
AlpacaFarm: A Simulation Framework for
Methods that Learn from Human Feedback

Yann Dubois∗
Stanford

Xuechen Li∗
Stanford

Rohan Taori∗
Stanford

Tianyi Zhang∗
Stanford

Ishaan Gulrajani
Stanford

Jimmy Ba
University of Toronto

Carlos Guestrin
Stanford

Percy Liang
Stanford

Tatsunori B. Hashimoto
Stanford

Abstract

Large language models (LLMs) such as ChatGPT have seen widespread adoption due to
their ability to follow user instructions well. Developing these LLMs involves a complex
yet poorly understood workflow requiring training with human feedback. Replicating and
understanding this instruction-following process faces three major challenges: the high cost
of data collection, the lack of trustworthy evaluation, and the absence of reference method
implementations. We address these challenges with AlpacaFarm, a simulator that enables
research and development for learning from feedback at a low cost. First, we design LLM
prompts to simulate human feedback that are 45x cheaper than crowdworkers and display
high agreement with humans. Second, we propose an automatic evaluation and validate
it against human instructions obtained on real-world interactions. Third, we contribute
reference implementations for several methods (PPO, best-of-n, expert iteration, and more)
that learn from pairwise feedback. Finally, as an end-to-end validation of AlpacaFarm, we
train and evaluate eleven models on 10k pairs of real human feedback and show that the
rankings of models trained in AlpacaFarm match the rankings of models trained on human
data. As a demonstration of the research possible in AlpacaFarm, we find that methods
that use a reward model can substantially improve over supervised fine-tuning and that our
reference PPO implementation leads to a +10% improvement in win-rate against Davinci003.
We release all components of AlpacaFarm at https://github.com/tatsu-lab/alpaca_farm.

1 Introduction

Large language models (LLMs) [9, 12, 43] have demonstrated unprecedented capabilities in following diverse
and open-ended instructions [44, 5, 35]. These achievements have often been attributed to the fine-tuning
of pretrained LLMs using human feedback, but this process remains poorly understood due to the lack of
published information on the training methods from LLM vendors. For example, it was recently revealed that
only the Davinci003 model in the instruct series of OpenAI models used reinforcement learning (RL) with the
PPO algorithm [42], leading some to question the importance of RL in the training process. Understanding and
improving these methods requires open and transparent replications of the training process, but this remains
challenging due to the cost and complexity associated with methods that learn from human feedback.

Our goal is to facilitate research and development on instruction following models and methods that learn from
human feedback. We identify three main challenges: the high cost of data annotation, the lack of automated
evaluation for model development, and the absence of validated implementations of existing methods. To
address these three challenges, we introduce AlpacaFarm (Figure 1), a simulation sandbox that enables
experimentation at a low cost. Using AlpacaFarm, researchers can rapidly iterate on method development in
simulation and transfer these insights to build high-performance systems with actual human feedback.

For the first challenge of data annotation costs, AlpacaFarm simulates human annotators with API LLMs that
are faster and lower cost. To collect simulated feedback data, we design prompts for API LLMs (e.g. GPT-4)
that enable us to simulate human pairwise comparisons at a cost that is 45x cheaper than crowdworkers, and
tune these prompts to faithfully capture many aspects of human annotators, such as their quality judgments,
inter-annotator variability, and stylistic preferences.

∗Equal contribution; random ordering. Contact {yanndubs, lxuechen, rtaori, tz58}@stanford.edu.

1

https://github.com/tatsu-lab/alpaca_farm/

Learning from
Feedback

API LLMs provide pairwise  
feedback for model samples

Automatic 
Evaluation

Dev

Model

Baseline

Model

API

LLMs

Feedback Source Experiment Cost Iteration time Reproducible

Alpaca Farm $70 Hours ✅

Human Feedback $3,150 Days ❌

Propose new methods
Train best method on

human feedbackTrain methods in simulation

Alpaca Farm

API LLMs compute 
win-rate against baseline

Compare to 
Reference Methods

1. PPO
2. Best-of-n
3. Expert Iteration

Figure 1: AlpacaFarm is a simulation sandbox that enables fast and cheap experimentation on methods that
learn from human feedback. It simulates human feedback with API LLMs, provides a validated evaluation
protocol, and offers a suite of reference method implementations. Researchers can rapidly iterate on model
development and transfer their methods to training on human data to maximize performance.

For the second challenge of automated evaluation, we design an automatic evaluation protocol that attempts to
quantify system performance on simple but realistic real-world human instructions. Improving evaluations
of open-ended instruction following has been challenging due to the cost and non-replicability of human
evaluation, the lack of real human interaction data, and the diversity of natural human instructions. To
address this, we use instructions from user interactions (Alpaca Demo [62]) as a reference for simple but
real human interactions and show that we can combine existing public evaluation datasets to mimic this
evaluation. Quantitative evaluations of system rankings on our evaluation data show a high correlation with
system rankings on the Alpaca Demo instructions.

For the third challenge of missing reference implementations, we implement and test several popular learning
algorithms including PPO [55], expert iteration [2], and Quark [37], and release reference implementations.
We show that, among the methods we studied, PPO with a surrogate reward model is the most effective
training-time method in our leaderboard, improving the win-rate against Davinci003 of an instruction fine-
tuned LLaMA 7B model from 44% to 55%. Other baselines that have been validated on simpler tasks fall short
in comparison, highlighting the importance of testing these algorithms in a real instruction-following setting.

As an end-to-end evaluation of the AlpacaFarm, we compare eleven methods trained and evaluated in
AlpacaFarm with the same methods trained and evaluated on actual human feedback. We show that the method
rankings obtained from developing on AlpacaFarm closely agree with the method rankings obtained from
training on actual human data (Spearman correlation of 0.98) and that the best method in AlpacaFarm leads to
substantial gains with human feedback. Finally, we find that AlpacaFarm can replicate qualitative behaviors
of human feedback such as over-optimization of the reward model, suggesting that AlpacaFarm serves as an
effective way for researchers to rapidly study and develop methods that learn from human feedback.

2 Background & problem statement

To begin, we introduce the instruction following task and the pairwise-comparison-based human feedback
setting that we study. With this background, we formally define the goals of developing a low-cost simulator
for studying instruction following and learning from human feedback.

2

2.1 Learning to follow instructions

In the instruction following task [44, 6, 68, 35], we are presented with user instructions x ∈ X (e.g. “Tell
me something about Alpacas”), and our goal is to develop a model pθ that generates high-quality responses
y ∼ pθ(y | x) as judged by an unobserved human reward function R : X × Y → R.

While there are a rich set of methods that learn from human feedback to directly optimize R (see Section 6),
in this work we focus on the setting of learning from pairwise feedback (LPF) due to its central role in
recent instruction-following LLMs [44]. The starting point of this process is a model that is fine-tuned on
instruction-following demonstrations (x, y), which we denote as pSFT

θ (y | x). The LPF process then involves
taking pairs of samples from pSFT

θ , querying humans for which sample within each pair is better, and learning
from this pairwise feedback. Since all methods start from the SFT base, we use pθ for notational simplicity.

Learning from pairwise feedback (LPF). More formally, we define the pairwise feedback dataset as
Dpairwise = {(x(j), y

(j)
0 , y

(j)
1 , z(j))}j . In this notation, a human annotator rates two candidate responses

y0, y1 ∼ pθ(y | x) for the instruction x. These binary ratings z ∈ {0, 1} are assumed to be generated
according to their unobserved reward R and z indicates a (potentially stochastic) comparison for the better
response yz , where R(x, yz) > R(x, y1−z).

Many algorithms have been proposed to learn on Dpairwise. Some algorithms like RLHF [15, 44] learn a
surrogate reward function as the learning signal and some operate more directly on Dpairwise. We defer the
discussion of different learning algorithms to Section 3.4.

Pairwise evaluation. Once instruction-following models are trained, researchers need to evaluate these
models. One common approach for evaluating models is pairwise model evaluation [14, 19, 7], which performs
pairwise comparisons on outputs generated by the model pθ and a reference model pref. Concretely, we collect
pairwise preference for two models ({(x(j), y

(j)
θ , y

(j)
ref , z

(j))}j), which is aggregated by computing the average
win-rate – the percentage of times pθ is preferred to pref. Researchers can then compare LPF models by their
win-rates against the same reference model.

2.2 Problem statement

The goal of AlpacaFarm is to provide three key components that enable rapid research and development of
instruction following models: low-cost pairwise feedback generators, automated evaluations for methods
development, and reference implementations for comparison and modification. With these three components,
researchers can develop new methods in simulation and transfer these insights to build high-performance
systems on actual human feedback.

For pairwise feedback, we substitute human preference judgements zhuman ∼ phuman(z | x, y0, y1) with a
simulated preference zsim ∼ psim(z | x, y0, y1) using API LLMs. Our goal is to construct a psim that is both
low-cost and faithfully captures different aspects of human preference feedback, such as quality judgments,
inter-annotator agreement rates, and stylistic preferences.

For evaluations, we evaluate system outputs using the pairwise preference simulator and identify evaluation
datasets that reflect natural human-LLM interactions. The goal for our evaluations is to ensure that system
rankings on the new evaluation dataset closely match both human rankings and rankings on instructions from
real usage of the Alpaca Demo.

For reference methods, we develop and evaluate six LPF methods. Our goal will be to provide simple and
working implementations that provide substantial improvements on both simulated and human feedback data.
This will allow researchers to build upon and compare to competitive baselines in a complex instruction-
following environment.

AlpacaFarm combines these three components into a simulation framework for learning from pairwise
feedback. We evaluate the complete system by an end-to-end workflow of developing methods in simulation
and transferring the insights to the real world.

Concretely, we will run each method M on the simulated preferences (called Msim) and evaluate with simulated
rankings psim. In parallel, we will run M on human preferences (called Mhuman) and evaluate with human
rankings phuman. We consider AlpacaFarm to be successful if the simulated method rankings correlate well
with the human method rankings. The rest of this work will present the details of the pairwise feedback and
evaluation design (Section 3), evaluate these designs (Section 4), and analyze the different reference methods
we implemented in the AlpacaFarm (Section 5).

3

3 Constructing the AlpacaFarm

In this section, we detail how we construct the AlpacaFarm. In Section 4, we then validate our design choices
by comparing the LPF workflow with human feedback and evaluation.

3.1 Instruction following data

Before defining the details of how we simulate pairwise feedback, we must first specify a large and diverse set
of instructions x upon which we can build the rest of AlpacaFarm. We opt to use the Alpaca data [62] as a
starting point due to its large size (52k (x, y) examples) and the non-trivial instruction following capabilities
of models trained on this data.

We repurpose the Alpaca data into splits suitable for learning from human feedback methods by following a
similar data splitting ratio as [44]. We created four splits (42k in total), leaving 10k for the future:

• Supervised finetuning (SFT) split: 10k data for fine-tuning the base instruction-following LLM used
in subsequent steps.

• Pairwise preference (PREF) split: 10k instructions on which we will collect pairwise feedback data.
• Unlabeled split: 20k unlabeled instructions used in algorithms such as PPO.
• Validation split: 2k data for development and tuning.

3.2 Designing simulated pairwise preference psim

Equipped with the Alpaca instruction data, we now describe the design of our simulated annotator for pairwise
preferences. Our core proposal is to design the simulator psim(z | x, y0, y1) by prompting OpenAI API LLMs.
While using LLMs as a proxy for annotators has become increasingly popular [14, 34], using LLMs as part of
a simulation environment poses major additional challenges. Our simulated preferences psim must not only
have a high agreement with human preferences phuman, it must also capture other qualitative aspects of human
feedback such as inter- and intra-annotator inconsistencies. Intuitively, the noise and variability in pairwise
feedback are key parts of the challenge in the LPF problem and we find that ignoring these factors leads to a
simulator that diverges substantially from real-world behavior (Section 4.3).

Basic GPT-4 prompt design. To start with, we design prompts by providing a guideline of appropriate
responses, feeding in-context examples, and leveraging batch generation to save on costs. As a first baseline,
we query GPT-4 with a single prompt (denoted as pGPT-4

sim) and we find pGPT-4
sim has a high agreement rate with

human annotators (65%; see results in Section 4.3). However, we find that this simple baseline of pGPT-4
sim

fails to capture the variability in human annotation and can lead to qualitatively different results for method
development, especially for reward over-optimization (Section 4.3).

Simulating human variability. To more completely emulate human annotators, we modify the basic
simulated annotator design to capture annotator variability in two ways. First, we emulate inter-annotator
variability in the simulated pairwise preference psim by mimicking a pool of annotators. We design different
annotators by querying different API LLMs and varying the prompts with different formats, batch sizes, and
in-context examples. In the end, we created 13 simulated annotators which we describe fully in Appendix C.
Second, we emulate intra-annotator variability by directly injecting random noise and flipping the simulated
preference 25% of the time.

With these ingredients, we come up with a simulated preference pann
sim that meets our requirement of agreement

and variability. Overall, annotating 1000 outputs using simulated preference only costs $6, which is 50x
cheaper than human annotation. In Section 4, we collect actual human preference and quantitatively verify the
agreement and variability of our simulated preference.

3.3 Designing an automatic evaluation

For researchers to develop LPF methods in the AlpacaFarm, we want to support them with an automatic
evaluation so they can quickly iterate while reliably comparing methods. To replace the usual human evaluation,
there are two challenges. First, how do we quantify the quality of the output of different models? Second,
what instructions can we use that are representative of human interactions?

Evaluation protocol. To quantify the quality of an LLM pθ, we measure the win-rate of that LLM against
a reference model, i.e, the expected number of times that the output from pθ is preferred to the output of a

4

Discuss the causes of the Great Depression
Make a list of desirable Skills for software engineers to add to LinkedIn.
Are there any free SAST tools out there?
I’m trying to teach myself to have nicer handwriting. Can you help?
What if Turing had not cracked the Enigma code during World War II?
Take MLK speech “I had a dream” but turn it into a top 100 rap song
What are some toys I can buy my kids for imaginative play?
Hi, I have a question about MFCC (mel frequency cepstral coefficients). Are they
the same thing as a MEL-spectogram, or is there a difference?

Table 1: Example instructions in AlpacaFarm’s evaluation data.

write
give

make

create

exp
lain

pr
ov
id
e

a
n
s
w
e
r

im
p
le
m
e
n
t

r
e
w
r
it
e

tell

c
h
o
o
s
e

d
e
s
c
rib
e

d
e
s
ig
n

find

have

list

suggest

tak
e

use
b
u
ild

Figure 2: Root verb distribu-
tion of the eval instructions.

reference model pref on the same instruction x. The benefits of using simulated win-rates are that it provides
a metric that is easy to understand, is comparable across methods conditioned on a single reference model,
and can reuse the routine we built for pairwise feedback. We use the 13 simulated annotators described in
Section 3.2 without injecting the additional noise (as adding uniform noise does not change model rankings)
and denote this preference simulator as peval

sim . For the reference model, we use Davinci003 as it is a well-studied
system that performs similarly to the models we fine-tune.

Evaluation data. Instruction following requires diverse coverage over realistic interactions. To build an
appropriate evaluation protocol, we combine several open-source evaluation datasets and use real-world
interactions with a demo instruction-following LM (Alpaca Demo [62]) as guidance for constructing our data
combination. Due to privacy concerns, we do not directly release the demo data and opt to use it to guide how
we combine existing open evaluation datasets.

Our final evaluation dataset consists of 805 instructions, which includes 252 instructions from the self-instruct
evaluation set [68], 188 from the Open Assistant (OASST) evaluation, 129 from the helpful evaluation released
by Anthropic [6], 80 from Vicuna evaluation [14], and 156 from Koala evaluation [19]. In Table 1 and Figure 2,
we show example instructions from our evaluation dataset and their root verb distribution, which shows the
diverse coverage of our evaluation data. We find that aggregating across datasets is important for automatic
evaluation to match real-world interactions, as discussed in Section 4.4.

3.4 Reference methods in AlpacaFarm

Finally, AlpacaFarm defines a collection of validated LPF methods for instruction following. We leave a more
detailed methods description to Appendix A and provide a brief overview here. In all LPF methods that follow,
we begin by first performing an initial fine-tuning step on supervised data of instructions and outputs.

We begin by describing two simple baselines that directly operate on pairwise feedback.

• Binary FeedME. Binary FeedME [42] continues supervised fine-tuning on the preferred output in
each pairwise comparison.

• Binary reward conditioning. Reward conditioning [25, 32, 27] is a simple scheme that incorporates
learning from negative (non-preferred) examples; a token denoting whether the output was preferred
is prepended before fine-tuning, and the positive token is used to condition at inference time.

Many LPF methods do not directly operate on pairwise feedback data, but instead first construct a surrogate
reward model by fine-tuning a classifier from the SFT base using pairwise feedback. The following LPF
methods maximize the continuous-valued reward defined by the logits of this classifier.

• Best-of-n sampling. Best-of-n (or re-ranking) [60, 5, 20, 8] is a simple but effective inference-time
method that draws n i.i.d. responses from the SFT model and returns the response with the highest
surrogate reward.

• Expert iteration. Expert iteration [2, 57, 67] is the natural training-time extension of best-of-n: it
first generates according to best-of-n on new instructions and then fine-tunes on the best outputs.

• Proximal Policy Optimization (PPO). PPO [23, 55] is a popular reinforcement learning algorithm
that maximizes surrogate reward, subject to a KL penalty keeping parameters near SFT initialization.

• Quark. We use the top-quantile variant of Quark [37] which bins sequences by reward and trains on
the best bin, along with adding KL and entropy regularization.

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Simulated Win-rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Hu
m

an
 W

in
-ra

te
R2 = 0.87
Spearman Correlation: 0.98

Figure 3: The ranking of methods trained and
evaluated in AlpacaFarm matches that of meth-
ods trained and evaluated in the human-based
pipeline. Each point represents one method
M (e.g. PPO). The x-axis shows the simu-
lated evaluation (win-rates measured by peval

sim)
on methods trained in simulation Msim. The
y-axis shows human evaluation (win-rates mea-
sured by phuman) on methods trained with hu-
man feedback Mhuman.

4 Validating the AlpacaFarm simulator

With the simulator and methods defined, we can now evaluate AlpacaFarm. As our main result, in Section 4.2
we analyze the correlation between the final rankings of methods in both the simulated LPF workflow and
human-based LPF. Afterward, we will analyze the detailed design choices within the simulator by identifying
whether our pairwise feedback accurately mimics human pairwise feedback (Section 4.3) and whether rankings
on our evaluation data match rankings on the Alpaca Demo data (Section 4.4).

4.1 Experimental details

Models. As a baseline and starting point for LPF methods, we fine-tuned LLaMA 7B on the 10k SFT split.
We take SFT 10k to be the starting point for all LPF methods and collect the simulated preference pann

sim and
human preference phuman from SFT 10k’s outputs (with temp=1.0) on the 10k instruction PREF split.

Then, for each of the six reference LPF methods M :
• We trained and tuned M on simulated preferences pann

sim, evaluating the resulting model Msim against
the Davinci003 reference with the simulated evaluator peval

sim .
• We trained a few models M on human preferences across hyperparameter ranges identified in

simulation, evaluating the resulting model Mhuman against Davinci003 with humans phuman.

In addition to the six methods, we also evaluate existing standard instruction following and base models:
GPT-4 (gpt-4-0314), ChatGPT (gpt-3.5-turbo-0301), Davinci001 (text-davinci-001), LLaMA 7B [65], and
Alpaca 7B [62]. Alpaca 7B is a LLaMA 7B model finetuned on the concatenation of all data splits, denoted
SFT 52k. For these models, we measure both the simulated win-rate peval

sim and human win-rate phuman.

At inference time, for all systems except best-of-n, we sample with temp=0.7 and set the maximum number
of tokens to be 300. For best-of-n sampling, we found a higher temperature to be helpful in encouraging output
diversity, and so we rerank samples from SFT 10k with temp=1.0. We provide more thorough experimental
details and hyperparameters for all methods in Appendix B.

Human annotation. We collected reference human annotation by showing crowdworkers two potential
outputs y0 or y1 for a given instruction x and asked them to select the index z ∈ {0, 1} of their preferred
output. Annotators are recruited from Amazon Mechanical Turk using a qualification test of 25 questions. Out
of an initial pool of 34 annotators, we selected the 16 whose agreement rate was higher than 70% with the
author’s annotations. We paid the annotators a median hourly rate of $21, leading to a one-time $3000 cost
of annotating our PREF split and a recurring $242 cost for evaluating a single model on the 805 evaluation
instructions. See Appendix D for additional details including the annotation interface we provided.

4.2 End-to-end validation of AlpacaFarm

We now analyze the correlation between rankings in simulation and on human data. Figure 3 shows the
win-rate of methods in AlpacaFarm (x-axis) with the win-rate from the human-based pipeline (y-axis). We see
that the rankings have a Spearman correlation of 0.98, which suggests that AlpacaFarm faithfully captures

6

Annotator: Human pref Trainer pann
sim Evaluator peval

sim GPT4 pGPT4
sim

Model: Human pref Simulated psim GPT4 ChatGPT Davinci003

100 101 102

$/1000 examples

0.57

0.60

0.63

0.66

Hu
m

an
 m

od
e

ag
re

em
en

t Figure 4: Our simulated annotators are cheap and have a
high agreement with human annotators. We show price (x-
axis) vs agreement (y-axis) as measured by each annotator’s
agreement with the majority vote among 3 human annota-
tions. Grey points are all simulated annotators in the pool,
the green shows the resulting pool of annotators (used
for evaluation), the orange shows the same pool with
random noise added during training. This does not change
the implied reward function from , but makes the learning
problem more challenging. The blue shows the average of
human annotators, and the red shows a single low variance
GPT-4 annotator analyzed below.

Figure 5: The added variability in AlpacaFarm annotators is needed to reproduce reward model over-
optimization seen in human data. Left: training and evaluation with human preferences phuman. Middle:
training and evaluation with AlpacaFarm preferences, pann

sim and peval
sim . Right: training and evaluation with

simple GPT-4 preferences, pGPT-4
sim . For each plot, the x-axis measures the average surrogate rewards on the eval

set. Human and AlpacaFarm preferences result in over-optimization, while simple GPT-4 preference does not.

0.5 1.0 1.5
Proxy reward, trained on phuman

0.40

0.45

0.50

0.55

Ev
al

 w
in

-ra
te

 o
n

p h
um

an

Expert Iteration
Best-of-n
PPO

(a) Human preferences

0.25 0.00 0.25 0.50
Proxy reward, trained on pann

sim

0.35

0.40

0.45

Ev
al

 w
in

-ra
te

 o
n

pev
al

sim

Expert Iteration
Best-of-n
PPO

(b) AlpacaFarm

1.5 2.0 2.5 3.0 3.5
Proxy reward, trained on pGPT4

sim

0.30

0.35

0.40

0.45

0.50

Ev
al

 w
in

-ra
te

 o
n

pGP
T4

sim
Expert Iteration
Best-of-n
PPO

(c) Single-prompt GPT-4

the rankings among different LPF methods. This enables researchers to develop models in the low-cost
AlpacaFarm environment and transfer these insights to train models on real-world human interactions.

Inspecting these results more closely, we point out the two rank mismatches. The first comparison is SFT10k
against SFT52k, where human annotators preferred SFT10k (44.3% vs 40.7%) while the simulator had the
opposite preference (36.7% vs 39.2%, Table 2). The other mismatch is ChatGPT against PPO, where human
annotators preferred PPO (55.1% vs 52.9%) unlike the simulator (46.8% vs 61.4%). In both cases, these are
not major mistakes, as we do not expect SFT52k to be much worse than SFT10k or for a 7B LLaMA model to
substantially outperform ChatGPT.

4.3 Validating the pairwise preferences component

Having demonstrated that AlpacaFarm succeeds at the end-to-end validation of methods rankings, we now
take a closer look at our pairwise preferences, showing that they have a high agreement with human annotators
and that they replicate important qualitative features of model training. For additional details see appendix C.

Simulated annotators match human agreement. We begin by computing agreement levels between our
simulated annotator and a majority vote of 3 human annotators, comparing this to the agreement level of a
held-out human annotator, as shown in Figure 4. We find that our evaluator peval

sim (green) has a 65% agreement
rate with the human majority vote, which is similar to the held-out human agreement rate at 66% (blue). At the
same time, peval

sim is 25× cheaper ($300 → $12 per 1000 examples). The training time annotator pann
sim (yellow)

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Simulated Win-rate (AlpacaFarm)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Si
m

ul
at

ed
 W

in
-ra

te
 (D

em
o)

R2 = 0.97
Spearman Correlation: 0.90

Figure 6: Correlation plot of simulated win-
rates computed on AlpacaFarm’s evaluation
versus that on real-world interactions with
the Alpaca Demo.

has lower agreement due to label flip noise but this does not mean that pann
sim is less faithful to human annotations,

since this noise is unbiased and both annotators (pann
sim, peval

sim) represent the same underlying preference function.

Figure 4 also shows that we identified a few single prompts performing even better than peval
sim , with one of the

GPT-4 prompts achieving 68% agreement. While this high agreement level is impressive, we do not use single
prompts directly for AlpacaFarm, as single prompts do not replicate the inter-annotator variability important
for a simulator. Instead, randomizing over different annotators and injecting additional noise is needed to
match the distributional features and learning dynamics of human data, which we discuss next.

Simulated annotators replicate overoptimization. We now show that modeling annotator variability in the
simulated annotator (pann

sim) is necessary to capture important qualitative features of LPF model training. To
do so, we compare the behavior of three of the best-performing models trained under pann

sim with those trained
using the single GPT-4 prompt pGPT-4

sim , which has higher human agreement but little annotator variability.

Figure 5 shows the learning dynamics of these models for pairwise feedback by phuman (left), pann
sim (middle),

and pGPT-4
sim (right) as the PPO iteration count and rerank sample counts for best-of-n and expert iteration

are increased. For both the human and AlpacaFarm preferences, models that more effectively optimize the
surrogate reward (x-axis) improve in win-rate (y-axis) up until a point, where overoptimization of the reward
occurs and win-rates decrease. In contrast, simple GPT-4 feedback shows no overoptimization, leading to
the false conclusion that the LPF methods can be optimized for much longer than is actually the case. For
example, Figure 5 right shows best-of-1024 to be much better than PPO, which disagrees strongly with the
results on human data.

Noted in prior work [18], overoptimization is the result of the proxy reward model R̂ϕ being an imperfect
estimate of the true reward R. We hypothesize that the strong overoptimization seen for human annotators is
partly due to the (inter- and intra-) variability of their annotations, which degrades the quality of the reward
model. To test this hypothesis, we measured the variance of each of the three annotators by calculating the
average error of a held-out annotation to the majority vote over 3 random draws. At 0.26 for peval

sim and 0.43 for
pann

sim, AlpacaFarm is close to the human variance of 0.35; in contrast, the GPT-4 annotator has a much lower
variance at 0.1. Finally, in Appendix E.1 we ablate the AlpacaFarm design more finely and find that the added
label noise provides the majority of the benefit for inducing overoptimization. Appendix C contains further
analyses of bias and variability of annotators.

4.4 Validating the evaluation protocol

Finally, we test our evaluation data that combines existing open-source evaluation datasets. While we have
observed that this dataset is diverse (see Figure 2), it is unclear whether it evaluates performance for any type
of real-world human usage. To resolve this, we measure method-level correlations against a set of real user
interactions recorded on the Alpaca Demo [62]. We manually went through the interactions and identified 200
instructions that do not contain any personal identifying information, toxic or unsafe questions, and those that
refer to the chatbot directly (e.g. “who are you developed by?”). The terms of use for the demo do not allow
us to publicly release this data, but we use this data to evaluate the proposed evaluation set.

We use the same 11 systems as displayed in Figure 3, with the LPF methods trained in simulation, and
evaluate them using peval

sim . Figure 6 plots the simulated win-rates on the Demo instructions against those
on the AlpacaFarm evaluation data. The two win-rates are strongly correlated (r2 = 0.97), indicating that
AlpacaFarm evaluation data can serve as a proxy for evaluating methods on simple demo interactions.

8

Table 2: AlpacaFarm evaluation results on baseline and LHF methods. win-rates are computed against
Davinci003 (which achieves 50% win-rate against itself). We omitted Quark and Binary Reward Conditioning
for human evaluation because they consistently underperform SFT 10k in development.

Method Simulated win-rate (%) Human win-rate (%)

GPT-4 79.0± 1.4 69.8± 1.6
ChatGPT 61.4± 1.7 52.9± 1.7
PPO 46.8± 1.8 55.1± 1.7
Best-of-n 45.0± 1.7 50.7± 1.8
Expert Iteration 41.9± 1.7 45.7± 1.7
SFT 52k (Alpaca 7B) 39.2± 1.7 40.7± 1.7
SFT 10k 36.7± 1.7 44.3± 1.7
Binary FeedME 36.6± 1.7 37.9± 1.7
Quark 35.6± 1.7 -
Binary Reward Conditioning 32.4± 1.6 -
Davinci001 24.4± 1.5 32.5± 1.6
LLaMA 7B 11.3± 1.1 6.5± 0.9

5 Benchmarking reference methods on the AlpacaFarm

We now study the performance of reference methods in AlpacaFarm. Table 2 contains the details of the main
evaluation results (presented graphically in Figure 3). In the rest of this section, we discuss our findings from
these results, demonstrating that the conclusions we reach using human feedback could have been derived
using AlpacaFarm at a substantially lower cost.

5.1 Comparing LPF methods

Supervised fine-tuning is highly effective. Table 2 shows that the SFT step is effective and provides the
majority of the win-rate gains. SFT brings the base LLaMA model up from a simulator win-rate of 11% to
37% and a human win-rate of 7% to 44%. However, we observe little to no gain from SFT 10k to SFT 52k.

PPO tops the LPF leaderboard. Among the LPF methods we study, PPO performs the best in both the
simulator (47%) and on human feedback data (55%). Notably, with a win-rate of 55%, the PPO trained with
human feedback was preferred to ChatGPT by our human annotators for single-turn instruction-following.

Best-of-n is simple and competitive. Best-of-n sampling outperforms all LPF methods besides PPO. The
competitive performance of best-of-n sampling points to the useful learning signals captured by the reward
model and helps us understand how training-time LPF methods can benefit from a reward model.

Expert Iteration and Quark lag behind. Even though expert iteration trains with best-of-n outputs, it trails
best-of-n with a 3-6% win-rate gap in both simulated and human feedback workflows. This result suggests that
acquiring the improvement from best-of-n sampling is not straightforward and points to why more complex
learning algorithms like PPO might be useful.

For Quark, we observe that although the rewards of samples improve during training, this did not result in
models that perform better than the baseline SFT 10k. See Appendix B for details of our tuning.

Methods that directly learn from pairwise feedback do not perform well. We observe that binary reward
conditioning and binary FeedME do not improve over the SFT 10k baseline. This result suggests that learning
a surrogate reward model may be an important ingredient to LPF.

Computational cost. While our primary focus is the win-rate of LPF methods, we also measured the
computational costs of each reference method, generally finding the training process to take < 2 hrs for most
methods on a single 8×A100 machine. The largest computational costs involved decoding a large number of
samples for both Best-of-n and Expert Iteration (See Appendix E.2 for details).

9

Table 3: Comparing system output before and after PPO training, we observe that outputs often become longer.
Instruction: What are the five most common causes of stress among people?

SFT 10k: The five
most common causes of
stress among people are
work, money, relation-
ships, health, and fam-
ily.

PPO: The five most common causes of stress among people are: 1. Pressure at
work: Whether it is due to tight deadlines, high expectations, or an overwhelming
workload, pressure at work can be a major source of stress. 2. Money problems:
Financial issues can be a significant source of stress, from not being able to
make ends meet to struggling with debt. 3. Unhealthy lifestyle: Poor diet, lack
of exercise, and sleep deprivation can all contribute to stress. 4. Unhappiness
at home: Problems in relationships, conflicts with family members, and other
domestic issues can be a major source of stress. 5. Uncertainty: Excessive worry
and anxiety about the future, health issues, or other unknowns can be a major
cause of stress.

5.2 Analysis of model outputs

PPO and best-of-n reranking both demonstrate substantial gains with both AlpacaFarm’s simulated feedback
and human feedback. While the changes to the win-rate are clear, it is less clear what changes to the model
lead to these improvements – are the gains driven by improvements to factuality or reasoning, or are they
driven by stylistic differences? We now focus on an analysis of the outputs of these systems to understand
what factors contribute to the improvement in their win-rates.

We find a major difference in the length distributions of the outputs, with outputs becoming increasingly longer
after applying LPF methods in both human and simulated feedback. For example, the average length of SFT
10k outputs is 278 characters. Best-of-16 increases the average length to 570 characters and applying PPO
increases it to 637 tokens. In Table 3, we show a qualitative example of how PPO training changes the output
for an evaluation instruction, with further quantative details and analysis in Appendix E.3.

5.3 Using AlpacaFarm to train models directly for human deployment

The main goal of AlpacaFarm is to provide a simulator to enable the development of methods that would then
be trained on human feedback before deployment. A natural question is whether one can use AlpacaFarm
to train models on simulated preferences that directly perform well on human evaluation, without having to
retrain on human preferences. We show that AlpacaFarm can be repurposed for this goal once the pairwise
feedback simulator is modified to maximize agreement rather than match human annotator variability.

To illustrate this point, we compare the best PPO model (step 40) trained in AlpacaFarm pann
sim with a matched

PPO model (step 30) trained on the single low-variance GPT-4 annotator pGPT-4
sim . We then measure their

win-rate according to human preference evaluation, phuman. The results are displayed in Table 4.

Table 4: Model transfer results.

Method Human Win-rate (%)

PPOhuman 55%
Best-of-16human 51%
PPOGPT-4

sim 50%
SFT 10k 44%
PPOann

sim 43%

We find that PPOann
sim trained in AlpacaFarm only achieves

a win-rate of 43%, while PPOGPT-4
sim trained on GPT-4 data

achieves a win-rate of 50%. To contextualize these results,
the initial SFT model has a win-rate of 44%, PPOhuman has a
win-rate of 55%, and the best non-PPO human method has a
win-rate of 51% (Best-of-16). Thus, training in simulation
can provide good models directly for deployment, though this
approach suffers a 5% performance gap relative to collecting
real human annotations.

These results demonstrate a faithfulness-performance tradeoff in simulator design: more faithful simulators,
which display greater over-optimization, train objectively worse models. The standard AlpacaFarm pairwise
evaluators are best suited for developing new methods and performing method selection in the simulator,
as Figure 3 demonstrates that the ranking of methods remains the same when they are re-trained on human
preferences. However, for directly deploying models trained in the simulator, a single consistent annotator
such as pGPT-4

sim can provide significant gains on real-world evaluation.

10

6 Related work

Instruction following. There have been an number of works studying instruction following as a cross-task
generalization across a pool of NLP tasks [39, 69, 51, 4, 68]. Our work focuses on a recent trend in instruction
following methods which increasingly focus on real world human interaction patterns [44, 6], rather than
collections of existing NLP benchmarks. For example, InstructGPT was developed on user instructions
submitted to OpenAI API [44]. Our work builds upon these works by attempting to bridge the gap between
the ease of development and evaluation of traditional academic benchmarks and the more complex algorithms
and real-world settings of recent works on instruction following.

Simulating human feedback. Constitutional AI [7] simulates human feedback with AI feedback for model
development to improve harmlessness and helpfulness. AlpacaFarm, on the other hand, simulates human
feedback with API LLMs so that simulated experiments reflect the outcomes of experiments performed with
real human feedback. Due to the difference in goals, the construction and usage of the feedback simulator are
different in the two settings. For example, AlpacaFarm’s simulator perturbs LLM preferences with bit-flip
label noise to mimic the noisiness of human annotation, whereas Constitutional AI’s simulator doesn’t inject
extra noise.

The evaluation aspects of our work are related to a growing line of work on simulating human annotation
for evaluation [14, 49, 14, 48, 33, 34]. Our core evaluation and feedback mechanism makes use of the same
underlying ideas, but our work is distinguished by a focus on using pairwise feedback for training, as well as
careful validation beyond per-example agreement metrics. AlpacaFarm shows that LLM feedback can capture
method-level correlations as well as qualitatively important features of human annotation for phenomena such
as overoptimization.

Our goal of emulating human annotators also connects to work on simulating humans with LMs based on
personas [46, 45, 1, 3], as well as works that simulate human behavior in the context of cognitive science,
social science, and economics [66, 24]. Our work complements these works by showing that simulated LLM
annotators can replicate many of the qualitative features of training on pairwise human feedback.

More broadly, building a simulator environment to enable low-cost experimentation is common in the field
of reinforcement learning and robotics [11, 64, 63, 61, 16, 22, 17]. Our work shares the same underlying
motivations, but instead of simulating physical systems, AlpacaFarm simulates human preference feedback.

Methods for learning from feedback. To hold annotation cost constant across learning methods, we have
focused only on methods that learn from pairwise feedback in this work. However, there exist methods in the
literature other than those explored in AlpacaFarm that can incorporate alternative sources of feedback such as
natural language [70, 31, 21, 56, 52, 13, 53, 38], numeric ratings [42, 30], or execution traces [13]. We view
extensions of AlpacaFarm to these settings as exciting future work.

We have included a set of RL algorithms in our study that optimize the surrogate reward, but this set is by no
means comprehensive. RL research applied to NLP has a long history [71, 59, 26, 47, 40, 29, 28, 50, 58], and
we expect future work in this direction to benefit from the ideas and artifacts in AlpacaFarm.

7 Limitations and future directions

Difference between GPT4 and human feedback. Our sandbox assumes that LLMs can simulate human
feedback. Section 4 shows that this assumption holds in the sense that LLM annotations align with the mode
of human preferences and replicate its many features. However, we also observe that no single LLM-based
annotator captures the heterogeneity of human annotation, and substantial amounts of noise had to be injected
in the simulated preference for rankings of methods trained in AlpacaFarm to match those trained with real
human feedback.

In addition, we found that suitable hyperparameters for learning algorithms can be different for training with
simulated feedback compared to human feedback. For example, due to changes in the scale of values of
the surrogate reward model, the range of suitable KL regularization coefficients for RLHF is different. This
suggests that the AlpacaFarm simulator, as it currently is, would not always be suitable to aid hyperparameter
tuning to improve performance on human evaluation.

Finally, we note that our preference simulator is validated with respect to our recruited pool of crowdworkers,
and mimics their preference variability as a result. The best prompts for transferring insights to other, more
consistent crowdworker pools may involve lower levels of noise or a smaller prompt ensemble.

11

Limitation in current experiments. Due to resource constraints (both compute and human annotation),
we have not conducted extensive hyperparameter tuning for the methods we studied in Section A. For each
method, we have performed at least 3 tuning runs, and we detail our tuning process in Appendix B. It is
possible that with more careful tuning, the comparison between PPO and alternative approaches like expert
iteration and Quark might change.

In addition, our experiments were conducted with models and datasets of a particular scale. Qualitative
findings may change as we move to larger models or datasets.

Our study focuses on comparisons of methods that learn from pairwise feedback. We do not study other forms
of feedback, such as numerical ratings or natural language. Neither do we study quality-quantity tradeoffs for
learning from pairwise feedback. We leave this exposition to future work.

Future directions. We showed that AlpacaFarm substantially lowers the cost and iteration time of research
on and development of methods for learning with pairwise feedback. AlpacaFarm provides a blueprint for
constructing other useful simulators for AI research that requires human supervision, and we view it as an
exciting opportunity to expand this simulation approach to support data from other domains as well as methods
that learn from alternative forms of human feedback.

Acknowledgments and Disclosure of Funding

We thank the Stanford Center for Research on Foundation Models (CRFM), Stanford HAI, and Stability AI
for compute support. Data collection efforts were supported through the Tianqiao & Chrissy Chen Institute
and an Open Philanthropy grant. XL is supported by a Stanford Graduate Fellowship. RT is supported by the
NSF GRFP under Grant No. DGE 1656518. YD is supported by a Knights-Hennessy Scholarship.

References
[1] Gati Aher, Rosa I Arriaga, and Adam Tauman Kalai. Using large language models to simulate multiple

humans. arXiv preprint arXiv:2208.10264, 2022.

[2] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and tree
search. Advances in neural information processing systems, 30, 2017.

[3] Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua Gubler, Christopher Rytting, and David Wingate.
Out of one, many: Using language models to simulate human samples. arXiv preprint arXiv:2209.06899,
2022.

[4] Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Huaixiu Steven Zheng, Sanket Vaibhav Mehta,
Honglei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo Ni, et al. Ext5: Towards extreme multi-task scaling
for transfer learning. arXiv preprint arXiv:2111.10952, 2021.

[5] Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam
McCandlish, Chris Olah, and Jared Kaplan. A general language assistant as a laboratory for alignment,
2021.

[6] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion, Tom
Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott
Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack
Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan. Training a helpful and harmless
assistant with reinforcement learning from human feedback, 2022.

[7] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from
ai feedback. arXiv preprint arXiv:2212.08073, 2022.

[8] Michiel Bakker, Martin Chadwick, Hannah Sheahan, Michael Tessler, Lucy Campbell-Gillingham, Jan
Balaguer, Nat McAleese, Amelia Glaese, John Aslanides, Matt Botvinick, et al. Fine-tuning language
models to find agreement among humans with diverse preferences. Advances in Neural Information
Processing Systems, 35:38176–38189, 2022.

12

[9] R. Bommasani et al. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

[10] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[11] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[12] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[13] Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun Shern Chan, Samuel R
Bowman, Kyunghyun Cho, and Ethan Perez. Improving code generation by training with natural
language feedback. arXiv preprint arXiv:2303.16749, 2023.

[14] Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human evaluations?
arXiv preprint arXiv:2305.01937, 2023.

[15] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing systems, 30,
2017.

[16] Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan Creus-Costa, Silvio
Savarese, and Li Fei-Fei. Surreal: Open-source reinforcement learning framework and robot manipulation
benchmark. In Conference on Robot Learning, pages 767–782. PMLR, 2018.

[17] C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem. Brax–a
differentiable physics engine for large scale rigid body simulation. arXiv preprint arXiv:2106.13281,
2021.

[18] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. arXiv
preprint arXiv:2210.10760, 2022.

[19] Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine, and Dawn Song.
Koala: A dialogue model for academic research, March 2023.

[20] Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth
Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving alignment of dialogue
agents via targeted human judgements. arXiv preprint arXiv:2209.14375, 2022.

[21] Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazare, and Jason Weston. Learning from dialogue
after deployment: Feed yourself, chatbot! arXiv preprint arXiv:1901.05415, 2019.

[22] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion, Chris
Goy, Yuan Gao, Hunter Henry, Marwan Mattar, et al. Unity: A general platform for intelligent agents.
arXiv preprint arXiv:1809.02627, 2018.

[23] S. Kakade, Y. W. Teh, and S. Roweis. An alternate objective function for Markovian fields. In
International Conference on Machine Learning (ICML), 2002.

[24] Saketh Reddy Karra, Son Nguyen, and Theja Tulabandhula. Ai personification: Estimating the personality
of language models. arXiv preprint arXiv:2204.12000, 2022.

[25] N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher. CTRL: A Conditional Transformer
Language Model for Controllable Generation. arXiv preprint arXiv:1909.05858, 2019.

[26] Samuel Kiegeland and Julia Kreutzer. Revisiting the weaknesses of reinforcement learning for neural
machine translation. arXiv preprint arXiv:2106.08942, 2021.

[27] Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Bhalerao, Christopher L Buckley, Jason Phang,
Samuel R Bowman, and Ethan Perez. Pretraining language models with human preferences. arXiv
preprint arXiv:2302.08582, 2023.

13

[28] Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and Stefan Riezler. Can neural machine translation
be improved with user feedback? arXiv preprint arXiv:1804.05958, 2018.

[29] Tsz Kin Lam, Julia Kreutzer, and Stefan Riezler. A reinforcement learning approach to interactive-
predictive neural machine translation. arXiv preprint arXiv:1805.01553, 2018.

[30] Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
feedback. arXiv preprint arXiv:2302.12192, 2023.

[31] Jiwei Li, Alexander H Miller, Sumit Chopra, Marc’Aurelio Ranzato, and Jason Weston. Dialogue
learning with human-in-the-loop. arXiv preprint arXiv:1611.09823, 2016.

[32] H Liu, C Sferrazza, and P Abbeel. Chain of hindsight aligns language models with feedback. arXiv
preprint arXiv:2302.02676, 2023.

[33] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv preprint
arXiv:2304.08485, 2023.

[34] Yang Liu, Dan Iter, Xu Yichong, Wang Shuohang, Xu Ruochen, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignmentg. arXiv preprint arXiv:2303.16634, 2023.

[35] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V Le,
Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective instruction
tuning. arXiv preprint arXiv:2301.13688, 2023.

[36] X. Lu, S. Welleck, J. Hessel, L. Jiang, L. Qin, P. West, P. Ammanabrolu, and Y. Choi. Quark: Controllable
text generation with reinforced unlearning. In Advances in Neural Information Processing Systems, 2022.

[37] Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Ammanabrolu,
and Yejin Choi. Quark: Controllable text generation with reinforced unlearning. Advances in neural
information processing systems, 35:27591–27609, 2022.

[38] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-
feedback. arXiv preprint arXiv:2303.17651, 2023.

[39] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization via
natural language crowdsourcing instructions. arXiv preprint arXiv:2104.08773, 2021.

[40] Khanh Nguyen, Hal Daumé III, and Jordan Boyd-Graber. Reinforcement learning for bandit neural
machine translation with simulated human feedback. arXiv preprint arXiv:1707.07402, 2017.

[41] OpenAI. Introducing chatgpt.

[42] OpenAI. Model index for researchers.

[43] OpenAI. Gpt-4 technical report, 2023.

[44] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe.
Training language models to follow instructions with human feedback, 2022.

[45] Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv preprint arXiv:2304.03442,
2023.

[46] Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Social simulacra: Creating populated prototypes for social computing systems. In Proceedings
of the 35th Annual ACM Symposium on User Interface Software and Technology, pages 1–18, 2022.

[47] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive summa-
rization. arXiv preprint arXiv:1705.04304, 2017.

14

[48] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277, 2023.

[49] Ethan Perez, Sam Ringer, Kamilė Lukošiūtė, Karina Nguyen, Edwin Chen, Scott Heiner, Craig Pettit,
Catherine Olsson, Sandipan Kundu, Saurav Kadavath, et al. Discovering language model behaviors with
model-written evaluations. arXiv preprint arXiv:2212.09251, 2022.

[50] Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural language
processing?: Benchmarks, baselines, and building blocks for natural language policy optimization. arXiv
preprint arXiv:2210.01241, 2022.

[51] Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables zero-shot
task generalization. arXiv preprint arXiv:2110.08207, 2021.

[52] William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan Leike.
Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802, 2022.

[53] Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen, Kyunghyun
Cho, and Ethan Perez. Training language models with language feedback at scale. arXiv preprint
arXiv:2303.16755, 2023.

[54] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[55] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

[56] Weiyan Shi, Emily Dinan, Kurt Shuster, Jason Weston, and Jing Xu. When life gives you lemons, make
cherryade: Converting feedback from bad responses into good labels. arXiv preprint arXiv:2210.15893,
2022.

[57] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L., M. Lai,
A. Bolton, et al. Mastering the game of go without human knowledge. Nature, 550(7676):354–359,
2017.

[58] Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural language
generation with implicit language q learning. arXiv preprint arXiv:2206.11871, 2022.

[59] Artem Sokolov, Stefan Riezler, and Tanguy Urvoy. Bandit structured prediction for learning from partial
feedback in statistical machine translation. arXiv preprint arXiv:1601.04468, 2016.

[60] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback, 2020.

[61] Colin Summers, Kendall Lowrey, Aravind Rajeswaran, Siddhartha Srinivasa, and Emanuel Todorov.
Lyceum: An efficient and scalable ecosystem for robot learning. In Learning for Dynamics and Control,
pages 793–803. PMLR, 2020.

[62] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Alpaca: A strong, replicable instruction-following modely, March 2023.

[63] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

[64] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[65] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971, 2023.

15

[66] Adaku Uchendu, Zeyu Ma, Thai Le, Rui Zhang, and Dongwon Lee. Turingbench: A benchmark
environment for turing test in the age of neural text generation. arXiv preprint arXiv:2109.13296, 2021.

[67] Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and outcome-
based feedback, 2022.

[68] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, et al. Super-
naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. In Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 5085–5109, 2022.

[69] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

[70] J. E. Weston. Dialog-based language learning. In Advances in Neural Information Processing Systems
(NeurIPS), pages 829–837, 2016.

[71] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al. Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144, 2016.

16

A Reference LPF methods on AlpacaFarm

We provide a more thorough description of the methods in AlpacaFarm along with the custom modifications we
make. For more on hyper-parameter tuning, experiment details, and further ablations, please see Appendix B.

Our methods fall into two categories based on whether they fit a surrogate reward model as part of the learning
process. In addition, to those methods which are trained in AlpacaFarm, we also include well-known baseline
methods from the OpenAI API.

API baseline methods. In both the human and the simulated feedback workflows, we evaluate the following
methods from the OpenAI API: GPT-4, ChatGPT, Davinci001, and implicitly Davinci003, which is the
baseline model we compare every model with. Outputs from all these models are sampled at temperature 0.7
and with top-p 1.0. For the text models, we use the same prompt as all other reference methods in AlpacaFarm.
For both chat models (ChatGPT and Davinci003), we had to change prompts for two reasons. First, those
models require prompts in a chat format, which is different from the text format. Second, we found that
those models generated sequences that were much longer than the rest of our models, which were trained to
output sequences of less than 300 tokens. We thus ask in the system prompt for a response that is shorter than
1000 and 500 characters respectively for ChatGPT and GPT-4, which we found to give shorter answers while
working similarly to a raw prompt that does not mention the length.

A.1 Methods that directly learn from pairwise feedback

Binary FeedME. FeedME is a method proposed by OpenAI [42] that incorporates human feedback with
supervised fine-tuning on model generations that are rated 7/7 by human labelers. We adapt this approach to
the pairwise feedback setting and call this baseline binary FeedME. This approach fine-tunes the SFT model
on the chosen response in each preference pair with supervised learning.

Binary Reward Conditioning. Motivated by controllable generation through conditioning [25, 32, 27, 19],
we propose binary reward conditioning, a baseline method that fine-tunes the SFT model with the feedback
data Dpairwise by conditioning instances with either a positive or negative control token. Specifically, for each
instance (x, y0, y1, z) ∈ Dpairwise, the string concatenation of instruction x and response yz denoted as [x, yz]
is prepended with the positive token and used in supervised fine-tuning (similarly [x, y1−z] is prepended with
the negative token). This process creates a modified demonstration dataset that is double the size of Dpairwise.
At test time, we draw samples from the fine-tuned model conditioned on the positive token.

A.2 Methods that optimize a surrogate reward function

We now describe methods that incorporate feedback by first building a surrogate reward model with pairwise
feedback data. To start, we describe the step of training the surrogate reward model.

To train a parameterized surrogate R̂ϕ, one can maximize the log-likelihood of the preferences z under the
Bradley-Terry model [10]

maximizeϕ
∑
j

logP (z(j) | x(j), y
(j)
0 , y

(j)
1) =

∑
j

log
exp(R̂ϕ(x

(j), y
(j)
z))

exp(R̂ϕ(x(j), y
(j)
0)) + exp(R̂ϕ(x(j), y

(j)
1))

. (1)

Once the surrogate reward model is trained, both training and inference algorithms can optimize against the
reward model rather than query pairwise feedback. While this can be a powerful approach, we will see that it
can also lead to over-optimization [18] where models learn to exploit the reward model rather than achieve
high true reward. We now describe 4 methods that leverage the surrogate reward model.

Best-of-n Sampling. Best-of-n sampling (or re-ranking) [60, 5, 20, 8] is a common inference-time method
that aims to improve the generation quality. Given an input x, the method returns the response with the highest
surrogate reward value among n i.i.d. responses drawn from the SFT model. While simple to implement and
useful as a baseline, this approach incurs high inference costs.

Expert Iteration. Expert iteration [2, 57, 67] is a technique that has recently been used to train language
models. We adapt this approach in AlpacaFarm as a two-step method. In the first step, we perform best-of-n
sampling and store the generated samples. In the second step, we fine-tune pSFT on these samples with
supervised learning. While prior work applies expert iteration for multiple rounds by performing best-of-n

17

sampling again for intermediate models, we focus on performing a single round. In Appendix B, we include
our preliminary study of multi-round expert iteration.

Proximal Policy Optimization. Proximal Policy Optimization [PPO; 23, 55] is a popular RL algorithm that
has been recently used to develop InstructGPT [44] and ChatGPT [41]. When applied to fine-tune LMs with
RLHF, PPO maximizes the following KL-regularized objective w.r.t. model parameters θ

Ex∼p(x), y∼pθ(y|x)

[
R̂ϕ(x, y)− β log

pθ(y | x)
pSFT(y | x)

]
, (2)

where p(x) is an unlabeled instruction distribution, pθ(y | x) is fine-tuned from the pSFT model, and β ∈ R is
a regularization coefficient. Each step of PPO alternates between drawing samples from the current policy and
performing gradient updates based on the pool of samples with importance sampling and clipping.

Quark. Quark is inspired by reward conditioning and has been shown to be effective for controllable
generation tasks. Like binary reward conditioning, Quark on train sequences with prepended control tokens.
Unlike binary reward conditioning, Quark bins model samples into multiple groups based on the reward value,
adds KL and entropy regularization, and repeats the entire process across multiple rounds.

In our preliminary analysis, we find the top-quantile variant reported in [36], i.e. only training on the best
reward group, to perform the better than the all-quantiles variant which trains on all groups.

18

B Details on methods implementation and hyperparameters

B.1 PPO

We follow an existing PPO implementation for fine-tuning language models,2 but also introduce modifications.
First, off-the-shelf PPO implementations for language model fine-tuning tend to normalize the estimated
advantage for each minibatch. We found this led to training instabilities for small minibatch sizes and instead
normalize the advantage across the entire batch of rollouts obtained for each PPO step. Second, we initialize
the value model from the reward model as opposed to the SFT model, following more recent documented
practice [44] (the authors did not release code). Our preliminary experiments showed that initializing from
reward worked much better than initializing from SFT for maximizing the surrogate reward.

We tuned hyperparameters to improve training stability and reduce convergence time so that experiments can
reliably finish with relatively tight compute budgets. In the end, we settled on a batch size of 512 for each
PPO step, which consisted of 2 epochs of gradient steps each performed with a batch of 256 rollouts. We used
a peak learning rate of 10−5 which decayed to 0 throughout training. We clipped the gradient by Euclidean
norm with a threshold of 1. We trained for 10 full passes over the unlabeled set, which amounts to 390 PPO
steps. Performance typically peaked very early on during training (see Figure 5). We set λ and γ both to 1 for
generalized advantage estimation [54]. We used a fixed KL regularizer coefficient as opposed to an adaptive
one. We tuned the coefficient value for both simulated and human PPO, and settled with 0.02 for human PPO,
and 0.002 for simulated PPO. We note that suitable values for the KL regularizer coefficient depend on the
early stopping criteria and the scale of surrogate reward values.

B.2 Quark

We re-implement Quark for our needs and make several modifications. First, the original Quark formulation
accumulates rollouts during training and stores them in a pool that consistently grows. We found this led to
overhead that increased during training (since after each rollout batch is generated, the pool is expanded and
rollouts in the pool are re-sorted by their reward values). To operate under a reasonable compute budget, we
discard previous rollouts once a new batch of rollouts is generated. In other words, the pool is reset once
rollout is performed. This modification made the compute cost constant throughout training and thus more
predictable overall. Second, we found that training on rollouts of more bins led to worse efficiency for reward
optimization, and thus opted to train only on rollouts of the top-scoring bin (best-quantile variant in the original
paper [37]). Preliminary ablations on a simple sentiment task showed that any potential loss in perplexity for
the best-quantile variant can be compensated by turning up the KL regularizer. Lastly, we found the entropy
penalty used in the original Quark formulation to give no benefit for working with instruction following. Small
entropy penalty terms were enough to cause big degradations in text generation quality in terms of fluency.

For the official run with reported results, we used a KL regularizer coefficient of 0.05, a peak learning rate
of 3 × 10−6 which decayed to 0 throughout training. Each Quark step had batch size 512 for rollout, and
2 epochs of gradients updates each with batch size 256. We clipped the gradient by Euclidean norm with a
threshold of 1. We trained for 10 full passes over the unlabeled set, which amounts to 390 Quark steps.

2https://github.com/openai/lm-human-preferences

19

https://github.com/openai/lm-human-preferences

C Pairwise preference simulation

C.1 Details about simulated annotators

For all our simulated annotators we used OpenAI API to generate outputs. We first discuss below the overall
design choices for all our simulators below, and then discuss our annotator pool below in more detail. For all
the actual prompts we used refer to https://github.com/tatsu-lab/alpaca_farm.

Randomized order. For each annotator, we randomize the ordering between the two outputs to annotate,
i.e., we randomly choose which output is the first and which is the second. We found randomization to be
important given that the first output is often preferred by simulated annotators.

Prompts with and without inputs. Following the Alpaca dataset [62] and self-instruct framework [68] some
instructions have associated inputs, while others do not. For each annotator, we thus write two corresponding
prompts, one for instructions with inputs and one for instructions without inputs. Both prompts are essentially
the same but in-context examples differ in the presence of the input.

Batching for GPT4. When adding in-context examples, prompts can become relatively long, which leads to
high-cost and waiting time when using GPT-4 as a simulator. To decrease cost and increase annotation speed,
we amortize the cost of in-context examples by providing a batch of instruction-output pairs to annotate at
once by GPT-4. For our simulated annotator we use a maximum batch size of 5 but found during development
that we could fit batch size up to 20 in the context window without significantly decreasing performance.
To improve performance when using batching, we found it useful to provide a few in-context examples in a
batched format and to index every component of an annotation (instruction, input, output, . . .).

Improving parsing for ChatGPT. Overall we found ChatGPT to be much more sensitive and harder to
use as a simulator. In particular, we found it to be more sensitive to the prompt format and to often fail to
generate annotations that could be parsed, e.g., by responding “Neither is better, this depends on personal
preferences” despite being explicitly instructed to choose a preference. We found two tricks to be effective to
make ChatGPT’s more parsable. First, we add a negative bias to tokens such as “Neither” and “Both” and a
positive bias to the tokens that we hoped to match. We found the aforementioned biasing of tokens to work
well but it can be problematic when using Chain of Thought reasoning. A second trick that we found to be
effective is to ask ChatGPT to generate a JSON object that contains a string field with a short explanation
(Chain of Thought) and a boolean field that indicates whether the first output was preferred.

Now that we have discussed the overall design choices for our simulated annotators, we discuss in more detail
the prompts and parameters for each of our annotators.

AlpacaFarm’s evaluation annotators peval
sim . To try to match the bias and variance of human annotators, we

use a pool of 13 simulated annotators that were developed at different stages of the project. In particular, we
use the following sources of variations:

• Models. Five of the annotators are powered by GPT-4, four by ChatGPT, and four by Davinci003.
The difference between different annotators for the same model is mostly the prompt.

• In-context examples. Prompts for the same models use different numbers of in-context examples.
• Prompt format. We use different prompt formats between and for the same model. For example

different batch sizes and different formats of outputs (JSON vs raw text).
• Preferences. Two of the GPT4 annotators are explicitly prompted to prefer sequences that are

respectively long and short.
• Sampling. For each annotator in the pool, we use a sampling temperature of 1.0 with top p also 1.0.

The high temperature means that we have variability that arises from sampling.

AlpacaFarm’s training annotators pann
sim . Our simulated annotators for training are the same as the evaluation

annotators peval
sim except that we flip the output with 0.25 probability. We implement this by taking a mixture

between peval
sim and an independent Bernoulli random variable with probability 0.5. This means that we only

need to label half of the outputs for training, which makes it 2× faster and cheaper.

GPT4. For the GPT4 annotator pGPT-4
sim we use a prompt with batch size five that corresponds to one of the

prompts from our simulated pool of annotators. For pGPT-4
sim we use temperature 0, i.e., deterministic annotations.

20

https://github.com/tatsu-lab/alpaca_farm

Annotator: Human pref Trainer pann
sim Evaluator peval

sim GPT4 pGPT4
sim

Model: Human pref Simulated psim GPT4 ChatGPT Davinci003

0.0 0.1 0.2 0.3 0.4
Variance

0.32

0.36

0.40

0.44

Bi
as

Figure 7: Our simulated annotators achieve relatively low
bias with human annotators and match human variance. The
y-axis shows the estimated bias, i.e., the error between the
majority vote of 4 simulated annotators and the majority
vote of 4 human annotators. The x-axis shows the estimated
variance, i.e., the error between a held-out annotation and
the majority vote of the other three annotators. The bias
of humans is by definition 0, and variance is shown with a
blue line. Grey points are all the annotators in our simulated
pool, the green point shows the resulting pool of annotators
(which we use for evaluation), the orange point shows the
same simulated pool with additional noise (which we use for
training), the blue point the average human annotator, and
the red point shows a single low variance GPT-4 annotator
we analyze.

C.2 Additional results

We now provide additional results for understanding our pairwise annotators.

Our pool of annotators has low bias and matches human variance. Figure 7 shows the estimated bias
(y-axis) and variance (x-axis) of simulated evaluators. We see that single evaluators have a smaller variance
(less than 0.2) than humans (blue line, 0.34). This lack of variability makes emulating it with a proxy reward
very easy and leads to unrealistic over-optimization properties in the simulator, as seen in Figure 5. Using a
pool of annotators (green point) for evaluation and additionally adding noise (orange) during training gives an
estimated variance significantly closer to humans (blue line 0.35). We hypothesize that this is necessary for
the simulator to show a similar over-optimization behavior as humans. Concerning the bias, we find that our
simulated annotators for evaluation peval

sim and training ptrain
sim both have low bias values (0.38 and 0.35) on par

with one of our best GPT-4 annotators (0.33).

Variability in a pool of annotators mostly comes from the underlying model. In Figure 8 we show the
pairwise agreement between all annotators in our pool and all other annotators including the majority vote
of humans (first column) and single humans (second column). The desired high variance corresponds to
low values on the diagonal (annotators disagree with themselves) and low bias corresponds to high values
in the first column (high agreement with the mode of humans). As in Figure 7, we see that our pool of
annotators peval

sim has low bias and high variance. Figure 8 also shows that the largest source of variability
between annotators comes from the underlying model, as illustrated by the clusters that arise from GPT4,
ChatGPT and Davinci003 annotators.

Humans and simulated annotators prefer longer outputs that contain lists. One natural question is
whether simulated and human annotators have biases towards different type of outputs, which would cause
models in both frameworks to be qualitatively different. We identify two stylistic features, the length and
the presence of lists, for which humans have a strong preference and analyze whether simulated annotators
match those preferences. We found that humans prefer longer outputs 62% of the time, while our simulated
annotators prefer those 64% of the time. Similarly, humans prefer outputs with lists 69% of the time, while
our simulated annotators prefer those 63% of the time. This shows that our simulated annotators match well
the stylistic preferences of humans, which suggests that models trained in our sandbox are optimizing similar
preferences as those trained with human feedback and they will likely exhibit similar behaviors.

21

Figure 8: The largest source of variability between annotators comes from the underlying model. Every cell of
the heatmap shows the agreement between two annotators (x- and y- axis).

30 40 50 60 70
Preference for lists (%)

25 50 75
Preference for longer outputs (%)

Figure 9: Humans and our simulated annotators prefer outputs that are longer and have lists.

22

D Details on human data collection

Qualification. We conducted the qualification of our annotators based on 25 qualification examples. The
qualification examples were generated but an OPT 6B model that was studied in the earlier development
phase of this project. The five student authors of this paper annotated a shared set of pairwise preferences.
From the shared set, we selected 25 questions where the majority of the authors reached an agreement on the
correct annotation. We then use these questions as a qualification test and selected the top 16 annotators whose
agreement is the highest with the authors. We paid the annotators the same price for the qualification round as
we did for the main qualification.

During the annotation process, we also compare each annotator’s preference to that of GPT-4. We identified
one annotator whose agreement is around 50% with GPT-4, which is a clear outlier from other annotators.
Therefore, we discontinued working with this annotator during the annotation project and removed their
annotation.

Annotation guideline. We display our annotation guideline in Figure 10 and annotation interface in Figure 11.
In our annotation process, we find that there are pairs that only differ in punctations or have minimal edit
distance and we instruct the annotators to select a response as slightly better/worse if the difference between
the pairs is marginal. As a result, around 18% of the collected preference selected the slightly better options.
In our LPF experiments, we binarize the preference and treated the slightly better options the same as the
normal preference labels. However, we release the more fine-grained labels as resources and leave the study to
future work.

23

Hi! We are a group of researchers working on Artificial Intelligence (AI). In this task, we will ask you to help us rate an AI model's responses to instructions.

In the area below, you will first read:

1. An instruction we give to the AI system.
2. An input that is provided along with the instruction. This is an optional input and not all instructions will have inputs.
3. Two responses from the AI system

Your task is to decide which response is better. There are several dimensions that you can think along. Consider the following questions:

1. Is the response helpful? For example, if the instruction asked for a recipe for healthy food, and the response is a useful recipe, then we can consider it helpful.
2. Is the response language natural? For example, AI responses are often repetitive, which is not natural.
3. Is the response factual/accurate? AI responses often make up new information. For example, if the response claims that Donald Trump is the current U.S.

president, then you should consider it inaccurate.
4. Based on your aesthetics, which one do you prefer? For example, you might prefer one poem over another poem.
5. And so on ... ultimately, you should decide which response is better based on your judgment and based on your own preference.

There are four options for you to choose from:

1. Response 1 is better: If you think response 1 has an advantage, then choose this option.
2. Response 1 is slightly better: Response 1 is very marginally better than response 2 and the difference is small.
3. Response 2 is slightly better: Response 2 is very marginally better than response 1 and the difference is small.
4. Response 2 is better: If you think response 2 has an advantage, then choose this option.

There are cases where the difference between the two responses is not clear. In this case, you can choose the second or the third option. However, in general, we ask
you to choose those options as few as possible.

Annotation Examples

To help you understand the annotation task, we provide two examples below.

Example 1

Instruction: Paraphrase the following question: "What is the capital of France?" Input: Response 1: The capital of France is Paris. Response 2: Can you tell me the
name of the city that serves as the capital of France?

In this example, response 2 paraphrases the question as asked by the instruction. In contrast, response 1 does not follow instruction as it answers the question
instead. Therefore, we should choose Response 2 is better.

Example 2

Instruction: Change the first verb to a synonym Input: I love surfing Response 1: I hate surfing Response 2: and am planning on going surfing tomorrow morning.

In this example, Neither output is correct. Output (a) tries to follow more closely the instruction as it changes the first verb of the sentence. Therefore, we should
choose Response 1 is better.

Example 3

Instruction: Change the first verb to a synonym Input: I love surfing Response 1: I hate surfing Response 2: I don't like surfing

In this example, neither output is correct and the responses are very similar. In such a case, you can choose either Response 1 is slightly better or Response 2 is
slightly better. However, in general we ask you to choose those options as few as possible .

Payment structure

In general, we aim to pay crowd workers $15/hour on average. Our current estimate is that it will usually not take you more than a minute to compare each pair of
responses on average. Therefore, we currently pay $0.25 per pair of responses.

Qualification

In the qualification round, you will need to compare 24 pairs of responses and we pay $6 for this part. We also allocate 2 minutes for you to read the annotation
guideline, for which we pay $0.50. In total, we pay $6.50 for the qualification round.

Main HIT

In total, we have around 20K pairs to annotate and we plan to spread the annotation over 2 weeks. In each HIT after the qualification round, you can work on 15 pairs
of responses. We pay $3.75 for each HIT.

Figure 10: Our annotation guideline.

24

Hi test22. Not your MTurk id? Logout

Your annotation progress for this HIT: 0/6 completed.

Sample 1 of 6.
Lets you skip forward (all samples still need to be marked):  Next sample.

Returns you back to the next un-marked sample to mark:  Go to next un-marked sample.

Annotation Guidelines

Instruction
Tell me about self driving cars

Input

AI Response 1
Self driving cars are vehicles that are capable of detecting their surroundings
and navigating without any input from a human driver. They use a variety of
sensors, such as cameras, radar, and lidar, to detect objects in their
environment and use advanced algorithms to make decisions about how to maneuver
around them. Self driving cars are becoming increasingly popular and are being
used in a variety of applications, such as ride-hailing services and autonomous
delivery services.

AI Response 2
Self driving cars are cars that are equipped with sensors, cameras, and
software, which allows them to navigate without the need for a driver. Self
driving cars are able to monitor their environment and navigate without the
assistance of a driver. Self driving cars use a combination of technologies
such as GPS, radar, lidar, and computer vision to detect their environment and
avoid obstacles. They are also able to update their maps and adjust their
routes to account for variables such as traffic and construction.

The main benefit of self driving cars is their ability to reduce crashes and
save lives. Autonomous vehicles have the potential to save up to 30,000 lives
annually. They are also more energy efficient than traditional vehicles, as
they do not require a driver who has to maintain a minimum speed. Autonomous
vehicles also create new opportunities for increased mobility, allowing those
who are unable to drive to get around.

Rating
Response 1 is better.

Response 1 is only slightly better. (only pick this if it's truly close)

Response 2 is only slightly better. (only pick this if it's truly close)

Response 2 is better.

Optional explanation (never required): for cases where rating is near random.

Submit

Figure 11: Our annotation interface.

25

E Additional results

E.1 Label noise ablations for simulated annotators

20 21 22 23 24 25 26 27 28 29 210

Number of reranked samples (best-of-n)

0.30

0.35

0.40

0.45

0.50

Ev
al

 w
in

-ra
te

(p
GP

T4
sim

 fo
r b

lu
e,

 p
ev

al
sim

 fo
r o

ra
ng

e)

Train distribution
for reward model

pGPT4
sim

pGPT4
sim w/

25% label flips
peval

sim

pann
sim , = peval

sim w/
25% label flips

Figure 12: Label noise is the most crucial ingredient for inducing overoptimization.

In this section, we ablate the different components of pann
sim that add variability along two axes: randomizing

across different simulated annotators, and adding label noise. To ablate the randomization across different
annotators, we compare to the simple GPT-4 prompt pGPT-4

sim with added label noise. To ablate the label noise,
we compare to peval

sim , which is pann
sim without the label noise. We train reward models on these preference

distributions and compare the performance of best-of-n sampling.

Figure 12 sbows the results of the ablation, demonstrating clearly that added label noise provides the majority
of the overoptimization effect. In particular, the two options that do not add label noise, pGPT-4

sim and peval
sim , keep

increasing win-rates with more samples. This result suggests that modeling intra-annotator variability via label
noise may be an important component to understanding learning from human preference data.

E.2 Understanding computational cost

While we have focused primarily on the performance of the final model, the computational cost of these
methods is an important consideration. We provide time estimates for training on our specific implementation
and compute environment (a single 8×A100 machine). While these timings are specific to our experiments,
we believe these insights may be useful in understanding the cost of learning from pairwise feedback.

To begin with, supervised fine-tuning and methods that directly adapt supervised fine-tuning like Binary
Reward Conditioning and Binary FeedME are generally fast, taking less than an hour for 10k instructions.
Best-of-n sampling incurs no training cost but instead suffers a substantial inference time cost. The optimal n
for best-of-n was around 16, which (in principle) translates into an increased cost of 16x for batched inference.

In our experiments, Expert Iteration works best when training on the outputs of best-of-16 sampling, which
involves substantial amounts of compute to perform best-of-16 sampling on the unlabeled split. Concretely,
this sampling process takes around 4 hours on the 20k unlabeled split and the subsequent fine-tuning takes less
than an hour. We observe that PPO performance peaks on both human data and in simulation after 40-80 steps,
which translates to less than 2 hours of compute time on the full machine.

E.3 Additional analysis of model outputs

In this section, we provide a qualitative analysis of the model outputs. In Table 5, we show three example
outputs from SFT 10k, PPOhuman, and PPOsim. As mentioned in Section 5.2, we find that the model outputs
after LPF training often become much longer. In Table 6 and Table 7, we show the average length of model
outputs of various systems in the number of characters, which qualitatively illustrates this phenomenon. While
longer responses indeed lead to better human preference, we continue to see hallucinations in the output (e.g.
in the example question about Berlin) and it is not clear to us whether our LPF models improve on the more
critical aspects such as faithfulness, knowledge, etc.

26

Table 5: Comparing system output before and after training with PPO, we observe that outputs often become
longer. Example showing output from PPO-tuned models trained with the human preference phuman and with
the simulated preference pann

sim.
What do you think about ChatGPT?
SFT 10k: I think ChatGPT is a promising technology that has the potential to revolutionize the way we interact
with computers. It has the ability to generate natural language text quickly and accurately, which can be used
for many different applications. I think it’s an exciting technology that we’ll continue to see more and more
uses for in the future.
PPOHuman: I think ChatGPT is a fascinating development in natural language processing. It is an artificial
intelligence system that is able to generate human-like text, allowing it to converse with humans on a variety
of topics. It is able to learn from large datasets and improve its performance over time, allowing it to produce
text with increasing accuracy and sophistication. I think it has a lot of potential applications, from natural
language processing and machine translation, to automated customer service and natural language processing.
It is an incredible step forward in AI technology, and I look forward to seeing what new developments come
out of it in the future.
PPOsim: I think ChatGPT is a really cool technology that can generate natural language text based on an input.
It allows for users to quickly generate text responses without needing to write code or create a custom natural
language processor. It also is very good at understanding context and can generate text based on context and
prompts. I think it has a lot of potential applications, such as automated customer service, natural language
processing, and text generation. I think it’s pretty amazing how quickly the technology is advancing and it’s
really cool to see what’s possible with AI and machine learning. I’m really excited to see what the future holds
for ChatGPT and other AI technologies.
Who made Berlin?
SFT 10k: The city of Berlin was made by the German people.
PPOhuman: The city of Berlin was made by various people over the course of its history. It was first established
as a medieval trading post in the 12th century, and subsequently built up by a variety of different rulers. The
city was heavily damaged during the Thirty Years’ War, but was rebuilt and expanded by the Hohenzollern
dynasty in the 17th and 18th centuries. During the 19th century, Berlin became the capital of the German
Empire, and was significantly expanded and modernized under the leadership of Mayor Otto von Bismarck.
The city was also divided into East and West sectors following World War II, with each sector being ruled by
separate Cold War-era governments.
PPOsim: The city of Berlin was made by various people over the centuries. The earliest known inhabitants of
the area were the Tubal and Jabal tribes, who arrived in the region around 2300 BC. These tribes were later
replaced by Celtic tribes, who founded the city of Berlin in the 1st century BC. The city was then conquered
by the Romans in the 1st century AD and was renamed as ’Berlinium’. During the late Middle Ages, Berlin
became an important city in the Holy Roman Empire and was ruled by various princes and electors. In the 17th
century, Berlin gained its current shape under the rule of Prince-Elector Frederick William I, who established
the city’s defensive ring of bastions and set up the first permanent settlements outside the city walls. In the 18th
and 19th centuries, Berlin experienced a cultural and economic boom, becoming the capital of the Kingdom of
Prussia in 1701 and the seat of the German Empire in 1871. The city was also the site of many historical events,
including the foundation of the Weimar Republic in 1919 and the fall of the Berlin Wall in 1989. Today, Berlin
is a bustling city with a population of over 3.7 million people, making it the third-largest city in Germany.
How many black holes are known to exist at the time?
SFT 10k: Nearly 100 million black holes are known to exist at the time.
PPOhuman: At the time, there are believed to be several million black holes in the universe. This number is
constantly increasing as astronomers discover more and more black holes through observation and study. Most
black holes are found at the centers of many different galaxies, and are thought to be formed when the most
massive stars in the galaxy run out of nuclear fuel and explode in a supernova. The resulting core of the star is
so densely packed that nothing, not even light, can escape its powerful gravitational pull, giving it the name
"black hole".
PPOsim: At the time of this writing, there are over 1000 known black holes in the universe.

27

Table 6: Average length of the model outputs of baselines and LPF models trained with human preferences.
We observe that LPF training generally leads to longer outputs.

Model Number of characters

GPT-4 504.4
ChatGPT 333.4
Davinci001 286.3
SFT 52K 383.2
SFT 10K 277.5
LLaMA 7B 950.5
PPO 200 steps 495.6
PPO 80 steps 623.7
PPO 40 steps 683.1
Best-of-128 680.0
Best-of-16 565.2
Best-of-4 478.7
ExpIter-128 524.7
ExpIter-16 458.3
ExpIter-4 422.1
FeedMe 371.4

Table 7: Average length of the model outputs of baselines and LPF models trained with simulated preferences.
We observe that LPF training generally leads to longer outputs.s

Model Number of characters

GPT-4 504.4
ChatGPT 333.4
Davinci001 286.3
SFT 52K 383.2
SFT 10K 277.5
LLaMA 7B 950.5
PPO 80 steps 863.4
PPO 20 steps 637.7
Best-of-128 704.7
Best-of-16 570.5
Best-of-4 483.3
ExpIter-128 527.5
ExpIter-16 458.3
ExpIter-4 407.4

28

generate

rewritecreate

write

classify

edit

ex
pla

in

give
s
u
m
m
a
ri
z
e

p
r
o
v
id
e

d
e
s
c
r
ib
e

s
u
g
g
e
s
t

fi
n
d

c
o
n
s
tr
u
c
t

ta
k
e

c
a
lc
u
la
te

design

identify

name

convert

list

se
n
te
n
c
e

s
to
ry

titlesentence

s
t
o
r
y

t
e
x
t

p
a
r
a
g
r
a
p
h

list

p
r
o
g
r
a
m

e
x
a
m
p
le

q
u
e
s
tio
nstory

se
n
te
n
c
e

essaydescriptiontype

sentence
text
item

sentence

text
para

grap
h

title

con
cep

t

m
ea

nin
g

di
ffe

re
nc
e

im
pl
ic
at
io
n

ex
am

p
le

ti
p

re
a
s
o
n

s
to
ry

a
rt
ic
le

te
x
t

c
o
n
t
e
n
t

c
o
n
c
e
p
t

e
x
a
m
p
le

s
o
lu
t
io
n

li
s
t

s
u
m
m
a
r
y

p
r
o
c
e
s
s

f
e
a
t
u
r
e

p
u
r
p
o
s
e s

it
u
a
t
io
n

way

a
c
t
iv
it
y

r
e
c
ip
e

s
t
r
a
t
e
g
y

w
o
r
d

n
u
m
b
e
r

v
a
lu
e

s
im
ila
rity

q
u
e
r
y

fu
n
c
tio
n

s
e
n
te
n
c
e

a
lg
o
rith

m

s
e
n
te
n
c
e

n
o
u
n

s
to
ry

s
trin
g

a
re
a

cost

angle

tem
perature

algorithm

interface

logo

page

type

word

issue

subject

type

action

career

city

equation

sentence

text

denom ina tion

Figure 13: Breakdowns of the 52k Alpaca training instructions.

F Additional Analysis on Training and Evaluation Instructions

We plot in Figure 13 and Figure 14 the breakdowns of the Alpaca training instruction distribution and
the AlpacaFarm evaluation instruction distribution respectively. In the inner wheel, we plot the root verb
distribution of the instructions and in the outer wheel, we plot the direct subject distribution. We find that
both the training distribution and the evaluation distribution cover a diverse range of instructions and the
distributions match at a high level.

29

write

givemake
c
re
a
te

explain

provide

answ
er

im
pl
em

en
t

re
w
ri
te

tell

c
h
o
o
s
e

d
e
s
c
r
ib
e d

e
s
ig
n

fi
n
d

h
a
v
e

list

su
g
g
e
st

take

use

build

poem

review

script

story

tip

d
e
s
c
r
ip
t
io
n

e
x
a
m
p
le

list

list

artju
ic
e

q
u
e
s
tio
n
n
a
ire

c
a
p
tio
n

ta
b
le

a
llite

ra
tio
n

ch
a
ra
cte

rbasic
processdeath

difference

list

name

solution

summary

question

alg
ori

th
m

ex
pr
es
si
on

fu
nc
tio

n

pr
og
ra
m

te
xt

p
a
ra
g
ra
p
h

s
e
n
te
n
c
e

so
n
g

s
to
ry

b
e
n
e
fi
t

h
is
to
ry

s
y
s
t
e
m

t
it
le

b
o
o
k

n
a
m
e

p
r
o
c
e
s
s

r
e
s
p
o
n
s
ib
il
it
y

s
c
e
n
a
r
io

s
c
e
n
e

a
s
s
e
s
s
m
e
n
t

c
h
a
lle

n
g
e

o
u
t
lin

e

p
a
le
t
t
e

a
n
s
w
e
r

b
ill

d
ir
e
c
t
io
n

fo
r
m
u
la

g
r
a
n
d
k
id

k
id

o
b
lig

a
t
io
n

p
a
rty

c
o
n
c
e
p
t

c
o
u
rs
e

fi
lm

tra
it

b
o
o
k

b
u
n
d
le

n
a
m
e

paper

balloon

care

conversation

eye

cash

emojis

process

radio

cabin

pc

waitlist

Figure 14: Breakdowns of 805 AlpacaFarm evaluation instructions.

30

	Introduction
	Background & problem statement
	Learning to follow instructions
	Problem statement

	Constructing the AlpacaFarm
	Instruction following data
	Designing simulated pairwise preference psim
	Designing an automatic evaluation
	Reference methods in AlpacaFarm

	Validating the AlpacaFarm simulator
	Experimental details
	End-to-end validation of AlpacaFarm
	Validating the pairwise preferences component
	Validating the evaluation protocol

	Benchmarking reference methods on the AlpacaFarm
	Comparing LPF methods
	Analysis of model outputs
	Using AlpacaFarm to train models directly for human deployment

	Related work
	Limitations and future directions
	Reference LPF methods on AlpacaFarm
	Methods that directly learn from pairwise feedback
	Methods that optimize a surrogate reward function

	Details on methods implementation and hyperparameters
	PPO
	Quark

	Pairwise preference simulation
	Details about simulated annotators
	Additional results

	Details on human data collection
	Additional results
	Label noise ablations for simulated annotators
	Understanding computational cost
	Additional analysis of model outputs

	Additional Analysis on Training and Evaluation Instructions

