Appendix

Theorem 2
Given a KELPS framework < R, Aux, C >, initial state Sy and sequence exty, ..., ext;,. . .
of sets of external events, suppose that the OS generates the sequences of sets
actsi,...,acts;,. .. of actions and Si,...,S;...of states. Then R U Cp., is true in
I = Aux U §* U ev” if, for every goal tree that is added to a goal state G;,i = 0, the
goal clause true is added to the same goal tree in some goal state G;, j = i.

Proof
To show C,. is true in Aux U S™ U ev”, it suffices to show C,. is true in each
Aux U S Uev; Uev;, ;. But this is ensured by step 4 of the OS.

To show R is true in Aux U S§° U ev”, we need to show that for every
rule of the form VX [antecedent — 3Y consequent] in R, whenever some instance
antecedent ¢ of the antecedent is true in I then the corresponding instance
consequent o of the consequent is also true in I. But if antecedent ¢ is true in I, then
antecedent ¢ becomes true at some time i in AuxUS; U...U S/ U ey; U...Uer;,
and consequent o is added as the root of a new goal tree to the current goal state
G;. Each disjunct consequent; ¢ whose temporal constraints are satisfiable in Aux is
added as a child of the root node.

Clearly, consequent; o implies consequent . So if true — consequent; ¢ is true in
I, then consequent o is true in I. The truth of true — consequent; o in I follows
from the more general fact that if a goal clause C is added in step 2 as a child of a
goal clause C’, then C — C’is true in I.

Therefore, the existence of a goal state G; where i < j and true is added to the
same goal tree as consequent ¢ in G; implies that consequent o is true at time j, and
therefore consequent o is true in 1.

The proof of Theorem 3 uses Lemma 2, which is proved using Lemma 1:

Lemma 1
For i > 0, let r be a rule in R;. Then there exists a rule in R of the form ear A con
— consequent and a substitution ¢ that grounds all and only the variables in ear
such that

ear g is true in Aux U S§ U evy...U ev;

ear ¢ < con o
con ¢ — consequent G is r.

Proof
Let n be the number of applications of step 1 in the derivation of r. The proof is by
induction on n.

Base case n = 0: Because r was derived by 0 applications of step 1, it follows that
r € R. Then r has the form ear N con — consequent, where ear is empty (equivalent



to true). Let ¢ be the empty substitution. Then

ear ¢ is true in Aux U S U...US/ Uevy...U ev]

ear ¢ < con o
con ¢ — consequent ¢ 1S r.

This proves the base case.

Inductive step n > 0: Let r be added to some R, by an application of step 1 of
the OS to some rule r’ in Ry, where k < i. By step 1 of the OS:

r’ has the form current A later — consequent, where current 8 < later 0,

r has the form later 8§ — consequent 0,

current 0 is true in Aux U S; U ev ,

0 instantiates all and only the variables in current, and

0 instantiates all the timestamp variables in FOL conditions in current to k.
By the inductive hypothesis applied to r’, there exists a rule r* in R of the form
earlier N\ curr A rest — conseq and a substitution o

that grounds all and only the variables in earlier such that

earlier ¢ is true in Aux U S;U...US; U ey;...U ey,

earlier o < curr o N rest o,

current 1s curr ¢ and later is rest .
Then

earlier ¢ 0 N\ curr ¢ 0 is true in Aux U S;U...US Uev,...Uev;,

earlier ¢ O N\ curr 6 0 < rest ¢ 0,

rest ¢ 0 — conseq o 0 is r. This proves the inductive step.

Lemma 2

For i = 0, let C be a goal clause in G;. Then there exists a rule r in R of the form
antecedent — [other V [earlier N\ conds]] and a substitution ¢ that grounds all and
only the variables in antecedent A earlier such that

antecedent ¢ N earlier ¢ is true in Aux USj U...U S/ U evy ...U ev],
earlier ¢ < conds ¢ and,
conds o is C.

Proof
Let n be the number of applications of step 2 in the derivation of C. The proof is
by induction on n, and is similar to that of Lemma 1.

Base case n = 0: If C is in Gy, then, by the definition of Gy, there exists a rule
r of the form true — [other V [earlier N\ C]] where earlier is empty, and r has the
form required in the statement of the Lemma. If C is added in step 1 of the OS to
Gi,k < i, then R; contains a rule r of the form true — [other V C] where other V C
is a new root node added to Gy. As a consequence of Lemma 1, there exists a rule
in R of the form ear N con — consequent and a substitution ¢ that grounds all and
only the variables in ear such that

ear ¢ is true in Aux U S; U...US; Uevy...U ev,

ear o < con o,



con ¢ — consequent o is r. So

con ¢ is true, and consequent o is other \VV C.
Let consequent have the form [alternatives V [earlier N\ conds]] where earlier is true
and conds ¢ is C. Then ¢ grounds all and only the variables in ear A con N earlier
and

ear ¢ A con o A earlier ¢ is true in Aux U Sy U ... US U ey ...Uev;

earlier 0 < conds o

conds ¢ is C. This proves the base case.

Inductive step n > 0: Let C be added in step 2 of the OS to G, as a child of a
goal clause C’, where C’ is in Gy, k < i. By step 2 of the OS:

C’ has the form current A later, where current 0 < later 0 ,

C has the form later 0,

current 0 is true in Aux U S; U evy,

0 instantiates all and only the variables in current, and

0 instantiates all the timestamp variables in FOL conditions in current to k.
By the inductive hypothesis applied to C’, there exists a rule r in R of the form

antecedent — [other V [earlier N curr A rest ]] and a substitution ¢

that grounds all and only the variables in antecedent A earlier such that

antecedent o\ earlier ¢ is true in Aux U Sy U...U S U evy...U evy,

earlier ¢ < curr ¢ N rest o,

current is curr ¢ and later is rest o.
Then

antecedent 0 A earlier ¢ 0 N\ curr ¢ 0,

is true in Aux U S5 U...US Uer;...Uer;,

earlier ¢ 0 N\ curr 6 0 < rest ¢ 0,

rest o 0 is C. This proves the inductive step.

Theorem 3

Given a range restricted KELPS framework <R, Aux, C >, initial state Sy and set
of external events ext”, let acts® be the set of actions generated by the OS, and
ev' =ext* Uacts”. Then I = Aux U §" U ev” is a reactive interpretation.

Proof
Assume that, for i > 0, an action action t is added to candidate-acts;;; in step 3
and included in acts;y; in step 4 of the OS at time i. It follows that there exists
a sequencing action t < rest T of an instance of a goal clause action A rest in G,
where 7 instantiates only the timestamp variable in action to the time i+1.

By Lemma 2 there exists a rule r in R of the form antecedent — [other V [earlier
A condsl N conds2]] and a substitution ¢ that grounds all and only the variables in
antecedent A earlier such that

antecedent o N earlier ¢ is true in Aux U S§U...U S/ U ev;...U ev/,

condsl o is action,

conds?2 o is rest,

earlier ¢ < action N rest.



It follows that r o t supports action 7, in the sense that:
(a) action t is condsl o 1,

(b) antecedent ¢ t A earlier 6 © < condsl o T A conds2 o T,
(c) antecedent o © A earlier 6 T A condsl ¢ 1 is true in 1.

Moreover, step 4 ensures that Cp., is true in Aux U S; U ev;, ;. Therefore, Cp, is true
in I. Therefore, I is reactive. End of proof.

Theorem 4

Given a range restricted KELPS framework < R, Aux,C >, initial state S, and
external events ext”, let acts® be a set of actions such that I = Aux U S" Uev”, where
ev* = ext” Uacts”, is a reactive interpretation. Then there exist choices in steps 2, 3,
and 4 such that the OS generates acts® (and therefore generates I).

Proof

Let R! = {(r,0,1) | r o supports an action act, at time t}. We show by induction on
i that for all times i > 0, there exist choices in steps 2, 3, and 4 such that

(1) For all (r, o, t) € R, if i < t then, at the beginning of the OS cycle at time i,
either (a) there exists a reactive rule r; € R; such that

r has the form earlier A later — consequent,

earlier ¢ is true in Aux U S; U ...US Uev;...Uev],

later ¢ — consequent ¢ is an instance of r; and

earlier o < later o,

or (b) there exists a goal clause C; in G; such that

e 1 has the form antecedent — [other V [early A late]],

e antecedent o Aearly o is true in Aux US; U...US Uev;...Uev,
L)

[

late ¢ is an instance of C; and
antecedent o N\ early o < late o.

(2) At the end of the OS cycle at time i-1, the OS has chosen in step 4 all and only
the actions in acts;. Clearly, (2) implies the statement of the Theorem.

Leti = 0and (r, 6, t) € R'. If r has the form true — [other \ [earlier A act A rest]],
where r ¢ supports act g, then early A earlier N\ act A rest, where early is empty
(i.e. true), is the desired goal clause Cy in Gy. Otherwise, r has the form later —
consequent, where later is not empty, which has the same form as earlier A later —
consequent, where earlier is empty. This is the desired reactive rule rp € Ry. So case
(1a) holds. (2) also holds, because there are no actions before time 1.

Let i > 0 and assume that (1) holds (at the beginning of the cycle at time i-1)
and that (2) holds (at the end of cycle at time i-2). To show that (1) holds at time i,
let (r, o, t) € R! where i < t. By the induction hypothesis, either (1a) or (1b) holds
for (r, o, t) at time i-1. Suppose first that (1a) holds at time i-1. Then there exists a
reactive rule r.; € R such that

r has the form earlier N later — consequent,

earlier ¢ is true in Aux U S; U...US, Uev;...Uev),,
later ¢ — consequent ¢ is an instance of ri; and
earlier o < later o.



If no timestamp in later ¢ is equal to i-1, then ri; persists until the end of the
cycle, becomes the desired r; at the beginning of the next cycle, and (1a) holds for
(r, g, t) at time i. Otherwise, later has the form current N rest where current o is true
in AuxU S}, Uev; | and current ¢ < rest ¢. Then step 1 of the OS must evaluate the
FOL conditions and temporal constraints in r;; that have current ¢ as an instance,
generating a rule r; € Ry such that rest ¢ — consequent ¢ is an instance of r;.
Therefore, r; € R;1 is such that

r has the form earlier A current A rest — consequent,

earlier ¢ A current o is true in Aux U Sy U...US Uev;...Uev;,,
rest ¢ — consequent ¢ is an instance of r; and

earlier o N current o < rest o.

If rest o is not empty, then r; persists until the end of the cycle, becomes the desired
r; at beginning of the next cycle, and (1a) holds for (r, g, t) at time i.

If rest o is empty, then the OS deletes r; from R;; and adds a new goal tree
to Gy with root node having consequent ¢ as an instance. Because r ¢ supports
some action act; at time t where i-1 < ¢, then r has the form antecedent — [other
[conclusion]] where act, is a bare action conjunct of conclusion. Then the OS adds
to Gi1 a goal clause C as a child of the new root node such that

e r has the form antecedent — [other V [conclusion]],

e antecedent ¢ is true in Aux U Sy U...US  Uev,...Uev;,
e conclusion ¢ is an instance of C and

e antecedent o < conclusion o.

If no timestamp in FOL conditions in conclusion ¢ is equal to i-1, then rewrite
conclusion as early A late where early is empty. Then

r has the form antecedent — [other V [early N late]],

antecedent ¢ Aearly o is true in Aux U S5 U...US " Ueyy...Uev;,
late o is an instance of C and

antecedent o N\ early o < late o.

C persists until the end of the cycle, becomes the desired C; at the beginning of the
next cycle, and (1b) holds for (r, o, t) at time i.

Otherwise, conclusion has the form early A late where early is not empty, early o
is true in Aux U S, Uev;,, and early ¢ < late . Let the OS in step 2 choose and
evaluate the FOL conditions and temporal constraints in C that have early ¢ as an
instance, generating a goal clause C; in G;.; such that late ¢ is an instance of C;.
Then

e 1 has the form antecedent — [other V [early A late]],
e antecedent ¢ Aearly ¢ is true in Aux USjU...US Uery...Uev,,
e [ate ¢ 1s an instance of C; and

e antecedent o Nearly o < late o.

C; persists until the end of the cycle, becomes the desired C; at the beginning of the
next cycle; and (1b) holds for (r, o, t) at time i.

Suppose instead that the induction hypothesis holds for (1b). Then there exists a
goal clause C;; in G;; such that



r has the form antecedent — [other V [early N late]],

antecedent ¢ Nearly ¢ is true in Aux U S5 U...US , Uevy ... Uev,,,
late ¢ is an instance of C;y and

antecedent ¢ Nearly o < late a.

If no timestamp in FOL conditions in late ¢ is equal to i-1, then C;.; persists until
the end of the cycle, becomes the desired C; at the beginning of the next cycle; and
(1b) holds for (r, g, t) at time i.

Otherwise late has the form current A rest where current is not empty, current ¢
is true in Aux U S, U ev;, and current ¢ < rest . Let the OS in step 2 choose and
evaluate the FOL conditions and temporal constraints in C;; that have current ¢ as
an instance, generating a goal clause C; in G, such that rest ¢ is an instance of C;.
Then

r has the form antecedent — [other \/ [early N current A rest]],

antecedent ¢ Nearly ¢ Acurrent ¢ is true in AuxUSjU...US Uevy...Uev],
rest ¢ 1s an instance of C; and

antecedent ¢ A early ¢ A current ¢ < rest .

C; persists until the end of the cycle, becomes the desired C; at the beginning of the
next cycle; and (1b) holds for (r, o, t) at time i.

To show that (2) holds at time i, we need to ensure that steps 3 and 4 of the
OS can choose act; if (r, ¢, i) € R!. But this follows from (1b), which ensures that
if r has the form antecedent — [other \/ [earlier N\ action A rest]] where action ¢ =
act; and r o supports act;, then there exists a goal clause C;; in G;; such that
action ¢ A rest ¢ is an instance of C;;. It is easy to see that step 3 can include act; in
candidate-acts;. Because Cp,. is true in I, step 4 of the OS can choose act; among the
actions generated at the end of the cycle. Moreover, for any other bare action atom
act in a goal clause in Gi.; (whether i < t ori > t for all (r, o, t) € R'), whether or
not step 3 chooses act, step 4 should not choose act; and this is possible because 1
satisfies Cpy.





