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Figure 1: We present a method of device arbitration using inertial measurement units (IMUs) in a head-mounted display and
a smartwatch/smartphone. For example, touch inputs to a smartwatch (A) or smartphone (B) can be used to navigate the UI of
smartglasses (left), unless the user is looking at their device (right) in which case input is routed as normal to the watch/phone.

ABSTRACT

Interactions with Extended Reality Head-Mounted Displays (XR
HMDs) require precise, intuitive, and efficient input methods. Cur-
rent approaches either rely on power-intensive sensors, such as
cameras for hand tracking, or specialized hardware such as con-
trollers. Previous work has explored the use of familiar, available
devices such as smartphones and smartwatches as more a more
practical input alternative. However, this approach risks interaction
overload — how can one determine whether the user’s gestures on
the watch or phone are directed toward control of the XR device or
the mobile device itself? To this end, we propose a novel method for
cross-device input arbitration based on the relative orientation be-
tween the HMD and target device as measured by on-device IMUs.
In a validation study with 6 users, we demonstrate 93.7% accuracy
in estimating the intended device of interaction. Our method offers
a practical, energy-efficient way to leverage users’ existing devices
for input and enable seamless cross-device experiences in XR.
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1 INTRODUCTION

Current extended reality (XR) input methods largely rely on power-
intensive, camera-based hand tracking or require the use of spe-
cialized controllers, which add cost and reduce convenience. These
limitations highlight the need for more practical and efficient in-
put alternatives. Recognizing this, recent work has turned towards
leveraging devices which are already an integral part of users’ daily
lives — specifically, the readily-available touchscreens of smart-
phones and smartwatches [6, 10, 13, 20]. This shift towards inte-
grating ubiquitous user devices presents a novel opportunity for
facilitating interaction within XR environments.

However, this approach introduces a critical challenge: discern-
ing whether a user’s gestures on a smartwatch or smartphone are
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meant to control the device itself or to interact with the XR applica-
tion. Prior work has shown that a users’ gaze directed at their smart
device is a powerful indicator of their intent to interact [7, 12, 14, 19].
By determining if the user is actively looking at the mobile device
or not, we can estimate the intended device of interaction. As a
consequence, rather than requiring the user to lift their hand to tap
and swipe the temple-mounted touchpad featured on a number of
smartglasses [4, 5], the user can use their smartwatch for the same
function in an eyes-free manner. If they intend for their interac-
tions to control the smartwatch, rather than the smartglasses, they
can simply look at their smartwatch (Figure 1). By integrating this
cross-device input routing and device arbitration mechanism, we
aim to transform user interactions within XR spaces.

To achieve this, we propose a novel framework that leverages
the inertial measurement units (IMUs) present in users’ everyday
devices and XR head-mounted displays (HMDs). IMUs consume
significantly less power than HMD vision systems, operating under
a single milliamp even with continuous sampling [2] and requiring
much less complex processing. Furthermore, IMUs are often always-
on for these devices anyway — for HMDs it is necessary for head
tracking and for phones/watches it is used for longitudinal activity
recognition, like step counting [15, 17]. Finally, IMUs are privacy
preserving and can work across all lighting conditions.

Our method hinges on analyzing the relative orientation between
the XR headset and the mobile input device (either smartphone or
smartwatch). We evaluate the efficacy of our system through a 6
person user study across a variety of contexts: sitting, standing,
walking, and lounging. Our decision tree-based model has an arbi-
tration accuracy of 93.7%. We further create three demonstrative
applications to showcase the real-world utility of our approach.

2 RELATED WORK
2.1 Traditional XR Input

A wide variety of input and interaction methods have been proposed
for XR HMDs. Most immersive virtual reality (VR) applications rely
on vision-based, free-space hand-tracking, which can be tiring for
extended use due to lack of mechanical grounding [11], or require
specialized 6DOF controller hardware [1, 3].

In contrast, most augmented reality (AR) smartglasses do not
have the power budget or headset real-estate for sensor instrumen-
tation. Further, their on-the-go nature precludes carrying custom
controllers. As a result, the use of a 1D or 2D touchpad on the
side of the AR smartglasses [4, 5] has been explored as an input
device. However, a major limitation is the ergonomics and social
acceptability of lifting one’s hand to interact with the touchpad.
In fact, some studies in social XR have shown users using the
lifted finger as a rude gesture [16]. Therefore, for both immersive
HMDs and smartglasses, making use of existing ubiquitous devices
(e.g., phones, watches) has been an active area of exploration to
(1) expand interaction possibilities, (2) allow for greater comfort
and social acceptability, and (3) allow for lower power operation
without the needing additional hardware.

2.2 Cross-Device Interactions in XR

Given their ubiquity and precising sensing capabilities, there has
been substantial research exploring how personal devices such
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as smartphones and smartwatches might be used to broaden the
interactive canvas of XR.

With BiShare [20], Zhu & Grossman proposed a set of interac-
tion techniques that leverage touch gestures and positioning of the
phone to act as controller and display space for the headset, includ-
ing the ability to capture input and transfer content. In the same
vein, MultiFi [10] integrated various smart display form factors —
watches, tablets, phones — by dynamically distributing interface
components across each display. The always-available touch sur-
face afforded by smartwatches has also been explored for XR input.
Lang et al [13] used the touchscreen, bezel, and gesturing on a
smartwatch to perform navigation and 3D modeling, while Ahn et
al [6] explored the use of smartwatches for XR text entry.

While prior works make use of these mobile devices (phones
and watches) for XR interactions, none address the fact that these
devices still need to simultaneously function for their primary use-
case in addition to being an accessory to the HMD. For this to occur,
an arbitration scheme is needed to determine intended target of
interaction. Our work seeks to address that need.

3 SYSTEM IMPLEMENTATION

Our system consists of a real-time sensor streaming framework and
machine learning (ML) classifier which continuously estimates the
user’s device of intended interaction.

3.1 Sensor Streaming and Communication

We leverage the Cross-Device Toolkit (XDTK) [9] to stream sensor
data from multiple Android devices to a central XR application
built in Unity. The Unity application connects to the mobile devices
on the same local network in a server-client architecture using
UDP. Once connected, each mobile device starts transmitting its
IMU (orientation, accelerometer, gyroscope and magnetometer)
sensor data to the Unity server. The smartwatch and smartphone
log and stream IMU data at 80 and 100 Hz respectively. Similarly,
the headset samples its IMU-inferred orientation data at 60 Hz.

3.2 Intent-Driven Device Arbitration

The device targeted for interaction can either be the XR headset
or one of the mobile devices — the smartwatch or the smartphone.
We estimate this intended device engagement by modeling where
the user is looking. If the user is looking at the mobile device, it is
the intended device of interaction; else it is the XR headset. Note,
without any spatial tracking information (akin to 6 DoF pose from
controllers or vision based methods), our problem is inherently
under-constrained in nature. That is, for any given orientation pairs
of the headset and mobile device, multiple plausible solutions exist.
Thus, our model needs to contend with this solution ambiguity and
offer the best arbitration estimate. Furthermore, existing IMU-based
algorithms such as tilt-to-wake (TTW) on the watch or watch are
themselves insufficient to determine the locus of intention as the
user may perform the same arm-lifting motion to provide input on
the device screen in both touch device input-intent or XR input-
intent scenarios. The additional information supplied by headset
IMU helps avoid this common failure case.

To model what the user is actively looking at, we make use of the
relative orientation between the mobile device and the XR headset,
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captured via the IMU sensors of each device. In particular, we make
use of the following features:

o 3D rotation of the mobile device represented as a quaternion

o Acceleration along X, Y and Z axis of the mobile device

e 3D rotation of the XR headset represented as a quaternion

o Difference in yaw, pitch and roll between the mobile device
and the XR headset

Each instance of IMU data from the mobile device and the XR
headset results in a length 14 feature vector, which serves as the
input to a machine learning (ML) model. For our ML model, we
make use of sklearn’s Decision Tree Classifier (default parameters)
[18] with a maximum depth of 3 to avoid overfitting. We train two
Decision Tree Classifiers: one to disambiguate between phone and
XR headset, and the other to disambiguate between watch and XR
headset. Once trained, we export the rules of the decision tree from
Python to Unity for real-time inference and integration into XR
experiences. Our tree-based classifier also aided in easier debugging
due to its interpretability.

4 EVALUATION
4.1 Data Collection

For our data collection, we utilized two types of mobile devices: a
smartphone (Google Pixel 6 Pro) and a smartwatch (Google Pixel
Watch 1st gen) in conjunction with a XR headset (Meta Quest 3).
We collected data across six participants. Four of these participants
wore the watch on the left hand, and two on the right hand. The
data collection process was structured around three distinct con-
ditions, each its own session: looking at the watch, looking at the
phone, and interacting with the XR environment without looking
at either device. To capture a broad range of user interactions, we
conducted the data collection in four different contexts: sitting,
standing, walking, and reclining on a chair (lounging).

During each session, the features described in Section 3 were
logged from Unity at a rate of 60 Hz. Within each condition (look-
at-watch, look-at-phone, XR interaction), participants performed
the required interaction in each context (sitting, standing, walk-
ing, lounging) for approximately one minute each. Therefore, we
recorded approximately four minutes of data for each condition per
participant. Participants were given a 2 minute break between con-
ditions. Data was logged continuously during each condition and
all contexts were grouped together in subsequent analysis. Each
datapoint was labeled according to its condition and treated as an
independent sample. No additional data processing was performed.

Importantly, during data collection participants were instructed
to behave naturally and look at the devices as they would in their
daily lives, without any exaggerated or artificial movements. Partic-
ipants were free to change the hand they were holding the smart-
phone in (left vs right) and were also free to change their arm
positions as they saw fit. This approach was crucial to ensure that
the data collected reflected realistic user behaviors and interactions,
thereby enhancing the relevance and applicability of our model in
actual XR settings.
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Figure 2: A user exercising in a virtual nature trail (left) can
view their fitness tracking data when looking at their smart-
watch via dynamic passthrough (right).

4.2 Results

We evaluated the performance of our arbitration model on the user
study data we captured. Specifically, we performed a leave one-user
out cross validation. In this process, we train a Decision Tree Classi-
fier on the 14 IMU features from five of our participants and test on
the holdout sixth participant (all combinations, results averaged).
The Decision Tree arbitration model between the smartwatch and
the XR headset achieved a mean accuracy of 96.1% (SD = 3.4). The
smartphone and XR headset arbitration achieved a slightly lower
accuracy of 91.4% (SD = 4.8). This accuracy drop can be attributed
to the higher degrees of freedom of the smartphone in a user’s hand,
as compared to a smartwatch, the position of which is limited by
the arm’s range of motion. We further tested other ML models such
as Ensemble based classifiers (Random Forest) and Neural Network
based methods, they achieved a comparable accuracy.

Our end-to-end pipeline runs at a frame rate of 60 Hz and has a
mean latency of 32 ms from captured photo to output device arbi-
tration prediction. This frame rate enables a variety of real-time XR
applications as detailed in Section 5. Our arbitration classification
modules for both watch and phone are very lightweight, running
well above the sampling rate of the respective IMUs. Thus, the bulk
of the latency comes from the rendering and display of the XR scene
in Unity which runs at 60 Hz.

5 APPLICATIONS

Our method can determine whether the user is looking at their
mobile device with 93.7% accuracy. This heuristic can be applied to
a number of XR cross-device applications:

5.1 Dynamic Passthrough

Mixed reality HMDs can fully envelope the user in a virtual environ-
ment or allow for spatial awareness using passthrough. By utilizing
our method, passthrough can be dynamically enabled when the user
wishes to look at their mobile device. For example, if a notification
arrives on the user’s smartwatch or smartphone, the user simply
needs to look at their device to activate passthrough, removing the
need to take off their headset. Or if the user is in an immersive
exercise experience, they can simply look at their watch to see their
Fitbit activity metrics (see Fig. 2).
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Figure 3: A user browsing furniture on their phone (left) can
seamlessly instantiate a virtual sofa by lowering their phone
attending to their environment. Their device automatically
begins routing input to the HMD, allowing the user to posi-
tion the sofa within their space using touch controls (right).

5.2 Input Switching

The always-available touch surfaces on smartwatch and smart-
phone can provide grounded, precise interactions. In this mode,
the touch device acts as an eyes-free, cross-device controller for
the headset. For smartglasses, even the small touch area of a smart-
watch can be used to enable Ul navigation, avoiding the need to
reach up to the touchpad on the glasses temple. If the user wishes
to return to the primary function of their watch, they can look at it,
returning the device to the main system experience.For immersive
headsets, experiences can be enhanced with cross-device interac-
tion. For example, the phone can be used as an interactive picker
and manipulation surface for 3D objects. To switch between modes,
the user may look at the phone to select the item they wish to view
in AR, and then use the phone to manipulate the objects as they
view it in AR via their headset (see Fig. 3).

5.3 Notification Routing

Our technique can be used to route alerts to actively attended de-
vices, and suppress others. To stay informed on incoming messages,
the user may choose to receive notifications via their smartglass
display. As the user is notified within their glanceable field-of-view,
they do not require their other devices to actively alert them to the
incoming notification. Likewise, if the user is actively looking at
their phone or smartwatch, a notification delivered on either device
is sufficient to alert them, and the alert on the smartglass display
can be suppressed (see Fig. 4).

6 LIMITATIONS AND FUTURE WORK

While the our system’s accuracy is promising, there are several
key limitations that will need to be overcome before it is ready
for commercial adoption. First is the dataset. While we collected
from six participants in lab settings, future work should extend
this to a larger and more diverse participant pool encapsulating the
variability of in-the-wild cross-device scenarios. More data would
also help to improve the accuracy and robustness of our system.
Our current implementation is based on a snapshot of IMU data
and does not account for any temporal consistencies. Prior work,
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Figure 4: A user receives a notification in XR (left). While
using their phone to respond, additional notifications are si-
lenced on the HMD and routed directly to the phone (right).

such as IMUPoser [15], indicates that temporal inertial data can be
instrumental in deducing spatial body pose, which in turn could
reduce ambiguity and improve device arbitration accuracy. Further-
more, in addition to IMUs we can also explore other low-power
sensors, such as UWB-based distance estimates between devices
[8] to improve the robustness of our algorithm.

In this work we show a method to understand which device a
user is looking at. Incorporating this utility into existing interaction
technique frameworks such as BISHARE [20] or MutliFi [10] can
help to make the concepts demonstrated in these works practically
realizable, and expand the interactive potential of this method.

Lastly, in the future we would like to combine our approach with
other heuristics that could aid in arbitration, such as screen state,
UI content, tilt-to-wake motions, or gating touch gestures. These
factors could offer additional context and enhance the ability to
accurately discern user intentions. Incorporating these elements
into future research could lead to a more context-aware approach
for cross-device input management in XR environments.

7 CONCLUSION

We propose a framework for determining whether device-driven
interactions in cross-device XR are intended for the HMD or the
mobile device itself. For this we make use of the power-efficient
IMUs on the respective devices, and model the relative orientation
between them. Our user study, involving six participants, demon-
strates the efficacy of our method, achieving an arbitration accuracy
of 93.7% across participants, in a variety of contexts of use (sitting,
standing, walking, and lounging). Our method offers a practical,
energy-efficient way to leverage users’ existing devices for input
and better enable seamless cross-device experiences in XR.
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