available for assignment. For
instance, when a worker is assigned a task t at iteration i but she does not complete
it during this iteration, the service adds t to the set of available tasks T i+1

w in the next
iteration.

A.2. Crowdsourcing Platform 109

Worker Recruitment To recruit workers on our platform, we publish HITs on Amazon
Mechanical Turk (AMT) to recruit workers. Each HIT corresponds to a work session on
our platform. When a worker accepts a HIT, she is asked to visit our web application. On
our platform, she completes multiple tasks. When she terminates her work session, she get
a verification code. Then, she pastes the code on AMT and submit the HIT for payment.
Each HIT may be submitted by at most one worker. We pay a worker using (i) the HIT
reward, that is given if a worker completed at least 1 task (on AMT, we “accept” her HIT)
and (ii) a HIT bonus, that is equivalent to the total reward of the tasks she completed on
our platform.

110 A. Motivation-Aware Crowdsourcing: Experimental Setup

Appendix B

Proofs for Hta

B.1 Proof of Equation 3.17
We aim to show: 

w∈Wi

motiv(T i
w, w) =


k,l∈1,...,|T i|

k ̸=l

aπ(k),π(l)bk,l +


k∈1,...,|T i|

ck,π(k)

First, we have:


k,l∈1,...,|T i|

k ̸=l

aπ(k),π(l)bk,l

=


π(k),π(l)∈
J1,XmaxK

aπ(k),π(l)bk,l +


π(k),π(l)∈
JXmax+1,2XmaxK

aπ(k),π(l)bk,l

+ . . .+


π(k),π(l)∈
J(|Wi|−1)Xmax,|Wi|XmaxK

aπ(k),π(l)bk,l (B.1)

=


π(k),π(l)∈
J1,XmaxK

αi
w1
d(tk, tl) +


π(k),π(l)∈

JXmax+1,2XmaxK

αi
w2
d(tk, tl)

+ . . .+


π(k),π(l)∈
J(|Wi|−1)Xmax,|Wi|XmaxK

αi
w|Wi|d(tk, tl)

= 2


tk,tl∈T i
w1

k>l

αi
w1
d(tk, tl) + 2


tk,tl∈T i

w2
k>l

αi
w2
d(tk, tl)

+ . . .+ 2


tk,tl∈T i
w|Wi|

k>l

αi
w|Wi|

d(tk, tl) (B.2)

111

112 B. Proofs for Hta

On line B.1, we decompose the sum on each sub-matrix in A. Cases that are ignored return
0. On line B.2, we use the definition of each T i

w from equation 3.16. Additionally,


k∈1,...,|T i|

ci,π(k) =

π(k)∈

J1,XmaxK

ck,π(k) +

π(k)∈

JXmax+1,2XmaxK

ck,π(k)

+ . . .+

π(k)∈

J(|Wi|−1)Xmax,|Wi|XmaxK

ck,π(k) (B.3)

=


tk∈T i
w1

βi
w1

rel(w1, tk)(Xmax − 1)

+


tk∈T i
w2

βi
w2

rel(w2, tk)(Xmax − 1)

+ . . .+


tk∈T i
w|Wi|

βi
w|Wi|

rel(w|Wi|, tk)(Xmax − 1) (B.4)

Summing B.2 and B.4, we obtain Equation 3.17.

B.2 Proof of Theorem 5

We adapt the proof of Arkin et al. [10]. First, we show that the value of the optimal
solution for Hta is less than 4 times the solution value for the auxiliary problem Lsap.

Let MB be a maximum matching in B. Let MB = {{tk, tl} /∈ MB, ∃tk′s.t.{tk, tk′} ∈
MB,∃tl′s.t.{tl, tl′} ∈MB}. Since MB is a maximum matching, we have

∀tk, tl ∈MB, d(tk, tl) ≤ d(tk, tk′) + d(tl, tl′) (B.5)

Let tm be the task that is not incident to any edge in MB (there is at most such one, when
|T i| is odd). Let E(tm) the set of edges incident to tm. Since MB is a maximum matching,
we necessarily have:

∀{tn, tn′} ∈MB, d(tm, tn) ≤ d(tn, tn′) ∧ d(tm, tn′) ≤ d(tn, tn′) (B.6)

Both Equations B.5 and B.6 also hold if MB is a greedy matching [10]. Let Y = {1, . . . , |T i|}
and π∗ be the permutation of Y associated to the optimal solution hta* of Hta. We have:

hta* =

k,l∈Y
k ̸=l

aπ∗(k),π∗(l)bk,l +

k∈Y

ck,π∗(k) (B.7)

B.2. Proof of Theorem 5 113

We decompose the first member of the sum:
k,l∈Y
k ̸=l

aπ∗(k),π∗(l)d(tk, tl)

=

k,l∈Y,

{tk,tl}∈MB

aπ∗(k),π∗(l)d(tk, tl) +

k,l∈Y,

{tk,tl}∈MB

aπ∗(k),π∗(l)d(tk, tl)

+

k,l∈Y,

{tk,tl}∈E(tm)

aπ∗(k),π∗(l)d(tk, tl) (B.8)

Now, 
k,l∈Y,

{tk,tl}∈MB

aπ∗(k),π∗(l)d(tk, tl)

≤

k,l∈Y,

{tk,tl}∈MB

aπ∗(k),π∗(l)(d(tk, tk′) + d(tl, tl′)) (B.9)

where {tk, t′k} ∈MB and {tl, t′l} ∈MB (using Equation B.5). Additionally,
k,l∈Y,

{tk,tl}∈E(tm)

aπ∗(k),π∗(l)d(tk, tl) ≤

k,l∈Y,

{tk,tl}∈E(tm)

aπ∗(k),π∗(l)d(tn, t
′
n) (B.10)

where {tn, t′n} is the edge in MB incident to {tk, tl} ∈MB (using Equation B.6). Combining
Equations B.9 and B.10:

k,l∈Y
k ̸=l

aπ∗(k),π∗(l)d(tk, tl)

≤ 2

k,l∈Y,

{tk,tl}∈MB

aπ∗(k),π∗(l)d(tk, tl) +

k,l∈Y,

{tk,tl}∈MB

aπ∗(k),π∗(l)(d(tk, tk′) + d(tl, tl′))

+

k,l∈Y,

{tk,tl}∈E(tm)

aπ∗(k),π∗(l)d(tn, t
′
n)

=

k,l∈Y,

{tk,tl}∈MB

d(tk, tl)(degAπ∗(k) + degAπ∗(l)) (B.11)

Using Equation B.11 in Equation B.7:

hta* ≤

k,l∈Y,

{tk,tl}∈MB

d(tk, tl)(degAπ∗(k) + degAπ∗(l)) + 2

k∈Y

ck,π∗(k)

= 2

k∈Y

fk,π∗(k) (B.12)

114 B. Proofs for Hta

Let π′∗ the optimal solution of the Lsap instance (our auxiliary problem) and π′ the solution
of GreedyMatching on this instance. Let lsap-sol the value of the solution π′ for Lsap.
We have:

lsap-sol =

k∈Y

fk,π′(k) ≥
1

2


k∈Y

fk,π′∗(k) (B.13)

since GreedyMatching is a 1
2
-approximation for this Lsap instance. Therefore, we have

hta* ≤ 2

k∈Y

fk,π∗(k)

≤ 4

k∈Y

fk,π′(k) = 4 ∗ lsap-sol (B.14)

We now prove the second part of the proof. Let hta-gre-sol be the value of the solution
returned by Hta-Gre for Hta. Let π the permutation associated to this solution. We
have:

hta-gre-sol =

k,l∈Y
k ̸=l

aπ(k),π(l)bk,l +

k∈Y

ck,π(k)

=

k,l∈Y,

{tk,tl}∈MB

aπ(k),π(l)d(tk, tl) +

k,l∈Y,

{tk,tl}∈MB

aπ(k),π(l)d(tk, tl)

+

k,l∈Y,

{tk,tl}∈E(tm)

aπ(k),π(l)d(tk, tl) +

k∈Y

ck,π(k) (B.15)

In Lines 12-16, Hta-Gre sets (π(k), π(l)) to (π′(k), π′(l)) or to (π′(l), π′(k)) for each
{tk, tl} ∈ MB. Each case occurs with probability 1

2
. In Equation B.15, aπ(k),π(l) =

aπ′(k),π′(l) (A is symmetric and tk, tl ∈ MB). Therefore, the expected contribution of pair
(k, l) ∈ Y2, {tk, tl} ∈ MB is aπ′(k),π′(l) ∗ d(tk, tl). In Equation B.15, each d(tk, tl) is multi-
plied by aπ′(k),π′(l) or aπ′(k′),π′(l) or aπ′(k),π′(l′) or aπ′(k′),π′(l′) where {tk, tl} ∈ MB, {tk, tk′} ∈
MB, {tl, tl′} ∈ MB. Equivalently, aπ′(k),π′(l) is multiplied by d(tk, tl) or d(tk′ , tl) or d(tk, tl′)

or d(tk′ , tl′), each case with probability 1
2
· 1
2
= 1

4
. Thus, the expected contribution of pair

(k, l) ∈ Y2, {tk, tl} ∈MB:

1

4
aπ′(k),π′(l)(d(tk, tl) + d(tk′ , tl) + d(tk, tl′) + d(tk′ , tl′))

≥ 1

4
aπ′(k),π′(l) × 2max{d(tk, tk′), d(tl, tl′)}

≥ 1

4
aπ′(k),π′(l)(d(tk, tk′) + d(tl, tl′)) (B.16)

In Equation B.15, each aπ′(k),π′(l) where k = m or l = m (suppose k = m) is multiplied by
d(tm, tl) or d(tm, t′l) where {tl, tl′} ∈MB, each with probability 1

2
. Therefore, the expected

B.2. Proof of Theorem 5 115

contribution of pair (k, l) ∈ Y2, {tk, tl} ∈ E(tm) is:

1

2
aπ′(k),π′(l)(d(tm, tl) + d(tm, t

′
l)) ≥

1

2
aπ′(k),π′(l) ∗ d(tl, tl′) (B.17)

since d() satisfies the triangle inequality. In B.15, the expected contribution of ck,π(k) is at
least 1

2
ck,π′(k) since π(k) = π′(k) with probability 1

2
. If we combine the previous propositions

in Equation B.15, we obtain:

hta-gre-sol ≥ 1

4


k,l∈Y,

{tk,tl}∈MB

d(tk, tl)(degAπ′(k) + degAπ′(l)) +
1

2


k∈Y

ck,π′(k)

=
1

2


k∈Y

fk,π′(k) (B.18)

Combining Equations B.14 and B.18, we prove:

hta-gre-sol ≥ 1

2
lsap-sol ≥ 1

8
hta*

	Introduction
	Monitoring Temporal Data
	Temporal Data and Temporal Joins
	Top-k Temporal Joins: Problem and Challenges
	Scope: Batch and Stream Processing

	Monitoring in Crowdsourcing
	Crowdsourcing and Adaptive Task Assignment
	Motivation-Aware Task Assignment: Problem and Challenges
	Scope: Individual and Holistic Task Assignment

	Overview of this thesis and contributions
	Applications

	Monitoring Temporal Data
	Our Proposal: Top-k Temporal Joins
	Top-k Temporal Joins: Challenges
	Overview of our Contributions

	Temporal Predicates
	Top-k Temporal Joins: Batch Processing
	Data Model and Problem for Batch Temporal Joins
	Our Approach for Processing Batch Temporal Joins
	Experiments
	Related Work on Batch Temporal Joins

	Top-k Temporal Joins: Stream Processing
	Data Model and Problem for Stream Temporal Joins
	Preliminary Study for Processing Stream Temporal Joins
	Related Work on Stream Temporal Joins

	Conclusion

	Motivation-Aware Task Assignment
	Our Proposal: Motivation-Aware Task Assignment
	Motivation-Aware Task Assignment: Challenges
	Overview of our Contributions

	Data Model and Motivation Factors
	Data Model for Tasks and Workers
	Adaptive Task Assignment Model
	Motivation Factors
	Capturing Motivation

	Individual Motivation-Aware Task Assignment
	Individual Task Assignment Problem (Ita)
	Our Approach for Ita
	Experiments

	Holistic Motivation-Aware Task Assignment
	Holistic Task Assignment Problem (Hta)
	Our Approach for Hta
	Experiments

	Ita and Hta Experiments: Discussion
	Related Work on Motivation-Aware Task Assignment
	Conclusion

	Summary and Perspectives
	Summary
	Perspectives
	Optimizations
	Platforms
	Semantics

	Bibliography
	Motivation-Aware Crowdsourcing: Experimental Setup
	Tasks Datasets
	Crowdsourcing Platform

	Proofs for Hta
	Proof of Equation 3.17
	Proof of Theorem 5

