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Abstract: The capability to exploit multiple sources of information is of fundamental importance in a battlefield scenario.
Information obtained from different sources, and separated in space and time, provides the opportunity to exploit diversities to
mitigate uncertainty. In this study, the authors address the problem of automatic target recognition (ATR) from synthetic
aperture radar platforms. The author’s approach exploits both channel (e.g. polarisation) and spatial diversity to obtain
suitable information for such a critical task. In particular they use the pseudo-Zernike moments (pZm) to extract features
representing commercial vehicles to perform target identification. The proposed approach exploits diversities and invariant
properties of pZm leading to high confidence ATR, with limited computational complexity and data transfer requirements.
The effectiveness of the proposed method is demonstrated using real data from the Gotcha dataset, in different operational

configurations and data source availability.

1 Introduction

In the modern battlefield scenarios, the availability of multiple
sources of information, such as spatial, temporal or other
diversities, allows improvements in sensor performance and
capabilities. Modern radars scenarios normally involve
different diversities. Some of these are provided by the
sensor position in the space-time plane. In particular,
spatial diversity can be given by multiple platforms
observing from different positions, whereas temporal
diversity can be provided by multiple passes over the same
area from the same platform. Additional diversities are
provided by sensor characteristics such as frequency,
waveform and polarisation.

In our work, we investigate the possibility of exploiting the
combination of the above mentioned categories of diversities.
Of particular interest is the ability to achieve high
performance results with low cost algorithms and the
capability to summarise the discriminating information
thereby reducing the communication overhead between
Sensors.

A particular application of interest for this scenario is
automatic target recognition (ATR) [1-3] and its lower level
tasks (identification, characterisation and fingerprinting).
The challenge of ATR has been investigated from
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polarimetric synthetic aperture radar (SAR), inverse SAR
(ISAR) and passive bistatic radar [4-8]. The use of
polarimetric data is justified by the fact that the way in
which targets scatter signals with different polarisations
contains information that can be exploited in target
recognition, so the use of multi-polarisation SAR data can
lead to improved ATR performance. In [4], a combination
of polarimetric and frequency dependent features was
exploited to distinguish among different targets in a SAR
image. The approach represents the electromagnetic
scattering with primitive geometries (such as cylinders,
spheres, edges, top hats etc.) and the physical geometry of
the target, which can be seen as a combination of different
elementary geometries. Another approach has been
investigated in [5], where a  two-dimensional
cepstrum-based feature is extracted with the aim of
discriminating between clutter and man-made objects in a
SAR image. Tests on the MSTAR database have shown
good classification results using this technique. A more
general approach has been investigated in [9], where L,
normalisation is applied to the image thereby preserving all
the information of the image while leaving the classifier the
task of deriving the model and separation of targets. An
interesting analysis was developed at MIT Lincoln
Laboratory [6] investigating both  detection and
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classification of stationary ground targets using high
resolution, fully polarimetric SAR images. In [6, 10], a
comparison of ATR performance for several polarisation/
resolution combinations has been provided (in particular,
the single HH polarisation is compared to the optimal
combination of HH, HV and V'V polarisations). The problem
of ATR exploiting polarimetric information has been
investigated also from ISAR in [7], where persistent
polarimetric signatures are exploited, whereas in [8], the
problem of ATR has been investigated in passive bistatic
radar.

In this paper, a novel algorithm for ATR, with target
identification capabilities, from multiple spatially separated,
multi-channel SAR data, is presented. The algorithm is
capable of exploiting single or multi-channel information.
With low-computational cost it extracts reliable and
easy-to-share discriminating features based on the
pseudo-Zernike moments (pZm) [11]. pZm belong to the
family of geometric moments such as Hu and Zernike
moments [12, 13], which were used both in image
processing for pattern recognition and image reconstruction
[14-16]. Some of the main advantages of these moments
include position, scale and rotational invariance. Another
important property is that pseudo-Zernike are independent
moments, because they are computed from orthogonal
polynomials. Moreover, pZm have a lower sensitivity to
noise than Zernike moments [11] as well as more moments
for a given polynomial order. This last property is
important as the availability of more independent moments
provides more information (to be wused for image
reconstruction or classification purposes), with lower
sensitivity to noise. SAR images are different from
‘everyday’ images. They present peculiar characteristics
such as speckle noise, for this reason we select the pZm,
for their capability to represent the images with a lower
sensitivity to noise than Zernike ones. Although the
proposed framework applies to the general multi-channel
SAR case, without loss of generality, our experimental
analysis will focus on the case of multi-polarimetric SAR.
The proposed algorithm is tested with the Gotcha dataset
[17] that contains multiple observations of commercial
vehicles. The results show that the proposed algorithm
provides good classification performance increasing with
the use of spatial and polarisation diversity.

This paper is organised as follows. In Section 2, the novel
algorithm to extract the features from a multi-channel SAR
observation is introduced together with two decision fusion
frameworks for the case of multiple passes. Section 3
describes the analysed scenarios and presents the obtained
numerical results from real data. Finally, in Section 4, some
conclusions and possible future research directions are
provided.

2 Classification algorithm based on pZm

In this section, a novel algorithm for automatic target
classification in SAR images is presented. Specifically, a
new data representation is utilised for both single and
multi-channel ATR from SAR. The approach is based on
the use pZm [11], in order to obtain reliable feature vectors
with relatively small dimension and low computational
complexity. Noted that in [18], we have introduced the use
of the pZm for ATR applied to micro-Doppler signatures.
This novel approach benefits from specific properties of the
pZm such as invariance with respect to translation and
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rotation, in addition scale invariance can be included if
required by the specific application [11].

In the following subsections, the background theory
defining the pZm is introduced. Then, the novel feature
extraction algorithm and the decision fusion frameworks are
presented in detail.

2.1 Pseudo-Zernike moments

Let f(x, y) be a non-negative real image. The complex pZm
[11] can be computed as

27 rl
j j W, (p cos 6, psin 6, p)f(p cos 6, p sin O)pdpd6
(1)

where the symbol (-)* indicates the complex conjugate
operator and W, ; are the pseudo-Zernike polynomials. The
latter are a set of orthogonal functions that can be written in
the form

Wy, p) =W, (pcosb, psinb, p) =35, ,(p) Qil? 2)

with i = /=1, x=pcos @, y=psin6, [ is an integer and
S,./(p) is a polynomial (called a radial polynomial) in p of
degree n such that n > |l|. Notice that the modulus of (2) is
rotationally invariant [11]. Moreover, these functions form a
complete basis and satisfy, on the unit disc (i.e. for x>+
y? < 1), the orthogonality relation [11]

” L WZ[()@ MAVES +y2) Wm,k<x, VA +y2>dxdy
x*+y* <1

)

where &, is the Kronecker delta function, that is, 6,,,= 1 if
m=n, and 0 otherwise. As given in [11], an explicit
expression to compute the radial polynomials, S, (p), is

n—|l| n—k k
B PN (=1 @n+1-k)
Snilp) = k; k\(n+ 1+ 1= 0)ln — 1] — k)!

“4)

Moreover, as previously stated an important characteristic of
the pZm is the simple rotational transformation property
because of (2); indeed, the moment requires only a phase
factor for the rotation [11].

2.2 Feature extraction algorithm

The feature extraction algorithm is summarised in the block
diagram shown in Fig. 1, while a detailed explanation of
the processing steps are given below.

The complex valued image for each channel from the jth
sensor is defined as Xi(x,y, h) € CHH with x and y
representing the range and cross-range pixel, respectively, of
the BXxZ sub-image containing the target. Moreover, &
represents the index of the Ath channel in the set of H
available channels (e.g in the polarimetric SAR case, if H=1
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Fig. 1 Block diagram of the proposed feature extraction and
classification algorithms

then {HH} is the considered polarisation, while for H =4 the
set of polarisations is {HH, VV, HV, VH}).

The feature extraction algorithm begins with the generation
of the multi-channel magnitude image of the target area

H
Qx, ) =Y IX;0x, . )l 3)
h=1

The aim of this paper is to demonstrate the utility of the
proposed framework and of the pZm not to choose the best
channel fusion algorithm. The focus is not on the
multi-channel fusion technique, thus the simplest fusion
technique (5) is utilised. In addition this will result in a
lower computational burden of the entire ATR algorithm.
However, other fusion approaches exist in literature,
particularly for the polarimetric case [10, 19] and can be
applied in place of (5).

As Q/(x, y) can have a very large dynamic range (this can
affect the performance of the algorithm by reducing the
sensitivity of the pseudo-Zernike polynomial to targets
characteristics), its logarithm is used instead

Q, (x, y) = log,o(2(x, ) (6)

To obtain features that are independent of different intensity
levels, because of different observation angles and channel
propagation properties, a normalisation of Qj is required to
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restrict its magnitude to the interval [0, 1]
Q;(x,y) = &, (x, y) — min[ &, (x, )]
@, (x, ) = & (x, y)/max(Q,; (x, )

This step removes information about the absolute value of the
radar cross-section (RCS) of the target. This piece of
information can be considered separately in a RCS-based
algorithm. Then the outputs of the two algorithms can be
used in conjunction to increase the overall performance.

_ The next step of the algorithm (Fig. 1) is the projection of
€ (x,) onto a basis of pseudo-Zernike polynomials. The
polynomials can be pre-computed through (4) since it
depends on the sub-image size B x Z only (because of the
dependencies of (4) only on p), and therefore may be used
to populate a look-up table. As the pseudo-Zernike
polynomials are defined on the unit disc, the support of the
image €}, (x, y) is scaled, before the moments are computed,
to avoid information loss by removing the part of the image
under test that resides outside of the unit circle. Applying
(1) to €, (x, y), the pseudo-Zernike expansion is obtained as

_n+1

;=
n, T

27 pl
j I W:’,(p cos 6, psin 6, p) €, (p cos 6, p sin O)pdpdo
0o Jo
(7

The output of this stage is the set of (n + 1)* magnitudes of the
pseudo-Zernike coefficients [y, ], 1 <I< (n+1)*. From (4),
the modulus of the pZm is rotationally invariant. This
means that at a given observation angle the modulus of the
moments are independent of the relative orientation of the
target in the image plane. For example, a target observed
from the same aspect angle in two different images and
appearing with a different orientation in the image plane,
because of unregistered images, will be represented by the
same moments (neglecting the effect of the noise and of the
observed scene). Hence, the feature vector is

F = [l s 19y nl] ®)
Finally, the feature vector, F, is normalised using the
following linear rescaling

F= (F — up)/of ©))

where ur and of are the mean and standard deviation of the
feature vector. These values are then used to populate the
Feature Database that is used as input to a classifier.

2.3 Classification and fusion

The last step of the algorithm consists of the classification
procedure. The classification has been performed using a
k-nearest neighbour (k-NN) classifier because of its low
computational load and its capability of providing score
values as an output [20, 21]. Other classifiers with similar
characteristics could also be selected.

The sum method is selected as fusion rule [20, 21]. Two
strategies are considered for the fusion, maximum vote and
maximum confidence. Let V' be the number of possible
classes. For each of the J sensors, the k-NN classifier
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returns as output a V-dimensional vector s; containing the
confidence levels for each cluster (or the value of the vote
[0, 1] in case of the rule at maximum vote). The confidence
levels (referred also as scores) are defined as the number of
nearest neighbours belonging to the vth class divided by £.
The vote is defined as 1, if the observation is considered to
belong to one of the V classes, and 0 otherwise. The sum of
all the scores or votes is then computed as

A=)"s (10)

=1

with A =[Aq, Ay, ..., Ap]. This fusion strategy allows the
exploitation of the information from multiple images and is
known for its robustness [20, 21]. In addition, it allows the
definition of the ‘unknown’ class if a draw occurs, when A
does not have a unique maximum element, or if the
maximum value of A does not satisfy a specific
requirement, such as a sufficient score or vote. In particular,
we define a threshold [The threshold value depends on the
desired algorithm performance. The selection of the optimal
threshold is left to the algorithm user in accordance with
the application requirements.] 7 (i.e. the minimum score or
vote to be reached to permit a classification) and all
observations with A below n will be not classified and
labelled as unknown. Thus the estimated class can be
selected as

argmaxA if 3!(maxA) > 7
b= v (11)

unknown otherwise

Defining the unknown class is important as the number of
unknowns provides a measure of the capability of the ATR
system to decide for a class.

3 Performance analysis

In this section, the performance analysis of the ATR
algorithm described in Section 2 is presented. The
algorithm is applied to real polarimetric X-band SAR data.
We first introduce the analysed scenario then we present
numerical results obtained on the real data.

3.1 Analysed scenarios

The dataset used in this analysis is the ‘Gotcha Volumetric
SAR Data Set V1.0’ [17], consisting of SAR phase history
from a sensor with carrier frequency of 9.6 GHz and 640
MHz bandwidth, full azimuth coverage, eight different
elevation angles and full polarisation. The imaged scene
consists of numerous civilian vehicles and calibration
targets. For our analysis, the aperture has been divided in
sub apertures of 4° in azimuth, leading to approximately
equal range-azimuth resolution cells of 23 cm. In this way,
90 images (looks) for each of the 8 circular passes
(different elevations) are available in four polarisations,
{HH, VV, HV, VH}, for each of the 9 commercial vehicles
considered. To allow the reader to understand the imaged
targets and scene, in Fig. 2 the 360° full polarimetric image
(obtained adding together the intensities of the four images)
of the scene of interest is shown. The image is a multi-look
image (adding all the 90 looks of one circular pass). As
already mentioned, for testing purposes a single look is
used. In Fig. 2, the nine vehicles are labelled with
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Fig. 2 Multi-look (90 looks) and full polarimetric magnitude SAR
image of the area of interest containing the nine vehicles

alphabetic letters. Specifically, the nine vehicles are,
respectively, (A) Chevrolet Prizm, (B) Nissan Sentra, (C)
Nissan Maxima, (D) CASE Tractor, (E) Ford Taurus, (F)
Chevrolet Camry, (G) Hyundai Santa Fe, (H) Chevrolet
Malibu and (I) Hyster Forklift.

To perform the analysis equal sized sub-images (50 x 50
pixels) containing each vehicle have been selected.
Specifically, of the eight available passes (different
elevations) a subset of the pass with lowest altitude is used
to train the classifier while all the other images (i.e. the
unused images from the lowest pass and all the images
from the other seven, higher elevation, passes) are used to
test the algorithm. In this way, different elevation and
azimuth angles are considered for testing the images to
provide independent training and validation sets.

The analyses have been conducted considering different
choices of the training subset, specifically three training sets
composed of images selected with azimuth spacing of 12°,
30° and 92°, respectively. The use of a limited number of
aspect angles for training is meaningful in terms of a
practical realisation. Specifically, the acquisition of a
database covering all the possible different aspect angles is
expensive, time demanding and in some cases impossible.
Thus having an under-sampled database of training
observation is a valid test for the proposed algorithm. The
analysis is performed using 1, 2 and 3 randomly selected
test data images to characterise the benefits of the
multi-sensor framework and the classification fusion stages.
Moreover, a comparison between the fusion techniques
exploiting the output scores and votes of the k-NN

F== M

a

Fig. 3 1, 2 and 3 sensors acquisition examples

a 1 Platform
b 2 Platforms
¢ 3 Platforms
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Fig. 4 Correct classification (%) against moments order of the proposed algorithm for training samples spaced 12° with 3 platforms

Both FP and SP cases have been considered with score and vote-based fusion rules

Threshold is set to 1 and 2 for the score and vote rules, respectively
Subplots (a)—(c) refer to k=1, 3, 5 for the k-NN classifier

In subplot (d), the number of unknowns is given against the moments order
ak=1

bk=3

ck=5

d Number of unknowns

classifier, respectively, have been considered. The analysis
has been also conducted considering a single polarisation
(SP) and full polarisation (FP) analysis. To evaluate the
performance of the classification algorithm, the correct
classification in percentage, defined as the number of
correctly classified sub-images over the total number of
sub-images under test, is used as figure of merit. For the
case of 1 test image all the available images have been
used, whereas for the case of 2 and 3 test images 10 000
pairs or triples are chosen randomly. For this reason, the
standard deviation of the correct classification rate for the
cases of 2 and 3 sensors is also computed.

In Fig. 3, examples of the configurations considered are
shown. Multiple acquisitions can be assumed to be done by
multiple platforms or from the same platform in different
instants of time. Moreover, the analysis is performed for
different orders n of the pZm between 1 and 20 and using a
k-NN classifier, analysing different values of k. The range
of values of #n is selected considering that the sensitivity to
noise increases with n, thus making it less useful to use
moments of higher order.

3.2 Numerical results

The first analysis is presented in Fig. 4 showing the results
obtained for 3 platforms using a training samples spacing of
12°, equivalent to 30 observations of a target with different
cases of equally spaced initial azimuth angles (e.g. 0°, 12°,
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24° etc.). The curves refer to both SP and FP cases, and
both the classifier based on the score and vote fusion rules
have been analysed. Moreover, the subplots (a)—(c) of
Fig. 4 refer to three different values of the parameter & in
the k-NN classifier, that is, k=1, 3, 5. Finally, in subplot
(d) of Fig. 4 the number of unknowns obtained in the above
cases are given against the moment orders. Moreover, the
30 confidence intervals are quite small (less than 1 —2%).
The curves show that in general, the FP case produces a
higher level of correct classification with respect to the SP
one, for the same k& and score/vote choice. However, this
behaviour is not observed in the first case, k=1, for the
fusion rule based on the score. The curves also show that
the correct classification increases as the moment
order increases. However, as suggested previously the
simulation results shown in Fig. 4 show a saturation in
performance with increasing moment order. The higher
order of moments are increasingly influenced by the noise.
Consequently they do not introduce additional
discriminating information. As expected the number of
unknowns reduces as the moment order increases, and the
curves reflect the same behaviour observed for subplots (a)-
(c). Finally, it is important to underline that the maximum
correct classification is obtained in the FP case with k=3
and with the use of the score-based rule.

Fig. 5 shows the results obtained for 3 platforms using a
training samples spacing of 36°, equivalent to 10
observations of a target with different initial azimuth angles
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Fig. 5 Correct classification (%) against moments order of the proposed algorithm for training samples spaced 36° with 3 platforms

Both FP and SP cases have been considered with score and vote-based fusion rules

Threshold is set to 1 and 2 for the score and vote rules, respectively
Subplots (a)—(c) refer to k=1, 3, 5 for the k-NN classifier

In subplot (d), the number of unknowns is given against the moments order
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d Number of unknowns

and equal azimuth spacing. Again, the curves refer to both SP
and FP cases. Both the classifier based on the score and vote
fusion rules have been analysed. Also for this analysis, three
different values of the parameter & in the k-NN classifier, that
is, k=1, 3, 5, have been considered [see subplots (a)—(c) of
Fig. 5], whereas Fig. 5d shows the number of unknowns
against the moment orders. Also in this second case, the 3o
confidence intervals are quite small (less than 1 —2%). The
analysis conducted here is in agreement with the results
obtained in the previous case, namely the FP system can
reach a higher level of correct classification with respect to
the SP one. Moreover, the classifier based on the score
fusion rule outperforms that based on the vote fusion rule.
However, comparing the curves of Fig. 5 with those of
Fig. 4, it can be observed that increasing the azimuth
spacing between the images causes the performance of the
classifier to decrease because of the reduced number of
training images. Also, in this case, the number of
‘unknown’ classifications still reflects the behaviour
observed for subplots (a)-(c). Finally, it is important to
underline that the maximum correct classification is
obtained in the FP case with k=3 and with the use of the
score-based rule.

The results obtained for the case considering 3 platforms
and training samples spacing of 92°, equivalent to 4
observations of a target with different initial azimuth angles
and equal azimuth spacing, are shown in Fig. 6. Again, the
curves refer to both SP and FP cases as for the previously
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analysed scenarios. As observed for the first two situations,
also for this case the 30 confidence intervals are quite small
(more or less 1 —2%). Again, the FP system produces a
higher level of correct classification with respect to the SP
one. The classifier based on the score fusion rule still
outperforms the one based on the vote fusion rule, and a
performance degradation with respect to the previously
analysed cases is observed. Also the number of unknowns
is greater than those obtained in the other cases. To
conclude this analysis, it can be claimed that the value k=3
with the FP system produces the best -classification
performances between the considered situations. In addition
the score fusion rule outperforms the vote one.

In Fig. 7, the correct classification expressed in percentage
is given against the moment orders for the classifiers based on
the pZm, for the case of 12° of spacing between training
samples in azimuth. For comparison purposes the L,
norm-based algorithm has also been considered [9]. More
precisely, the L, norm-based algorithm extracts the
sub-image containing the object to classify and normalises
it in order to ensure unit norm. Then, this normalised image
is given as input to the classifier. This algorithm was
selected as benchmark as it considers all the information
available in the image to perform the classification.
Moreover, Fig. 7 compares the results obtained considering
observations from 1, 2 or 3 platforms, with a 3-NN
classifier. As the vote rule was outperformed by the score
decision rule in the previous analysis for k=3, in this
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Fig. 6 Correct classification (%) against moments order of the proposed algorithm for training samples spaced 92° with 3 platforms

Both FP and SP cases have been considered with score and vote-based fusion rules

Threshold is set to 1 and 2 for the score and vote rules, respectively
Subplots (a)—(c) refer to k=1, 3, 5 for the k-NN classifier

In subplot (d), the number of unknowns is given against the moments order
ak=1

bk=3

ck=5

d Number of unknowns

analysis we consider for conciseness only the latter. The
number of unknowns is reported in Fig. 7 subplot (b). Note
that the results shown in Fig. 7 are obtained considering a
higher threshold with respect to those of Figs. 4—6. This
selection is motivated by the need to provide results
showing the effectiveness of the algorithm with a different
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threshold set-up. It was the last parameter to vary in order
to complete the parametric analysis of the presented
algorithm. Moreover, a higher threshold can be required in
more demanding scenarios. For example a higher threshold
might be needed in a scenario where the capability to
identify correctly a target with high confidence is a critical
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Fig. 7 Correct classification (%) against moments order of the proposed algorithm with pZm and the L, norm-based algorithm, for 12° of
spacing in azimuth between training samples, with 1, 2 and 3 platforms

FP case has been considered with score-based fusion rule, subplot (a), whereas the threshold is set to 1 for the case of 1 and 2 sensors and 4/3 for the 3 sensors case

Moreover a 3-NN classifier is utilised

In subplot (b), the number of unknowns is given against the moments order
a Score

b Number of unknowns

IET Radar Sonar Navig., pp. 1-10

7

doi: 10.1049/iet-rsn.2014.0296 This is an open access article published by the IET under the Creative Commons Attribution

License (http:/creativecommons.org/licenses/by/3.0/)



www.ietdl.org

100 6000

I---—F-‘Zi parlorm'
VYTV VSV V-V Y-¢VO-p ¥y ¥y | O PZ2patorms
< 80 2 &6 e e00-00 5000f © @-0-9 ©-0-© ©-0 8 0-0 ©-0-0 ©-0-0 0-0 |——PZ3platorms
£ Lo B S o S S e o o o g -y-L; 1patiorm
§ -vE VY VIV VVVI-VFF VTN § 4000 .y L, 2 platforms;
ﬁ 60 ;é L, 3 platforms
O = 3000 L
- o
8 40 3
5] £ 2000
Q =
2 20L -0 @09 0-0 ©-0-© 0-0-©-0-© 0-0 60 <
PV VYT VTV IV VY- VY Y 1000
0 0
5 10 15 20 0 5 10 15 20
Moments Order Moments Order
a b

Fig. 8 Correct classification (%) against moments order of the proposed algorithm with pZm (open circles — marked blue curves) and the L,
norm-based algorithm, for 36° of spacing in azimuth between training samples, with 1, 2 and 3 platforms

FP case has been considered with score fusion rule, subplots (a), whereas the threshold is set to 1 for the case of 1 and 2 sensors and 4/3 for the 3 sensors case
Moreover a 3-NN classifier is utilised

In subplot (b), the number of unknowns is given against the moments order

a Score

b Number of unknowns

feature (i.e. in the case of engaging a target). In the analysis norm. In Fig. 8, a comparison between the algorithms that
presented in Fig. 7, for the cases of 1 and 2 sensors a score exploit different numbers of platforms is provided. Again
of at least 1 was considered to be able to classify, while the we consider the score decision rule and a 3-NN classifier.
value of 4/3 was the minimum score considered in the case The results obtained in this analysis confirm those shown in
of 3 sensors. The conducted analysis has shown that the Fig. 7. In general, compared with the results in Fig. 7, the
algorithm based on pseudo-Zernike and the L,-based performance degradation is obtained if fewer aspect angles
algorithm can achieve comparable performance when pZm are used as training samples. In addition, the L, algorithm
of order 10 are considered. However, the former uses a B x does not perform as well as the pseudo-Zernike based in
Z-dimensional space for the features, while the proposed this case, demonstrating a higher sensitivity to a smaller
approach uses a space of (N + 1)* with N <20, meaning that number of training samples.
our approach for N=10 on an image of sizes B=Z=50 Finally, in Fig. 9, the correct classification is plotted against
requires 121 components of the feature vector while the L, the moment orders, for the classifiers based on pZm and on
approach requires 2500 components. This is a significant the L, norm, for the case of 92° of spacing between
advantage in terms of computational complexity and training samples in azimuth. Again, the behaviour analysed
bandwidth requirements. Finally, observing both the correct in Figs. 7 and 8 is still evident in this last case. However,
classification and the number of unknowns, it can be seen because of the large spacing between training samples, the
that the higher the number of platforms, the better the performance degradation increases; all the algorithms are
classification results. unable to produce a correct classification score higher than
The results shown in Fig. 8 refer to the case of 36° of 60% and they are also not able to provide a number of
spacing between training samples in azimuth. The results unknowns less than 2500. Notice also, that in this last
show the correct classification versus the moment orders analysis the performance of the L,-based algorithm has
achieved by the classifiers based on the pZm and on the L, deteriorated more than those of the pseudo-Zernike approach.
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Fig. 9 Correct classification (%) against moments order of the proposed algorithm with pZm and the L, norm-based algorithm, for 92° of
spacing in azimuth between training samples, with 1, 2 and 3 platforms

FP case has been considered with score fusion rule, subplots (a), whereas the threshold is set to 1 for the case of 1 and 2 sensors and 4/3 for the 3 sensors case
Moreover a 3-NN classifier is utilised

In subplot (b), the number of unknowns is given against the moments order

a Score

b Number of unknowns
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Table 1 Confusion matrix for the 3 sensors case, FP, image spacing 12°, pZm order 20, k=3 and threshold 4/3

Class Class Unknowns
A B Cc D E F G H |

A 690 0 0 0 0 0 0 0 0 0
B 0 689 0 0 0 0 1 0 0 0
C 0 0 644 0 0 8 0 28 0 10
D 0 0 0 690 0 0 0 0 1] 0
E 0 0 0 0 655 13 0 0 0 22
F 2 0 5 0 1 669 0 2 0 11
G 0 2 0 0 0 0 686 0 0 2
H 0 0 19 0 0 10 0 650 0 11
| 0 0 0 0 0 0 0 0 690 0
Table 2 Confusion matrix for the 3 sensors case, FP, image spacing 92°, pZm order 20, k=3 and threshold 4/3

Class Class Unknowns

A B C D E F G H |

A 580 10 6 0 14 2 0 0 51 53
B 0 511 1 1 2 16 150 0 1 34
C 0 0 567 0 1 90 0 50 0 8
D 0 0 0 561 155 0 0 0 0 0
E 0 3 2 16 574 55 2 0 0 64
F 0 12 250 3 12 436 1 0 1 11
G 0 115 1 1 27 35 491 0 2 44
H 0 0 498 0 5 95 1 104 0 13
[ 0 0 0 0 0 0 0 0 716 0

To complete the analysis of the proposed ATR algorithm,
in Tables 1 and 2, two examples of confusion matrices are
shown. The analysis is conducted with 3 sensors, with FP
and an image spacing of 12° for the results in Table 1, and
92° for the results in Table 2, respectively. In both cases,
the pZm of order 20 was used, k=3 and the threshold was
4/3. From the results in the tables, it can be seen how for
some targets (i.e. B, D and G) the increased number of
aspect angles used for training improves the classification
capabilities, while for other targets (i.e. C, E and H) there
are still few cases of incorrect classification and unknowns.

In general, the presented analysis demonstrates that the use
of the score rule to assign the classes provides better
performances together with the use of 3 nearest neighbours
in the classifier. Moreover the better capability of the pZm
to characterise the targets over the L,-based approach has
been highlighted. Finally, in all the analysed cases the
performance improves with the number of aspect angles
available and with the number of observations from
different aspect angles used to perform the classification.

Clearly, the proposed algorithm appears to have multiple
advantages: reliable target identification, multi-observation
fusion capabilities without the requirement of a
multi-platform training set, ability to provide good
automatic target identification performance with a limited
set of target observations as training. The pZm properties of
translation and rotation independence makes the algorithm
robust with respect to the relative target orientation in the
image plane and with no requirement for images to be
registered between different platforms.

4 Conclusion

In this paper, a novel algorithm for ATR with the capability of
target identification has been presented. The proposed
algorithm exploits the pZm derived from multi-channel

IET Radar Sonar Navig., pp. 1-10
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SAR images as features used to identify different targets.
The algorithm allows the fusion of the classification result
of each of multiple observations from different aspect
angles. A performance analysis using the ‘Gotcha
Volumetric SAR Data Set V1.0’ has been performed
considering a different number of passes, polarisations and
training aspect angles. Moreover, the comparison with the
L, normalisation approach was performed. In all the cases,
the proposed algorithms showed the capability to identify
different vehicles and to take advantage of the multi-pass/
multi-channel nature of the data. The results have indicated
a high confidence target identification and multi-observation
fusion capabilities without the requirement of a
multi-platform training set. The pZm properties of
translation and rotation independence makes the algorithm
robust with respect to the relative target orientation in the
image plane and unregistered images between different
platforms. Future work will involve the exploitation of
polarimetric decompositions (e.g. Pauli, Huynen or
Krogager) in order to extract more information about the
geometry of the targets, exploiting the phase information
and derive roll independent features to be more robust with
respect to the radar incidence angle.
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