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Abstract

Languages that lack static typing are ubiquitous in the world
of mobile and web applications. The rapid rise of larger ap-
plications like interactive web GUIs, games, and cryptog-
raphy presents a new range of implementation challenges
for modern virtual machines to close the performance gap
between typed and untyped languages. While all languages
can benefit from efficient automatic memory management,
languages like JavaScript present extra thrill with innocent-
looking but difficult features like dynamically-sized arrays,
deletable properties, and prototypes. Optimizing such lan-
guages requires complex dynamic techniques with more rad-
ical object layout strategies such as dynamically evolving
representations for arrays. This paper presents a general ap-
proach for gathering temporal allocation site feedback that
tackles both the general problem of object lifetime estima-
tion and improves optimization of these problematic lan-
guage features. We introduce a new implementation tech-
nique where allocation mementos processed by the garbage
collector and runtime system efficiently tie objects back to
allocation sites in the program and dynamically estimate ob-
ject lifetime, representation, and size to inform three opti-
mizations: pretenuring, pretransitioning, and presizing. Un-
like previous work on pretenuring, our system utilizes allo-
cation mementos to achieve fully dynamic allocation-site-
based pretenuring in a production system. We implement all
of our techniques in V8, a high performance virtual machine
for JavaScript, and demonstrate solid performance improve-
ments across a range of benchmarks.

Categories and Subject Descriptors D3.4 [Programming
Languages]: Processors compilers, memory management
(garbage collection), optimization
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1.

Web application developers are deploying ever larger appli-
cations with ever greater demand for computational power.
Sites across the web such as Gmail, Facebook, and Ama-
zon include megabytes of JavaScript to run everything from
complex interactive Uls to comment systems, shopping carts
and ads tracking. But larger web applications aren’t the
only trend. JavaScript has emerged on the server side as
well [33], allowing web developers to share frontend and
backend code by running a type of headless JavaScript VM
on the server. Such server code often deals with consulting
data storage and assembling responses to requests in data
buffers, string- and data-crunching tasks closer to traditional
languages. However the biggest trend is that whole games
are being developed and deployed in JavaScript [39], with
engines that perform heavy numeric computation.

Since JavaScript lacks static typing, high performance
virtual machines must resort to dynamic techniques like in-
line caching, type feedback, and dynamic compilation. V8
pioneered several new techniques for optimizing JavaScript,
most importantly, hidden classes [14]. Our work extends
V8’s existing architecture with a new class of dynamic feed-
back that utilizes per-object instrumentation.

While previous work [17, 23] has primarily focused on
allocation sampling to gather limited online object lifetime
feedback, our work introduces a new object instrumentation
technique called allocation mementos that generalizes online
per-object temporal feedback in a more flexible way. Me-
mentos are small objects placed next to objects in the young
generation that track runtime information without requiring
space in the host object. Mementos are created directly at
the allocation site of the object and live only a short time
before a garbage collection, avoiding a large space overhead
on the program. Perhaps even more importantly, mementos
can be selectively enabled on a per-function or even per-
allocation-site basis, allowing a broader range of instrumen-
tation choices than sampling based on allocated bytes.
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Mementos serve as a general instrumentation technique
within V8 which informs several optimizations. In this paper
we show how the low-overhead temporal feedback provided
by mementos is crucial in enabling two key optimizations,
pretransitioning and pretenuring. We implemented these op-
timizations in a production JavaScript virtual machine and
evaluated their effectiveness on a wide range of standard
JavaScript benchmarks. We further demonstrate the flexi-
bility and generality of mementos by showing a prototype
of array presizing which took one person less than a day of
work.

Pretenuring. A generational garbage collection architec-
ture provides high throughput and low latency when most
objects die young [34], but suffers when too many objects
outlive the young generation, incurring large copying and
scanning overhead. Pretenuring [8] is an optimization where
some objects are allocated directly in the old generation with
the goal of reducing this overhead. Effective pretenuring en-
tails predicting the future; pretenure too many short-lived
objects and the old generation will fill up too quickly, requir-
ing more frequent major collections; pretenure too few and
long-lived objects will go through multiple young generation
collections before being promoted. This paper presents our
technique for pretenuring as one of a suite of optimizations
based on temporal allocation site feedback using mementos.

Pretransitioning. JavaScript semantics for arrays present
tricky implementation issues. Yet despite many possible cor-
ner cases, most code is well behaved enough that arrays fall
into a small number of categories that a virtual machine can
implement efficiently. For such categories, V8 has different
array representations with different space / time trade-offs,
transitioning arrays on demand as they are mutated by the
program. Such transitions are relatively expensive. We intro-
duce pretransitioning which uses dynamic feedback about
array evolution to choose the best initial representation on a
per-allocation-site basis, avoiding future transitions.

Presizing. JavaScript arrays can be resized dynamically
and offer methods that allow them to be used like queues
or stacks. Dense representations can be inefficient if they
reallocate and copy elements too often. We demonstrate a
prototype of presizing which avoids internal elements copies
by tracking the dynamic behavior of arrays and estimating
an optimum size for particular allocation sites based on past
behavior.

Summary of Contributions.

® a new instrumentation technique, allocation mementos,
which efficiently gather temporal feedback about objects

e a fully dynamic allocation-site-based pretenuring system
with online lifetime estimation

e the first feedback-based pretransitioning of array repre-
sentations that avoids expensive transition operations

e the first prototype of feedback-based presizing of arrays
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e an industrial strength implementation of our optimiza-
tions in a production virtual machine, shipping since
Chrome 26.0.1410.0.

e a thorough evaluation of our optimizations on several
suites of benchmarks

2. Background

V8 is an industrial-strength virtual machine for JavaScript
that can be embedded into a C/C++ application through a set
of programmable APIs. It is the JavaScript virtual machine
used by both the Chrome and Opera web browsers and
the server-side node.js framework [21]. V8 pioneered an
implementation technique for optimizing JavaScript called
hidden classes [14] that assigns every object a dynamically-
evolving shape that describes its properties and prototype
object. We follow V8’s implementation and use the term
map to describe the hidden class or shape of an object within
this paper. A detailed description of maps is beyond the
scope of the paper; other works offer more detail, e.g. [1].

2.1 V8 Adaptive Optimization

V8 uses a two-tier compile-only strategy where JavaScript
functions are compiled to native machine code by a fast
AST-walking compiler upon the first execution. This paper
will refer to this first tier compiler as the baseline com-
piler and code it generates as baseline code. Inline caches
(ICs) [10, 36] implement the basic JavaScript operations like
binary addition, comparison, object creation, object prop-
erty accesses, etc., and dynamically adapt to the types of
input values that they encounter, recording type informa-
tion that is later used during optimization. CalllCs are in-
line caches that record the targets of function calls in the
code. Such an IC starts in the state UNINITIALIZED and
on the first call records the target function, transitioning to
state MONOMORPHIC. As long as subsequent calls target the
same function, then the IC remains MONOMORPHIC. If a
new call target is seen, then the IC transitions to the state
MEGAMORPHIC.

An optimizing compiler called Crankshaft recompiles hot
functions for better peak performance. Type feedback guided
by ICs is used to reduce complex JavaScript operations to
primitive arithmetic and reduce property accesses to effi-
cient, single-indirection loads, both for named properties of
objects and array elements, usually guarded by a check of the
object’s map. Monomorphic CalllCs can be queried to deter-
mine the unique caller, which may subsequently be inlined.
Many general optimizations in Crankshaft are standard, such
as constant folding, strength reduction, global value num-
bering, loop invariant code motion, dead code elimination,
etc. If type or bounds checks fail or if the code encounters
new types of objects at runtime or numbers outside of an as-
sumed integer range, then the optimized code is deoptimized
and control is transfered back to baseline code.



2.2 JavaScript Objects and Arrays

JavaScript has a prototype-based object model that does not
have arrays in the traditional sense. A simplified but work-
able view is that objects simply have properties, property
names are just strings, and a read of a missing property of
an object results in a recursive read of that property on the
prototype object of the object. Properties can be added and
removed from objects at essentially any time and can even
have getter and setter methods installed.

Instead of special types of array objects, any object can
take on array-like qualities like a numeric length and prop-
erties that are named like integers. Shortcut notation like ar-
ray literals [el, e2, . ] and calls to the Array con-
structor create regular objects that have prepopulated length
and elements. Accessing out of the “bounds” of an array be-
haves like accessing any other missing property as search
continues on the prototype object. Arrays can store any type
of value in the general case, but most do not, especially in
numeric code. Achieving competitive performance on such
code requires a highly optimized representation for arrays
that contain only doubles or integers.

This is made more difficult because JavaScript is untyped,
S0 it is not obvious what types of data an array will store
when it is created, since even array literals are mutable.
Worse, objects created with the Array constructor inherit,
by virtue of their prototype, a host of methods like push ()
and pop () that allow the array to be used as a stack, adding
or removing elements from the end of the array and adjust-
ing its length. Arrays are used in different ways, even in
different parts of the same program. Some arrays might be
used like lists, yet others might store floating point numbers
for an intense numerical computation. A contiguous mem-
ory representation would be horribly inefficient if internal
copies were required to grow the storage on each operation;
it is more efficient to allocate additional capacity to avoid
too many copies.

Another peculiarity is the hole. Indexed properties can be
deleted from the middle of an “array” in JavaScript. When
an indexed property is deleted, further reads from that index
do not produce 0 or unde f ined or throw an exception, but
instead search continues on the prototype of the object just
like any other property the object does not have. As we’ll see
in the next section, V8 uses a special sentinel value called the
“hole” to mark elements that do not exist for more complex
handling. We use the symbol e to represent the hole value in
this paper.

2.3 V8 Array Elements

V8 internally stores the integer-indexed properties of an ob-
ject one indirection away from the main object in a sepa-
rate contiguous memory chunk called the elements backing
store, or simply elements. The elements are represented in
one of six ways, depending on the values and whether there

107

Packed elements

SmiElements
s-d s-hs
Holey elements
s-f  DoubleElements HoleySmiElements

hs-hd

ld_f I

Elements HoleyDoubleElements hs-hf

HoleyElements

N

hd-hf

Figure 1. Allowed ElementsKind transitions in V8.

are holes. We refer to the representation of the elements as
the ElementsKind and list the different kinds in Table 1.

V8 distinguishes arrays that might have holes from those
that definitely do not have holes by giving them differ-
ent ElementsKinds and dynamically transitioning the Ele-
mentsKind when a hole is created. The acceptable transitions
are given in Figure 1. In elements whose ElementsKind is ei-
ther HoleySmiElements or HoleyElements, @ is rep-
resented as a pointer to a special singleton object that iden-
tifies itself as the hole, whereas in those elements with Ele-
mentsKind HoleyDoubleElements, e is represented as
a special 64-bit double NaN value that is impossible to pro-
duce otherwise through normal arithmetic. A read of an ar-
ray element that might contain holes needs a dynamic check
to see if the element is e, and if so, a prototype lookup will be
necessary to implement the semantics dictated by JavaScript.
A single typecheck in optimized code can often guard an en-
tire loop, making it free from hole checks.

Array literals usually offer some clue to a good initial
ElementsKind since they contain initial values and a fixed
length. Static information is used when possible to start the
array at the most appropriate ElementsKind.

(al)
(a2)

var a =
var b

[1,2,3.5];
(1, "hello",,1;

In (al) a will start with kind DoubleElements, since
all elements are statically determined to be numbers. In (a2)
however, b will contain both a string, an integer, and the
value undefined (since there is an element missing), so it
is given kind HoleyElements.

Normally, all arrays start with a default ElementsKind of
SmiElements and V8 will transition the ElementsKind as
necessary when the array is mutated by the program.



ElementsKind Description Contains Size
SmiElements small integers tagged ints (2 + length) x wordsize
HoleySmiElements small integers with holes | tagged ints or e (2 + length) x wordsize
DoubleElements 64-bit doubles doubles 2 x wordsize + 8 x length
HoleyDoubleElements | 64-bit doubles with holes | doubles or e 2 x wordsize + 8 x length
Elements all value types tagged values (2 + length) x wordsize
HoleyElements all value types with holes | tagged values or @ | (2 + length) x wordsize
Table 1. ElementsKind in V8
(bl) var a = [1,2,3]; object map memento map AllocationSite
(b2) al0] = 1.5; 1'—’::T:Z§ted
. . . ) |‘| object EH found
In (bl), a begins with kind SmiElements, but the as- transition_info
signment in (b2) will dynamically transition the array to memento dependent _code

kind DoubleElements, which requires allocating a new
backing store and copying elements. On 32-bit systems, a
transition from SmiElements to DoubleElements re-
quires four steps: 1) allocate a new chunk of memory of size
2 x wordsize + 8 * length, 2) copy elements into the new
chunk, converting each tagged integer to a 64-bit double, 3)
set the object’s elements pointer to the new elements, and 4)
change the object’s map to reflect the ElementsKind change.

(cl)
(c2)

var a = [1,2,3];
delete alll;

In (c2) we see the introduction of a hole into an array.
If the program deletes an array element or writes the value
undefined, V8 instead writes e in the elements and set
the ElementsKind to one of the HOLEY variants. The ar-
ray from (c1) will start with ElementsKind SmiElements
and the assignment (c2) will change the ElementsKind to
HoleySmiElements. This transition is less expensive,
since the array does not need to be reallocated nor the exist-
ing elements copied; however, it still requires a map change
of the object to reflect the change of the ElementsKind.

A transition from a SmiElements to Elements is
similarly inexpensive, requiring only a map change, be-
cause tagged ints are a subset of tagged values. The
most expensive transitions are from DoubleElements
to Elements and from HoleyDoubleElements to
HoleyElements since in both cases every 64-bit double
value must be boxed into a wrapper object on the heap.

2.4 V8 Garbage Collector

V8 uses a generational garbage collector with a semi-space
scavenger strategy for frequent collections of the young gen-
eration and a mark-and-sweep collector with incremental
marking, concurrent sweeping, and compaction for major
collections of the old generation. A store-buffer write bar-
rier tracks old-to-young generation reference stores, and the
recorded store buffer entries become part of the root set for
young generation collections. The write barrier must also
maintain the incremental marking invariant and record ref-
erences to objects that will be relocated during compaction.
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Figure 2. Allocation mementos in the V8 heap.

Newly created objects are allocated using bump-pointer
allocation, which by default happens in the active semi-
space in the young generation. If the end of the active semi-
space is reached a young generation garbage collection is
triggered. The scavenger iterates over the transitive closure
of live objects in the young generation and copies them from
the current semi-space to the other semi-space. Therefore the
latency of a young generation collection depends on the size
of live objects in the young generation.

Objects that were already copied once by the scavenger
are promoted by copying them again into the old generation.
This becomes inefficient if too many objects survive for a
long time, especially for applications with a large memory
footprint, since the old generation is populated by objects
that have already been copied twice. For such objects, it is
clearly more beneficial to allocate them directly in the old
generation if possible.

3. Allocation Sites and Allocation Mementos

The purpose of an allocation memento, or simply memento,
is to store metadata about an object in the heap and act as
a programmable hook linking an object with a temporary
payload of data. This is accomplished by placing the me-
mento directly after an object in memory. The memento is
unrooted: neither the object nor any outside pointers point
to the memento directly. The payload that a memento car-
ries is processed by the runtime system during array transi-
tioning and array growth and by the garbage collector dur-
ing a young generation collection. To avoid a large space
overhead, mementos are only created in the young genera-
tion and never survive a garbage collection. Instead, when



the object is copied by the collector, the memento is simply
discarded, so no space overhead is required in the old gener-
ation. Thus mementos are lossy; they are present for a short
window of time early in an object’s evolution until the ob-
ject survives the scavenge. An illustration of mementos can
be see in Figure 2.

We use the memento’s payload to store a reference to
the allocation site of the object, which corresponds to the
textual location in the source code where the object was
created. In our implementation, a memento occupies two
words of memory where the first word is a pointer to the
special memento map, which distinguishes the memory as a
memento, and the second is a pointer to the AllocationSite.
Using a special map word makes checking for mementos
extremely efficient. It is sufficient to check a single word of
memory directly after the object to determine if the object
carries a memento.'

Why not use an extra word in the object or informa-
tion in the metadata of the object to store allocation site in-
formation? What about a hash map? First, adding an extra
word to the object imposes a space penalty on every object,
even those that are no longer or never were interesting. Sec-
ond, the map of an object is too coarse-grained, being type-
specific rather than allocation-site specific.”> Third, a hash
map is too slow to consult on every transition and young
generation collection. Fourth, placing mementos next to the
object they instrument is potentially more cache efficient.
The insight of allocation mementos is that the extra space
needed is object-specific and temporal.

With mementos, we can simply “turn off” the learning
mechanism on a site-by-site basis as soon as the system has
learned enough to make an optimization decision. When a
hot function is recompiled, Crankshaft harvests the infor-
mation from AllocationSite instances in the baseline code
to make optimization decisions. Since we expect most pro-
grams to spend most of their execution time in optimized
code, that code should be as fast as possible and free from
both the space and time overhead of creating mementos.
Therefore, in our implementation, optimized functions never
create mementos, though the architecture has no inherent
limitation that prevents this.

3.1 Pretenuring

The goal of pretenuring is to avoid the overhead of copying
and scanning objects that are often promoted to the old
generation. Our approach utilizes temporal allocation site
feedback to make pretenuring decisions for optimized code.

Dynamic allocation-site-based pretenuring tracks statis-
tics in the AllocationSite data structure in Figure 2 to de-

I'Spot the danger here? This design requires that uninitialized or leftover
memory following each object be cleared, or at least set to anything except
the memento map word, to prevent the system from interpreting garbage
memory as a memento when the heap is not iterable.

2 Other systems have experimented with inserting a level of indirection
between an object and its type [28].
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Figure 3. Lifetime states of an allocation site.

cide which allocation sites are good candidates for pretenur-
ing. Only two integer-sized fields in each AllocationSite are
needed. The created field stores the number of mementos
created at the site since the last collection, and found stores
the number of mementos found attached to live objects dur-
ing the last collection.

Baseline code is instrumented to create mementos. For
each allocation site, the baseline compiler emits code that 1)
allocates the object, 2) creates the memento directly follow-
ing the object in memory, 3) initializes the memento to point
back to the allocation site, and 4) increments the created
counter in the AllocationSite.

The memento in this case serves both as a marker for
the garbage collector to recognize that an object has been
instrumented and as a pointer back to the allocation site
for which to update the statistics. Only objects that have
been instrumented with a memento are interesting. During
a collection of the young generation, the garbage collector
simply inspects the word following each live object to find
mementos. If a memento is found, it follows its pointer to
the AllocationSite and increments the found counter. At the
end of the collection, these counts are used to calculate the
survivor rate and decide whether the site is a good candidate
for pretenuring.

An allocation site can be in four different lifetime states
as depicted in Figure 3. An allocation site begins in the
UNKNOWN state, and the number of created mementos at the
site during one collection cycle must reach a threshold 7" be-
fore it can transition to a different state. We chose 1" = 100
in our implementation because it gave good results in prac-
tice. Another tuning parameter S controls the survivor rate
at which pretenuring is initiated. After the threshold 7" has
been reached within one garbage collection cycle, if more
than S% of the objects allocated at the site survive that
garbage collection cycle, then the AllocationSite is transi-
tioned to the TENURED state; otherwise it is transitioned to
the NOT_TENURED state. We chose S = 90 in our imple-
mentation to be conservative?, since overestimating the sites
that should be pretenured proves to be far more costly in

390% is also close to heuristics in other systems [17, 23]



practice than underestimating, which leads to more collec-
tions of the old generation.

During recompilation of a hot function, the optimizing
compiler uses the state of AllocationSite instances for that
function to generate inline memory allocation code. If the
state of the AllocationSite has transitioned to TENURED,
then the compiler will generate an inline allocation directly
into the old generation, otherwise defaulting to an inline
allocation into the young generation. In order to make the
fastest possible optimized code, in neither case does the op-
timizing compiler emit code to create mementos. The space
and time overhead of mementos is limited to the learning
phase which happens in baseline code.

3.1.1 Zombies and Recovery

The ZOMBIE state is an implementation artifact of V8 that
is a result of code objects being garbage collectable. Since
V8 is a compile-only virtual machine and JavaScript has
the ability to dynamically generate new source code with
eval, V8 puts all code objects on the heap and collects
and compacts them like all other objects. Code objects can
die in one cycle, but the AllocationSite objects that they
point to may still be pointed to by mementos. The ZOMBIE
state allows these AllocationSite objects to survive for an
extra garbage collection cycle to preserve heap integrity.
This harder case only occurs in very long-lived applications
when code objects start to die in large numbers.

Most benchmarks have very stable lifetime characteris-
tics, but what if the lifetime characteristics of an allocation
site change after optimization decisions have already been
made? Productionizing pretenuring for more than a suite of
benchmarks requires a bit more work.

Our feedback mechanism shuts itself off for performance
reasons after optimized code has been generated. To avoid
getting stuck with severely misguided pretenuring decisions,
we use a global recovery mechanism which triggers when
unstable conditions persist for two or more garbage collec-
tions:

1. When too many objects survive young generation garbage
collection but no mementos are found, the recovery
mechanism assumes that some non-tenured allocation
sites would benefit from pretenuring. Since it lacks infor-
mation on which site is misbehaving, it deoptimizes all
optimized code that contains non-tenured allocation sites
and new lifetime feedback is gathered.

. When too many objects die in the old generation, the re-
covery mechanism assumes that too many sites are pre-
tenured. In this case it does the reverse and deoptimizes
all optimized code that contains tenured allocation sites
and new lifetime feedback is gathered.

In both cases the dependent_ code field of the Alloca-
tionSite objects is used to find the optimized code objects in
the heap. Deoptimizing all optimized code that could have
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wrong tenuring decisions is relatively drastic, but protects
the system from getting stuck in a slow state. The baseline
code will warm up again and eventually be recompiled to
new optimized code with new pretenuring and type feedback
decisions. This does not occur in benchmarks but can happen
with long-running applications.

3.1.2 Predecessors

Our system for dynamic allocation-site-based pretenuring
replaces two previous approaches in V8 to reducing the
problem of long-living objects. The first attempt was a
global high-promotion mode which was triggered when the
overall survivor rate from young generation collections con-
sistently exceeded 90%. When this mode was activated,
all objects surviving their first young generation collection
would be immediately promoted to the old generation, re-
ducing the number of copies from two to one. This gives a
nice performance boost for certain phases of a program but
still requires tenured objects to be copied at least once. The
second attempt was a global pretenuring mode, triggered un-
der the same condition of a consistent 90% survival from the
young generation. At activation of global pretenuring, the
system would deoptimize all optimized code and recompile
new optimized code with tenured allocation sites.* All sub-
sequent allocations from optimized code would go directly
to the old generation. Both systems performed excellent on
benchmarks and on certain phases of real applications, but
were less performant on more general workloads. Worse,
they required much more careful tuning since activation and
deactivation drastically changed the behavior of the system.

Dynamic allocation-site-based pretenuring is superior in
both peak performance (between 10% and 100% faster than
the previous systems on Splay and SplayLatency), but also
far more robust, since it is capable of approximating the life-
times of individual allocation sites rather than just a phase of
the program. The fewer drastic behavior changes associated
with dynamic pretenuring also results in much smoother per-
formance for applications in the wild.

3.2 Pretransitioning

The goal of pretransitioning is to avoid expensive array tran-
sitions by attempting to predict the optimal array elements
representation for each allocation site. The small program in
(d1) - (d9) illustrates the potential for this optimization.

(dl) function foo(a) { a[0] = 3.5; }
(d2) function bar(a) { a[0] = "test’; }
(d3) for(var 1 = 0; 1 < 100; i++) {
(d4) var a = [1,2,3];

(d5) var b = [4,5,6];

(d6) foo(a);

(d7) foo (b);

(d8) bar (b) ;

(d9) 1}

4One could also consider code patching for this purpose, but for technical
reasons this was not feasible for fast-path allocations in V8.



Each time through the loop, a new array is allocated at
(d4) and at (dS). Both arrays have an initial ElementsKind
SmiElements. When the array a is passed to foo () in
(d6), the assignment at (d1) assigns a double element, re-
quiring a transition of the array to DoubleElements. The
same happens at (d7) when foo () is passed b. The third
call in (d8) to bar () assigns a string element to b, which
requires a transition to Elements. All three transitions are
relatively expensive and happen for every iteration in this
example, resulting in a total of 300 array transitions.

Pretransitioning creates one AllocationSite for each of the
places in the program where the optimal representation is
yet to be learned (d4) and (d5S). The baseline code emit-
ted for those sites will allocate the array and also create a
memento directly after the array in memory which points
back to the AllocationSite object. We use the aptly-named
transition_info field in the AllocationSite to store in-
formation about array transitions that have happened for ob-
jects allocated at the site. When transitions are required on
an array, the runtime system looks for a memento following
the array and if so uses the memento to find the Allocation-
Site object, updating the transition_info field.

With mementos, the system can connect the transitions
that happen at (d1) and (d2) back to AllocationSite instances
for (d4) and (dS). In this case the system will learn im-
mediately that the ideal representation for arrays at (d4) is
DoubleElements and those at (d5) is Elements. Sub-
sequent arrays allocated at these sites will not require transi-
tions, and the total number of array transitions for all itera-
tions will be just 3.

Some array creations are not immediately obvious from
the source code. For example, the Array built-in is a first
class function that can be passed around the program like
other functions. Calls to this function create new arrays.
Because JavaScript has mutable bindings, V8 must use an IC
to be sure of which function is called at runtime, including
built-in functions which can have their names rebound by
the program. The CallIC provides a convenient place to
recognize such calls to the Array constructor, even if they
are indirect calls.

The example in (el-e7) illustrates the problem with indi-
rect calls. Without pretransitioning, all arrays in this example
are created with a default ElementsKind of SmiElements,
and (e6) forces each to transition to DoubleElements, re-
sulting in 100 total transitions.

(el) function foo(f) { return f£(); }

(e2) function custom_alloc() { return []; }
(e3) for(var 1 = 0; 1 < 100; i++) {

(ed) var a = foo(Array);

(eb) if (i == 50) Array = custom_alloc;
(e6) al0] = 3.5;

(e7) 1}

How does pretransitioning handle this case? In (el)
an indirect function call contains a CalllC. In the first

few iterations of the loop (e3-e7), foo is called with the
built-in Array function, and the CallIC state becomes
MONOMORPHIC. V8 recognizes monomorphic calls to the
special built-in Array with the CallIC and then creates an
AllocationSite for the site (el). During subsequent calls at
(el), the CallIC checks that f is the built-in Array func-
tion, and if so allocates the array with a memento that points
to the AllocationSite for (el).

After (e5) is executed, the binding for Array changes,
causing the call at (e4) in the next iteration to pass
custom_alloc to foo (). The CallIC in (el) will now
transition to MEGAMORPHIC and will lose its Allocation-
Site due to storage limitations. Calls in (el) now go to
custom_alloc, but arrays allocated inside will have an
AllocationSite from (e2). Now the transition at site (e6) will
update the AllocationSite for (e2). Overall, pretransitioning
reduces the number of transitions in this example from 100
down to 2.

3.3 Presizing Prototype

To demonstrate the generality of mementos as an instrumen-
tation technique, we developed a prototype of array presiz-
ing in one afternoon with just 150 lines of code .

The goal of presizing is to avoid expensive element re-
allocation operations without wasting memory by reserving
the right amount of space when an array is allocated. Prior
to our presizing work, V8 set a default elements capacity of
4 for all new arrays that do not have a specified size. A static
policy wastes memory for smaller arrays and requires costly
resizing for larger arrays.

Our approach is to use the memento and allocation site
mechanism to track growth of arrays from calls to the
Array.push () built-in JavaScript function. The proto-
type reuses the same mementos that are already created for
arrays by baseline code for the pretransitioning optimiza-
tion. The implementation of Array.push () simply looks
for a memento when growing the elements backing store of
an array and updates allocation site statistics with the new
size. The statistics are ultimately used to choose a more ap-
propriate capacity when generating optimized code.

Encouragingly, our prototype was able to learn the opti-
mum allocation size for the important sites in the very sen-
sitive DeltaBlue benchmark without prior knowledge, and
preliminary measurements indicated a slight decrease in the
maximum overall heap size in Octane, with no other perfor-
mance loss.

4. Experiments

Our experiments were performed with V8 revision r24424
(October 2014) on an IA32 server machine with an Intel
Core 15-2400 quad-core 3.10GHz CPU and 80GB of main
memory running Linux. We performed the same experi-
ments on X64 and ARM but found that the performance

5 [Reviewer’s note: reference to open source patch deleted for blind review]
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Figure 5. Kraken suite runtime of baseline, transitioning,
pretenuring, and all optimizations turned on normalized to
baseline.

results were similar to IA32. We gained no new insights
from these platforms and thus chose to omit redundant data
for space reasons. V8’s dynamic growing strategies for the
young and old generation were used and no static limits were
set.

For our experiments we used the complete Oc-
tane 2.0 [15] and Kraken 1.1 [27] suites, two standard
JavaScript benchmarks which are designed to test specific
virtual machine subsystems. Each benchmark is run 20
times with a fixed amount of iterations, each run in a sep-
arate virtual machine instance. There are no warmup iter-
ations, to be sure to include any overhead that instrumen-
tation may have added to baseline code. The average of
the 20 runs is reported. In addition to these standard suites
we analyzed many publicly available benchmarks but se-
lected only a few for presentation. Of all the benchmarks
we tested, none showed performance degradation. We show

Figure 6. Other benchmarks runtime of baseline, transition-
ing, pretenuring, and all optimizations turned on normalized
to baseline.

results for (1) Havlak [20], a loop recognition algorithm,
(2) NBody [16], which solves the classical N-body physics
problem, (3) ParserCombinators [24] a parser benchmark
that uses a simple arithmetic expression grammar built from
parser combinators, (4) the array combined version of Peace-
keeper [11], (5) Soft3d [26], a JavaScript software 3d ren-
derer, and (6) WindScorpionSolve [22], which solves linear
equations.

We use four configurations of V8 for our experiments.
The Baseline configuration without allocation-site-based op-
timizations, Pretransitioning with the pretransitioning opti-
mization only, Pretenuring with the pretenuring optimiza-
tion only, and All with both optimizations. For maximum
repeatability all configurations run V8 in predictable mode
which disables nondeterministic features like concurrent re-
compilation, concurrent sweeping, and concurrent on stack
replacement. Note that we observe similar performance im-
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[ [ Baseline Pretransitioning Pretenuring All
[ [ Scavenge [ Mark-Sweep | Scavenge [ Mark-Sweep | Scavenge [ Mark-Sweep | Scavenge [ Mark-Sweep |
Benchmark # ms # ms # ms # ms # ms # ms # ms # ms
Richards 4 4.8 0 0 4 6.4 0 0 4 3.2 0 0 4 54 0 0
DeltaBlue 331 355 0 0 328 35.4 0 0 331 38.5 0 0 328 38.4 0 0
Crypto 4 4.3 0 0 4 2.9 0 0 4 3.9 0 0 4 5.4 0 0
RayTrace 665 60.7 0 0 665 53.6 0 0 665 69.7 0 0 665 69.1 0 0
EarleyBoyer 779 887.2 0 0 779 939.4 0 0 779 1012.5 0 0 779 1059.2 0 0
RegExp 330 39.5 0 0 330 37.8 0 0 330 38.2 0 0 330 40.2 0 0
Splay 614 8196.9 23 4974.1 614 7920.7 23 4587.9 17 139.1 75 1670.3 17 115 75 1739.5
NavierStokes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PdfJS 610 978.8 4 248.3 610 928.4 4 236.7 528 546.3 8 489.1 527 516.3 8 428.9
Mandreel 17 2.8 2 37.7 17 4 2 382 17 33 2 37.9 17 3.2 2 38.7
Gameboy 33 19.6 1 11 33 15.6 1 11 33 16.3 1 11 33 19 1 11
CodeLoad 13 69.4 1 43.1 13 64.4 1 42.6 13 71.6 1 45.3 13 69.6 1 433
Box2d 101 129.6 1 16.8 101 109.2 1 17.4 101 114.1 1 17.2 101 101.4 1 16.4
zlib 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Typescript 41 359.4 2 146.8 41 388.4 2 170 41 410.2 2 157.9 41 401.5 2 179.3
Octane total 3542 10788.5 34 5477.8 3539 10506.2 34 5103.8 2863 2472.9 30 2428.7 2859 2443.7 30 2457.1
audio-beat-detection 25 2 0 0 18 1.5 0 0 24 1.8 0 0 17 1.6 0 0
audio-dft 15 0.8 1 16.1 15 0.8 1 16.5 15 1 1 16.2 15 1 1 16
audio-fft 22 1.4 0 0 15 1.4 0 0 22 1.6 0 0 15 1.7 0 0
audio-oscillator 29 1.9 0 0 21 2.1 0 0 29 2.1 0 0 21 2.1 0 0
imaging-gaussian-blur 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
imaging-darkroom 2 1.1 0 1.7 2 1.1 0 1.8 2 1.2 0 1.7 2 1.2 0 1.6
imaging-desaturate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
json-parse-financial 9 1.5 0 0 9 1.4 0 0 9 1.5 0 0 9 1.7 0 0
json-stringify-tinderbox 7 22 0 0 7 32 0 0 7 3 0 0 7 2.9 0 0
stanford-crypto-aes 24 5.8 0 0 24 6 0 0 25 6.1 0 0 25 6.1 0 0
stanford-crypto-ccm 16 2.5 2 22 16 2.6 2 22 16 2.6 2 22 16 2.6 2 22
stanford-crypto-pbkdf2 32 1.7 0 0 32 1.4 0 0 32 1.4 0 0 32 1.5 0 0
stanford-crypto-sha256 13 1.4 0 0 13 1.1 0 0 13 1.7 0 0 13 1.3 0 0
Kraken total 197 24.7 3 39.8 175 25 3 40.3 197 26.6 3 39.9 175 26.1 3 39.6
Havlak 5 9.7 0 0 5 8.7 0 0 5 9.8 0 0 5 9.2 0 0
NBody 2 24 0 0 1 1.9 0 0 2 22 0 0 1 1.9 0 0
ParserCombinators 23 4.3 0 0 23 4.3 0 0 23 4.7 0 0 23 4.4 0 0
Peacekeeper 4 2.7 0 0 3 2.8 0 0 4 2.9 0 0 3 2.6 0 0
Soft3d 319 62.8 0 0 319 70.1 0 0 318 578 31 435.3 319 577.9 31 433.3
‘WindScorpionSolve 9 3.6 0 0 6 2.8 0 0 9 3.6 0 0 6 2.8 0 0

Table 2. Number of scavenges, scavenging time, number of mark-sweeps, and mark-sweep time in the benchmarks.

provements without predictable mode, but variance is much
higher.

Results reported in Figures 4-6 focus on performance.
The y-axis show the performance improvement of a given
benchmark normalized to the baseline, with higher bars be-
ing better for Octane and lower bars being better for Kraken
and the selected benchmarks. We report detailed garbage
collector statistics in Table 2 and counts of transitions in Ta-
ble 3. Table 4 reports the number of created and found me-
mentos and the total allocated memory for each benchmark.

The obvious standout is the Splay benchmark, which allo-
cates many long-living objects. Here, pretenuring improves
the score of Splay by 3x and the score of SplayLatency by
3.6x. This is highly correlated with the reduction in garbage
collection work visible in Table 2. The number of performed
scavenges drops from 614 to 17 and the overall scaveng-
ing time reduced by 80x. Note that also the maximum scav-
enging pause time reduced significantly since fewer objects
survive young generation collections. In Splay five alloca-
tion sites are pretenured with a semi-space survival rate of
about 99%. PdfJs improves by about 5% due to pretenuring
with 49 pretenured allocation sites. Scavenging time was re-
duced by about 380ms but mark-sweep time increased by
180ms. Pretenuring does not activate on the other bench-

113

marks. However pretenuring does cause baseline code to
create mementos, and we see a slowdown of about 3% in
Soft3d. These high memento counts arise from getting stuck
in baseline code because this benchmark has code that is
hard for Crankshaft to optimize.

Pretransitioning has a large impact on the DeltaBlue
benchmark in Octane, with a 2.6x improvement, which cor-
relates strongly with a large reduction in the number of
transitions as seen in Table 3, from 250,205 to merely 8.
It also improves PdfJS, reducing the number of transitions
from 226,136 to just 1555. Other benchmarks improved by
pre-transitioning also show strong correlations with reduced
transition counts, including several Kraken benchmarks and
all of the third group of selected benchmarks. Overall pre-
transitioning improves Kraken by 8%. The improvements
are more dramatic in the third group, with about 2x on
Havlak, NBody, and PeaceKeaper and 3x on WindScorpi-
onSolver. Anomalies are CodeLoad which pathologically
creates a large amount of new source code using JavaScript
eval, thwarting the learning mechanism of pretransition-
ing, and EarleyBoyer which has a solid reduction in transi-
tions but almost no speedup; our statistics showed these tran-
sitions were of the less expensive variety that require only a
map change. It is also interesting that pretransitioning alone



Benchmark # elements transitions # elements transitions

Baseline with pretransitioning
Richards 25 6
DeltaBlue 250205 8
Crypto 5446 12
RayTrace 4005 8
EarleyBoyer 39140 2009
PdfJS 226136 1555
Gameboy 93 2
CodeLoad 1007 1208
Box2d 34104 11
zlib 24 28
Typescript 74416 6058
ai-astar 4852 7
audio-beat-detection 48 21
audio-dft 44 17
audio-fft 44 17
stanford-crypto-aes 4426 4250
stanford-crypto-ccm 8330 279
stanford-crypto-sha256 2005 12
Havlak 111808 21
NBody 10000 2
ParserCombinators 245750 5
Peacekeeper 9998 1
Soft3d 4777 13
WindScorpionSolve 520459 3

Table 3. Number of element transitions without and with
pretransitioning for affected benchmarks.

reduces garbage collection overhead in some cases, e.g. the
number of scavenges is reduced slightly in DeltaBlue, audio-
dft, audio-oscillator, Havlak, NBody, and WindScorpion-
Solve. This is because pre-transitioning avoids the types of
transitions that require reallocating and copying the array’s
internal elements.

We can also see from the experimental results that these
two optimizations are almost entirely orthogonal. Where we
see an improvement with one optimization, that improve-
ment is also retained with the other optimization also turned
on. We can even see several cases where the speedup or
slowdowns between the two optimizations are almost per-
fectly additive: Splay, SplayLatency, PdfJS, MandreelLa-
tency, audio-fft, audio-oscillator, NBody. Coupled with the
correlations with counter data, this gives us confidence that
our performance measurements are sound.

We also wish to study the memory overhead introduced
by allocation mementos. Table 4 reports the total memory
allocated by each benchmark in the baseline configuration
as well as the number of created and found allocation me-
mentos for pretransitioning and pretenuring. Based on this
data, we can see that the number of mementos is quite low,
generally in the thousands, with a few outliers. This re-
flects the our design of restricting instrumentation to base-
line code and disabling mementos when transitioning to op-
timized code. A few outliers are indicative of other perfor-
mance problems that are beyond the scope of this paper. In
particular, PdfJS, Box2d and stanford-crypto-aes seem to get
stuck in baseline code due to limitations in Crankshaft and
thus continue generating allocation mementos. Relative to
the total amount of memory allocated by the benchmarks,
the space overhead of mementos is negligible. Pretransition-
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[ [ Baseline | Pretransitioning | Pretenuring |
Benchmark allocated MB # created # created # found
Richards 32.60 179 14010 13849
DeltaBlue 2563.55 2 11043 39
Crypto 35.16 302 11625 3
RayTrace 5154.96 3 3404 568
EarleyBoyer 5567.6 1030 6659 863
RegExp 2508.28 936 7685 4103
Splay 2546.23 1 7368 4134
NavierStokes 8.39 19 4 2
PdfJS 4265.86 51355 535062 35113
Mandreel 162.06 1 1997 2
Gameboy 226.83 22536 89388 34104
CodeLoad 109.84 1603 29121 10751
Box2d 734.02 64 466076 421
zlib 13.54 14 4178 50
Typescript 249.91 11170 25684 5894
ai-astar 4.9 774 14499 2139
audio-beat-detection 40.95 1033 83 10
audio-dft 41.66 19 33 15
audio-fft 39.48 27 21 7
audio-oscillator 51.33 7 3560 8
imaging-gaussian-blur 9.53 5 13 13
imaging-darkroom 11.33 0 5 5
imaging-desaturate 9.71 0 5 5
json-parse-financial 9.19 0 5 5
json-stringify-tinderbox 11.65 0 805 805
stanford-crypto-aes 4391 1165 109269 8363
stanford-crypto-ccm 29.88 7355 23024 1048
stanford-crypto-pbkdf2 31.51 2530 3152 61
stanford-crypto-sha256 13.61 1243 8755 57
Havlak 36.64 49702 350545 53335
NBody 16.31 1 148 58
ParserCombinators 182.477 11 4000 1419
Peacekeeper 33.53 377 152 62
Soft3d 2441.95 14708 77739 8276
‘WindScorpionSolve 74.05 3 4157 60

Table 4. Number of created and found mementos in the

benchmarks.

ing allocates only 696KB of mementos and pretenuring only
9MB of mementos, versus 23GB total allocated memory for
the entire Octane suite. We did not count the number of me-
mentos in the All configuration because mementos are actu-
ally shared by both optimizations.

5. Related Work

Pretenuring was first studied in an offline setting by [8]. A
heap profile is obtained by instrumenting the program to
prepend an allocation site identifier to each object which is
inspected for both live and dead objects at garbage collection
time. Statistics from profiling runs are used to choose alloca-
tion sites to pretenure. This approach was extended by [4, 5]
in the context of Java. Using execution profiles as an oracle,
their system classifies allocation sites and adds an immortal
space for objects that live longer than half of the program
execution time. Both application-specific and combined pre-
tenuring advice for libraries improved performance. In [25]
the pretenuring classification is based on a program analy-
sis which identifies patterns of lifetime behavior and com-
pares them against a database of previous knowledge of so-
called micro-patterns [12]. [32] studied more advanced clas-
sification schemes for pretenuring, considering metrics be-
yond allocation sites, such as types. Static techniques, of-
fline techniques, and dynamic techniques based on training



data have the advantage of low runtime overhead but require
prior knowledge of application behavior and cannot react to
dynamic feedback. In contrast, our approach requires no of-
fline training but also has low runtime overhead.

The most closely related work on dynamic object sam-
pling techniques clusters around pretenuring. The first dy-
namic pretenuring system was described by [17] using in-
strumentation that samples allocation sites when the allo-
cation buffer overflows. Similarly [23] takes samples every
2" bytes of allocated memory, placing a magic word before
sampled objects that is used to identify allocation sites dur-
ing GC. The magic word is problematic since it is small
and must encode the allocation site ID; the collector could
be tricked if the word before an object is actually part of
the end of the previous object. Mementos are more gen-
eral, since the payload of a memento is configurable and it
contains a real object header. Sampling based on allocation
counters is generally more expensive than emitting memen-
tos at allocation sites for two reasons. First, the out-of-line
slow path usually involves spilling all the registers and at
least one function call, whereas emitting a memento requires
just a couple of inline machine instructions. Second, sam-
pling windows must be much smaller than the young gener-
ation size in order to instrument an appreciable fraction of
objects, leading to many slowpath allocations. Allocation-
counter-based techniques also oversample large objects, can-
not distinguish between allocations made from optimized
code versus unoptimized code, require an as-yet-unexplored
external control of the sampling threshold to tune overhead,
and are only applicable to lifetime estimation, not the feed-
back needed for pretransitioning and presizing. We carefully
considered many of these alternatives before developing me-
mentos, and our approach of emitting mementos at alloca-
tion sites provides reliable feedback for our new optimiza-
tions while avoiding the above disadvantages.

Huang [19] dynamically tracks the lifetime of objects at
the granularity of types and makes class-based pretenuring
decisions, but types proved to be a weak indicator of life-
time. In [28], dynamic profiling is used to identify alloca-
tion sites that allocate objects that should be immediately
promoted from the young generation upon the first garbage
collection. This is a more local approach similar in spirit to
our previous high-promotion mode (see Section 3.1.2) since
it must copy each object at least once. This extra copy dis-
tinguishes it from ours and other systems discussed here that
allocate tenured objects directly in the old generation. They
also experimented with various schemes for mapping objects
back to allocation sites, including hashcodes and an extra in-
direction from the object to the class. Mementos have the
benefit of constant-time access from an allocated object.

The problem of reducing generational overhead can also
be addressed by reconfiguring a stock generational system
at runtime. For example, instances of this idea are dynami-
cally adjusting promotion thresholds [30, 35], variable-sized
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young generations [2], and multiple generations with dif-
ferent garbage collection strategies. A combination of these
strategies is typically used in production virtual machines.

Storage Strategies [6] as described by Bolz are analagous
to V8’s ElementsKind concept. They were developed later
but independently, before any published material was avail-
able. The authors discuss V8’s pretransitioning concept
which was still in development.

Much work related to ideal data structures is carried out
at the application level and is focused on instrumented de-
tection of the ideal structure. In [9] a survey of different ap-
proaches to choosing ideal data representation motivates the
development of a structured approach called Just-In-Time
data structures. In [31] instrumentation in the virtual ma-
chine and libraries tracks information about data structure
usage with the ultimate goal of selecting the best data struc-
ture alternative, but good decisions required gathering multi-
ple levels of calling context which proved too expensive for
an online system. Instead, dynamic information was sum-
marized as advice to the programmer to make source code
changes. Other work [13] [38] has addressed specific repre-
sentation issues in collections. Some JVMs represent arrays
with discontiguous array-lets [3, 7, 29] which save memory
with zero-compression, copy-on-write, and lazy allocation
and improve garbage collection pause times by limiting the
maximum object size. Unlike JavaScript arrays, Java arrays
don’t change length or representation. In work published to
date, using array-lets is a global VM policy rather than based
on dynamic feedback.

Other work on tracking dynamic properties of objects
runs a spectrum from extremely precise [18] to less precise
but faster [37], and graduations between, with some offer-
ing programming client analyses. Our work has focused on
performance with low-overhead instrumentation to drive the
optimizations described in this paper. We believe allocation
mementos could be useful as an implementation technique
to more powerful analysis techniques.

6. Conclusion

This paper offers a new technique for virtual machines to
collect temporal allocation site feedback. Allocation me-
mentos efficiently tie objects to a small payload without a
large space or time cost on the program. We made use of
mementos and allocation sites to implement two important
optimizations: pretenuring and pretransitioning and proto-
type a third: presizing.

We showed how pretransitioning can use information
from allocation sites to avoid expensive array transitions
and how pretenuring can reduce garbage collection overhead
with better site-specific pretenuring decisions. The rapid
proof-of-concept we built to presize arrays offers promise
that mementos could be useful for a broader range of dy-
namic feedback in the future. Since creating mementos is
a choice at the allocation time of an object, the overhead



can be tuned, a capability that we exploit to keep optimized
code fast and free from the cost of creating mementos. We
limit space overhead by only creating mementos in baseline
code for objects in the young generation, even though the
architecture could support mementos anywhere.

We measured and validated our results on several suites of
benchmarks and showed solid performance improvements.
We delivered our optimizations in the V8 production virtual
machine which demanded important controls like a pretenur-
ing recovery mechanism and comprehensiveness over a wide
range of dynamic behavior.
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