
Toward Semantic Annotations of Web Services:

OWL-S from the SAWSDL Perspective

David Martin
1
, Massimo Paolucci

2
, Matthias Wagner

2

1
Artificial Intelligence Center, SRI International

martin@ai.sri.com
2
DoCoMo Communications Laboratories Europe GmbH

{paolucci,wagner}@docomolab-euro.com

Abstract

Recently, the World Wide Web Consortium (W3C) produced a standard set of “Semantic

Annotations for WSDL and XML Schema” (SAWSDL). SAWSDL provides a standard

means by which WSDL documents can be related to semantic descriptions, such as those

provided by OWL-S and other Semantic Web services frameworks. We explain what

OWL-S constructs are appropriate for use with the various SAWSDL annotations, and

provide a rationale and guidelines for their use. In addition, we discuss some weaknesses

of SAWSDL, and identify some ways in which OWL-S could evolve so as to integrate

more smoothly with SAWSDL.

1. INTRODUCTION

The driving objective behind Web services technologies, such as the Web Services

Description Language (WSDL) [2], is to provide reliable, ubiquitous software

interoperability across platforms, across networks, and across organizations. Accordingly,

the primary technical focus has been on standardizing and validating the syntax and

mechanisms of message exchange, so as to support reliable communications and

interoperable tools.

Semantic Web services technology aims to provide for richer semantic specifications of

Web services, so as to enable fuller, more flexible automation of service provision and

use, to support the construction of more powerful tools and methodologies, and to promote

the use of semantically well-founded reasoning about services. The field, which got under

way around 2001 [12], includes substantial bodies of work, such as the efforts around

OWL for Services (OWL-S) [9], the Web Services Modeling Ontology (WSMO) [8], and

WSDL-S [1].

Each of these efforts has sought to build out from, or integrate with, WSDL, rather

than reinventing that part of the Web services picture. This has resulted in several distinct,

ad hoc, styles of integration with WSDL. Recently, however, the World Wide Web

Consortium (W3C) produced a standard set of “Semantic Annotations for WSDL and

XML Schema” (SAWSDL) [5]. SAWSDL, based primarily on the earlier work on WSDL-

S, provides a standard means by which WSDL documents can be related to semantic

descriptions, such as those provided by OWL-S and WSMO.

SAWSDL represents a conservative, incremental approach to introducing semantic

characterization of Web services into mainstream Web service practices. Its objectives

are modest. For example, it aims to provide semantic characterization of a service’s input

and output types, which can be useful in disambiguating those types in the context of

simple forms of service discovery. But it does not aim to provide a comprehensive

framework to support more sophisticated approaches to discovery, composition, or any of

the other service-related tasks that Semantic Web services research hopes to automate.

SAWSDL does not specify a particular semantic framework within which to

characterize the semantics of Web services. Rather, it defines a small set of WSDL

extension attributes, which may be used to refer to constructs within any external semantic

framework. SAWSDL is completely noncommittal regarding the choice of semantic

framework. In addition to discovery, the SAWSDL specification mentions that SAWSDL

annotations can be used during composition and invocation (Sections 1 and 2 of [5]). It is

important to understand, however, that SAWSDL is of very little use unless there is an

additional specification of conventions and guidelines for what can be referred to in some

particular semantic framework, and what it means to do so.

In this paper, we provide guidelines regarding the use of OWL-S in conjunction with

SAWSDL. These guidelines are provided from the SAWSDL perspective. That is, we do

not try to explain everything that can be done with OWL-S in conjunction with WSDL.

Rather, we simply explain what OWL-S constructs are appropriate for use with the various

SAWSDL annotations. These explanations are provided with a view to supporting WSDL

users and WSDL tool vendors in achieving the kinds of objectives that are associated with

SAWSDL.

Because of space limitations, it is not possible to give an adequate overview of WSDL

or OWL-S. For introductory material on WSDL, the reader is referred to [2]. In Section 2,

we give a brief characterization of OWL-S. Section 3 discusses the use of SAWSDL’s

modelReference attribute with OWL-S, and Section 4 discusses the use of SAWSDL’s

schema mapping attributes. In Section 5, we discuss some overarching issues and

summarize our recommendations. Section 6 concludes.

2. OWL-S

As noted in [10], the principal high-level objectives of OWL-S are (i) to provide a

general-purpose representational framework in which to describe Web Services; (ii) to

support automation of service management and use by software agents; (iii) to build, in an

integral fashion, on existing Web Service standards and existing Semantic Web standards;

and (iv) to be comprehensive enough to support the entire life cycle of service tasks.

OWL-S (formerly known as DAML-S) is an OWL ontology [11] that includes three

primary subontologies: the service profile, process model, and grounding. The service

profile is used to describe what the service does; the process model is used to describe

how the service is used; and the grounding is used to describe how to interact with the

service. The service profile and process model are thought of as abstract characterizations

of a service, whereas the grounding makes it possible to interact with a service by

providing the necessary concrete details related to message format, transport protocol, and

so on. Figure 1 shows the relationships between the top-level classes of the ontology. In

this figure, an oval represents an OWL class, and an arc represents an OWL property. For

example, the presents property represents a relationship that can hold between a Service

and a Profile.1

Each service described using OWL-S is represented by an instance of the OWL class

Service, which has properties that associate it with a process model (an instance of the

class Process), one or more groundings (each an instance of the class Grounding), and

optionally one or more profiles (each an instance of the class Profile). A process model

provides the complete, canonical description of how to interact with the service at an

1 For ease of exposition, Figure 1 presents a slight simplification. In particular, it omits an organizational layer

of classes named ServiceProfile, ServiceGrounding, and ServiceModel.

Figure 1. Top level of the service ontology.

abstract level, and the grounding supplies the details of how to embody those interactions

in real messages to and from the service. Each service profile may be thought of as a

summary of salient aspects of the process model plus additional information that is

suitable for the purposes of advertising and selection. Several different types of grounding

have been devised for OWL-S. The default and most widely used grounding, which is

included in the OWL-S releases, employs WSDL. [9] discusses the grounding to WSDL

1.1, and [14] presents a proposal for a grounding that employs WSDL 2.0 and SAWSDL.

In this paper, we are concerned with the use of constructs of the profile and process

model as referents of SAWSDL annotations. Because this paper adopts a perspective

centered around WSDL and SAWSDL, there is no need to employ the OWL-S grounding.

OWL-S’s grounding reflects an OWL-S perspective; that is, it is motivated by use cases in

which service processing, tools, and reasoning of various kinds are organized around

OWL-S. For example, the OWL-S Virtual Machine [13] executes OWL-S process models.

When an invocation of an external Web service is indicated in a process model, the

Virtual Machine uses the grounding to arrange for the invocation of that Web service.

Here, by contrast, we do not assume that processing will be organized around OWL-S.

While the guidelines given here are consistent with the OWL-S grounding, they are meant

to be as general as possible, and to support a variety of service-related tasks in a variety of

architectures.

3. USING THE modelReference ANNOTATION

SAWSDL introduces three new extension attributes for use in WSDL and XML Schema

documents, and discusses some of their possible uses [5]. modelReference can be used in

both WSDL and XML Schema documents. The schema mapping attributes,

liftingSchemaMapping and loweringSchemaMapping, are intended for use only in XML

Schema documents. The addition of these attributes requires no other changes to existing

WSDL or XML Schema documents, or the manner in which they had been used

previously. In this section we discuss how modelReference can be used with OWL-S.

The SAWSDL specification states that “A model reference may be used with every

element within WSDL. However, SAWSDL defines its meaning only for wsdl:interface,

wsdl:operation, wsdl:fault, xs:element, xs:complexType, xs:simpleType and xs:attribute”2

[5]. Here, we discuss the OWL-S constructs that are appropriate as referents of

modelReference in each of these settings. We begin with operations, interfaces, and faults.

2 It should be noted that the guidance given regarding the uses of modelReference for each of these elements has

much more the flavor of suggestions than definitions. For example, the material on usage with interfaces

mentions that modelReference can be used “to categorize them according to some model, specify behavioral

aspects or other semantic definitions [emphasis added]”, and similarly for operations.

Then we turn to the XML Schema elements (those with the “xs” prefix). Following that we

discuss possible uses of modelReference with message elements (even though those uses

are not defined by SAWSDL).

3.1 Operations

In WSDL, an operation represents “a simple interaction between the client and the service.

Each operation specifies the types of messages that the service can send or receive as part

of that operation. Each operation also specifies a message exchange pattern [MEP] that

indicates the sequence in which the associated messages are to be transmitted between the

parties” [2].

Conceptually, the atomic process of OWL-S corresponds very closely to WSDL’s

operation, and this correspondence was one of the cornerstones of OWL-S’s grounding to

WSDL 1.1. For example, an operation that takes a single input message, and outputs a

single output message, exhibits the same behavior as an OWL-S atomic process with a

single input and a single output. In many cases such as this it is straightforward to establish

a mapping between the constituents of the operation and those of the atomic process. In

these straightforward cases, the value of modelReference should be the URI of an atomic

process. Then, as described in Sections 3.4 and 3.5, the payload of the messages can be

mapped to the types of the atomic process’s inputs and outputs (or to the inputs and

outputs themselves), using modelReference annotations of the relevant XML Schema (or

WSDL) declarations.

However, there is a very important caveat regarding the mapping of an operation to an

atomic process: it can work only for simple message exchange patterns.3 The atomic

process is defined in terms of a (possibly empty) set of inputs (arriving simultaneously)

followed by a (possibly empty) set of outputs (leaving simultaneously). If an MEP cannot

be mapped into that simple sequence of events, then that MEP cannot be mapped onto the

I/O of an atomic process. (One could imagine a partial mapping, where some messages

were ignored, but we will not consider that possibility here.)

WSDL 2.0 provides eight predefined MEPs: In-Only, Robust In-Only, In-Out, In-

Optional-Out, Out-Only, Robust Out-Only, Out-In, and Out-Optional-In [3]. Six of these

MEPs – all but Out-In and Out-Optional-In – can be mapped onto the I/O of an atomic

process.

What about Out-In, Out-Optional-In, and other, more complex MEPs that cannot be

mapped onto the I/O of an atomic process? In principle, they can be mapped onto

composite processes. Indeed, for any MEP, it is possible to construct an OWL-S

3 Here, we assume that it is important to have a mapping from each WSDL message onto a set of OWL-S

process inputs or outputs.

composite process that supports (and requires) the same pattern of inputs and outputs.

Similarly, for any OWL-S composite process, it is possible to construct a message pattern

that corresponds to the I/O behavior of that composite process.

However, there are some issues needing further attention, having to do with the

mapping of the inputs and outputs, which we take up in Section 3.5.

Finally, let us also note that it may be useful in some situations to annotate an

operation by referring to a profile. If one is primarily concerned with categorizing

operations as to the functionality they provide, an OWL-S profile is more appropriate for

that purpose than a process. Nevertheless, the process should be regarded as the most

natural referent for an operation, for all the reasons given above. In the following

subsection, we discuss another possible use of the OWL-S profile as a referent.

3.2 Interfaces

In WSDL, an interface is, in essence, a group of related operations. The WSDL

specification is not specific about how these operations are related, except to say that they

make up the abstract interface of a Web service: “A WSDL 2.0 interface defines the

abstract interface of a Web service as a set of abstract operations, each operation

representing a simple interaction between the client and the service.” A service, in turn,

“specifies a single interface that the service will support, and a list of endpoint locations

where that service can be accessed.”

Here it should be noted that there is a mismatch between WSDL’s notion of “service”

and that of OWL-S. In OWL-S, the Service class is an organizational unit that packages

up the information that describes a single process; that process is, in effect, the essence of

the service. As noted above, OWL-S’s Process corresponds to WSDL’s operation. Hence,

an OWL-S Service also corresponds best to WSDL’s operation, rather than WSDL’s

service.

Indeed, OWL-S does not have a construct for grouping processes. Therefore, it does

not at present have a construct that corresponds directly (structurally) to WSDL’s interface

or WSDL’s service. This is an area under consideration for a future release of OWL-S.

Nevertheless, there are three possible ways in which an interface’s modelReference

can meaningfully refer to an OWL-S construct (or constructs). The first of these is to be

preferred, given the intent that is expressed in the SAWSDL specification for these

annotations.

 (1) The SAWSDL specification indicates a possible use of the interface

modelReference for categorization purposes. It mentions, as an example, an interface

annotation that refers to an “electronics” concept in some semantic model. This example

provides an extremely limited bit of information – that is, that the interface has something

to do with electronics. No doubt one could do better, for example, by referencing a

concept for “ElectronicsRepairService” or “ElectronicsForSale”.

In fact, the OWL-S Profile is meant to be used for categorization. To do this, one takes

advantage, in a very natural way, of OWL's mechanisms for building a class hierarchy;

that is, a hierarchy of subclasses of Profile. For example, one might have RailTicketSales

as a subclass of TravelTicketSales, as a subclass of TravelAgency, which in turn is a

subclass of Profile. To represent a specific rail ticketing service, one would create an

instance (i.e., OWL individual) of the class RailTicketSales. A larger, more

comprehensive class hierarchy of this kind can be used as the basis for a “yellow pages”

registry of services. An instance of a profile class from such a hierarchy can serve as the

referent of the modelReference annotation of an interface. If a particular instance is not

available, the class itself can serve as the referent.

It should be noted that an instance of OWL-S profile normally is bundled with a

process model and a grounding, but that is not required by OWL-S.

(2) Since modelReference always allows for a list of URIs, one can simply list all the

URIs of the processes that correspond to the interface’s operations. This information,

however, would be redundant with the modelReference annotations of the operations

themselves, so that limits the value of this approach.

(3) In some cases it is reasonable to map an interface to a composite process. A

composite process can be viewed as a grouping mechanism, because it specifies and

coordinates calls (in the form of Perform statements) to a number of atomic processes. In

certain cases, it could make sense to regard this set of atomic processes that are called by a

composite process as the correlate of a WSDL interface. However, this cannot be regarded

as a general rule, because in general the relationship between the atomic processes called

from a composite process is quite different from the relationship between the operations

grouped into an interface.

3.3 Faults

OWL-S does not yet have a concept of fault (or exception) per se. However, OWL-S has

the conditional effect, which can be used to capture the same intent. A conditional effect

(of a process) simply states what effects will occur under a given condition. That condition

can directly correspond to a fault, such as the “ItemUnavailable” fault example given in

Section 3.3 of [5]. Thus, it makes sense for the modelReference of a fault to refer to a

conditional effect.4

4 Precisely speaking, a conditional effect is an instance of OWL-S’s Result class.

3.4 XML Schema Elements

By default, and in what is by far the most common usage, the content of a WSDL message

is described using XML Schema. That is, XML Schema is used to define an element,

which in turn is associated with a message of a WSDL operation. The element defines the

syntax that is allowed for the content of the associated message. The XML Schema

definitions can appear inline, in the types section of a WSDL document, or in a separate

XML Schema document that gets imported by the WSDL document.

The SAWSDL charter [7] gives a motivational example having to do with message

content, “where the input and output messages are elements amount and tax, both of type

xs:double, could have different meanings: calculation of tax on a product, calculation of

income tax, etc.” The problem illustrated by this example, of course, is that a very general,

ubiquitous I/O type like xs:double tells you very little about the functionality or usage

associated with an operation using that type. Here, an annotation referring to a type (e.g., a

SalesTax concept) defined in some semantic framework, such as OWL, can provide value

by helping to discover operations that can meet a given set of requirements.

To support this kind of use case, SAWSDL allows for the annotation of any

xs:element, xs:complexType, xs:simpleType, or xs:attribute definition. For our purposes,

there is little difference between these three kinds of definitions5; in any case, a

modelReference annotation will simply associate a semantically defined concept with the

corresponding unit of structure in XML Schema. In general, it is straightforward to map

from a unit of structure in XML Schema to an OWL concept – and there can be a good

deal of flexibility in doing so. In many cases, an element (or complex or simple type) such

as, for example, PurchaseOrder, will map naturally onto an OWL class with similar

structure. In other cases, depending on the choices that have been made in structuring the

ontology, it could also be reasonable to map an element (or complex or simple type) onto

an OWL individual. In the case of a complex type, the SAWSDL specification notes that it

can be annotated in a top-down style, a bottom-up style, or a combination of the two.

Thus, in many cases, a complex type could map very naturally onto an OWL class, and its

subtypes could map onto the types (ranges) of that class’s properties, that is, assuming that

the XML Schema type and the OWL class have a parallel structure. But SAWSDL does

not assume a parallel structure; indeed, SAWSDL is explicitly noncommittal regarding the

relationship between the high-level and the lower-level annotations within a complex type:

“A complex type can be annotated at both the top and member level. These annotations

are independent of each other” (Section 4.1.2 of [5]).

5 It should be noted that, “in WSDL 2.0, all normal and fault message types must be defined as single elements

at the topmost level (though of course each element may have any amount of substructure inside it)” [2].

3.5 Messages

As described above, SAWSDL defines the use of modelReference with several kinds of

XML Schema declarations. This gives an effective means of mapping from XML Schema

to OWL. That is, given an arbitrary unit of structure defined in XML Schema, SAWSDL

allows you to associate it with any OWL entity (or with a list of OWL entities) that can be

referenced by URI. (SAWSDL has nothing to say about mapping in the other direction,

and that is also out of scope for this paper.)

However, it is important to recognize the limitations of this approach in the context of

services. The inputs and outputs of services are carried in messages. SAWSDL’s XML

Schema annotations deal only with content, and say nothing about inputs, outputs,

messages, or message exchange patterns (MEPs).

Why does this matter? After all, it is certainly true that, with SAWSDL’s defined XML

Schema annotations, the content of any input or output message (and any element of

structure within that content) can be mapped to a semantic referent. The problem is simply

that the XML Schema annotations are not adequate to provide full disambiguation of the

semantics associated with inputs and outputs – at least not without forcing a cumbersome

duplication of XML Schema declarations.

Consider, for example, company X’s use of a WSDL document (developed before

SAWSDL was available) that defines an XML element PurchaseOrder, and reuses that

element as the input type of several different operations. Suppose one of those operations

uses the PurchaseOrder element to carry information for a new purchase, whereas another

operation uses that same PurchaseOrder element to carry information for a modified

purchase, and yet another operation uses it for a purchase to be cancelled. Suppose,

further, that company X develops an OWL ontology that has distinct classes for

NewPurchaseOrder, ModifiedPurchaseOrder, and CancelledPurchaseOrder, and wants

to use its ontology to annotate its existing services. In a scenario such as this, the service

could not be properly annotated without defining the same three distinctions in XML

Schema, as distinct elements. Having done this, modelReference could be used, in the

element declarations, to refer to the three different OWL classes appropriately. To

properly correlate the three new elements, and their annotations, with the operations, the

input constructs within the operation definitions would also have to be modified to

indicate which of the elements is used with which operation. This is a workable solution,

but at the cost of considerable effort in maintaining legacy services. Given all this required

effort at capturing these distinctions in XML Schema, one might well wonder if the

semantic annotations are adding any value.

Moreover, when complex MEPs are used, difficulties such as these can arise within the

annotation of a single operation. If an MEP has more than one input message, a similar

situation could arise, in which multiple input messages could carry content of the same

XML Schema type, but it would be important to annotate them with different semantic

referents.6 SAWSDL’s defined uses of modelReference (with operation, interface, fault,

and XML Schema constructs) do not allow for this. For many purposes, this can be a

serious limitation. Even discovery is not well supported anymore. Consider an operation A

with an MEP that takes an input message with a semantic referent of X, followed by an

input message with a semantic referent of Y. Operation B also takes two input messages,

but with semantic referents of Y followed by X. If these two operations cannot be

distinguished, discovery becomes much less effective.

This situation can be remedied by setting out some guidelines for the use of

modelReference with WSDL’s input and output (message) constructs. With the use of

these constructs, the example above can be easily accommodated by adding the

modelReferences (pointing to NewPurchaseOrder, ModifiedPurchaseOrder, and

CancelledPurchaseOrder) directly onto the input declarations of the three operations, as

appropriate.

Instead of using an OWL class as the referent of a message’s modelReference, it is

also possible to use an OWL-S input (or output) construct, or a set of OWL-S input (or

output) constructs. These OWL-S constructs should belong to the process that corresponds

to the operation of the message. Indeed, this is a more natural mapping for WSDL

messages (that is, WSDL’s input and output elements belonging to an operation).

Compared to the use of OWL classes as referents, there is no lost information, because

each OWL-S input and output already includes a mention of the class that serves as the

type of the input or output.

4. USING SCHEMA MAPPING ANNOTATIONS

SAWSDL’s schema mapping annotations, liftingSchemaMapping and

loweringSchemaMapping, “are used to associate a schema type or element with a mapping

to an ontology …. The value of the liftingSchemaMapping attribute is a set of zero or more

URIs that reference mapping definitions. A mapping referenced by this attribute defines

how an XML instance document conforming to the element or type defined in a schema is

transformed to data that conforms to some semantic model” (Section 4.2 of [5]). Similarly,

loweringSchemaMapping is used to reference a mapping from data expressed in a

semantic model to data expressed in an XML document.

There is very little to say about the schema mapping annotations that is specific to

OWL- or OWL-S. These annotations are likely to be used in conjunction with XSLT

primarily, but the SAWSDL specification does not require XSLT or any other particular

mapping language. The schema mapping annotations are the only aspects of SAWSDL

6 Similar difficulties can arise with outputs, of course.

that are clearly intended for use at runtime (and only at runtime). It should be noted that

the OWL-S 1.1 (and previous release) groundings have also made use of XSLT scripts in

the same general manner. As explained in [14], the use of an XSLT (or similar) syntax-

based transformation approach from OWL to XML is problematic, because there are

generally a number of different ways that the same content can be serialized in OWL. It

can be extremely complicated to write an XSLT script that handles all the different

variants.

The OWL-S 1.1 grounding adopted some measures to alleviate this problem. It allows

for the use of precondition expressions to bind variables to values in the semantic model

(typically values passed in as inputs), and it specifies that a runtime environment should

pass these bindings into corresponding variables declared in XSLT. The extent to which

this alleviates the problem will depend upon the OWL-S developerspecifically, on the

manner in which he or she writes precondition expressions. Preconditions can be written in

a variety of languages, including SWRL [6] and SPARQL [15]. In principle, it is possible

to use preconditions to break down complex OWL individuals into primitive elements,

thus avoiding the issue of handling multiple possible serializations.

5. DISCUSSION

The SAWSDL specification leaves a great deal to the imagination, and it remains to be

seen whether, and in what ways, it will come to be widely used. There is very little that can

be done with SAWSDL that does not require additional conventions. This paper is meant

to be a start toward a set of conventions for using SAWSDL with OWL-S as the source of

annotation referents.

This need for additional conventions is perhaps most evident with respect to

SAWSDL’s schema mappings (lifting and lowering). More than any of SAWSDL’s other

annotations, it is quite clear that the schema mappings cannot stand alone. That is,

additional specifications and machinery are needed for them to be useful. At a minimum, a

tool will need to know where to get the semantic data that needs to be lowered, or where to

deliver the result of a lifting operation.7 Of course, a great many other details may need to

be specified as well, depending on purpose and context. For example, as noted earlier,

OWL-S relies on variable bindings to be propagated from preconditions (normally

expressed in SPARQL) to XSLT. Propagating these bindings cannot be accommodated,

much less specified, using a schema mapping annotation – because these annotations allow

for nothing other than a reference to a mapping script, such as an XSLT script. The

conventions for variable bindings from another framework cannot themselves be captured

in XSLT; they require additional specification.

7 With model references, at least, one can imagine getting some mileage simply by comparing their URIs.

This is an illustration of the inherent weakness of SAWSDL with respect to more

ambitious use cases. These more ambitious scenarios lead one to the conclusion that

additional steps beyond SAWSDL will be needed before long; that is, conventions for use

with larger frameworks. This conclusion is the motivation for the full OWL-S grounding,

discussed in [14], which builds on SAWSDL annotations.

It is important to note that implicit constraints will often be associated with the use of

SAWSDL annotations, if they are to be used in a coherent fashion with a single semantic

framework such as OWL-S. For example, SAWSDL annotations of XML Schema

elements can be used independently of services; they can be used merely to establish

correspondences between elements of XML Schema definitions and elements of OWL

ontologies. However, in the context of a larger, semantically annotated, WSDL document,

an implicit set of constraints is associated with these annotations of XML Schema. This is

because of the way in which the XML Schema types are used with operations, on the

WSDL side, and the corresponding OWL types are used with the inputs and outputs of

atomic processes, on the OWL-S side. Once you have mapped an operation to an atomic

process, you have also implicitly established a correspondence between the set of XML

Schema types used as the I/O types of the operation, and the set of OWL classes used as

the I/O types of the atomic processes. To maintain coherence, then, these types need to be

used consistently on both sides. Constraints such as these could and should be checked by

tools.

OWL-S needs to evolve to support faults in a more straightforward manner. It would

also be helpful if OWL-S had an organizational construct that directly correlated to

WSDL’s notion of a service as a collection of operations.

6. CONCLUSION

We have given a rationale and guidelines for the use of OWL-S constructs as the referents

of SAWSDL annotations. Here is a summary of our recommendations:

• The modelReference of a WSDL operation can refer to an OWL-S atomic or

composite process. With simple MEPs, either an atomic process or a composite

process can be used (assuming that the process supports a pattern of I/O that is

equivalent to the MEP). With complex MEPs (as characterized in Section 3.1), only

a composite process can be used.

• The modelReference of a WSDL interface should refer to an instance of an OWL-S

profile class (i.e., Profile or a subclass of Profile). If a particular instance is not

available, a profile class can serve as the referent.

• The modelReference of a WSDL fault should refer to a conditional effect of an

OWL-S process – the process that corresponds to the operation for which the fault

is declared.

• Model references in XML Schema should refer to OWL constructs, and can do so

independently of OWL-S.

• In addition, model references on WSDL input and output elements should be used

to relate those elements to inputs and outputs of an OWL-S process – the process

that corresponds to the operation for which the input or output element is declared.

• Schema mapping (lifting and lowering) annotations can refer to XSLT scripts.

However, the usefulness of these scripts in translating from OWL is limited, as

discussed in Section 4.

This paper and these recommendations assume that the most complete possible

mapping is desired from WSDL onto OWL-S. A complete annotation of a WSDL

document implies a number of constraints on the relationships between the referents of the

annotations. Some of these constraints, which are not made explicit in SAWSDL, have

been discussed here. They could and should be checked by tools.

7. REFERENCES

[1] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. T. Schmidt, A. Sheth and K.

Verma. Web Service Semantics - WSDL-S. Technical report, W3C Member

Submission 7 November 2005.

[2] D. Booth and K. Canyang, “Web Services Description Language (WSDL) Version

2.0 Part 0: Primer”, W3C Candidate Recommendation 27 March 2006;

http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/.

[3] R. Chinnici, H. Haas, A. Lewis, J. Moreau, D. Orchard, and S. Weerawarana, Eds.,

“Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts”, W3C

Candidate Recommendation 27 March 2006; http://www.w3.org/TR/2006/CR-

wsdl20-adjuncts-20060327/.

[4] R. Chinnici, J. Moreau, A. Ryman, and S. Weerawarana, Eds., “Web Services

Description Language (WSDL) Version 2.0 Part 1: Core Language”, W3C

Candidate Recommendation 27 March 2006; http://www.w3.org/TR/2006/CR-

wsdl20-20060327/.

[5] J. Farrell and H. Lausen, Eds., "Semantic Annotations for WSDL and XML

Schema", W3C Candidate Recommendation 26 January 2007;

http://www.w3.org/TR/sawsdl/.

[6] I. Horrocks, P. F. Patel-Schneider, H. Boley, et al., “SWRL: A Semantic Web Rule

Language Combining OWL and RuleML”, W3C Member Submission, 21 May

2004; http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[7] J. Kopecký, Chair, C. Bournez, E. Prud’hommeaux, Team Contacts, “Semantic

Annotations for WSDL Working Group Charter”, Oct. 2005;

http://www.w3.org/2005/10/sa-ws-charter.

[8] H. Lausen, A. Polleres, and D. Roman. Web Service Modeling Ontology (WSMO).

W3C Member Submission, http://www.w3.org/Submission/WSMO/, 2005.

[9] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S.

Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara,

“OWL-S: Semantic Markup for Web Services”, W3C Member Submission, Nov.

2004; http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

[10] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci, K. Sycara, D.

McGuinness, E. Sirin, and N. Srinivasan, “Bringing Semantics to Web Services with

OWL-S”, to appear in the World Wide Web Journal, Vol. 10, No. 3, Sept. 2007.

[11] D. L. McGuinness and F. van Harmelen, “OWL Web Ontology Language

Overview”, W3C Recommendation, 10 February 2004;

http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[12] S. McIlraith, T.C. Son, and H. Zeng, “Semantic Web Services”, IEEE Intelligent

Systems, Vol. 16, No. 2, pp. 46–53, March-April 2001.

[13] M. Paolucci, A. Ankolekar, N. Srinivasan, et al., “The DAML-S Virtual Machine”,

in Proceedings of the 2
nd
 International Semantic Web Conference (ISWC), Sanibel

Island, FL, USA, October 2003, pp. 335–350.

[14] M. Paolucci, M. Wagner, and D. Martin, “Grounding OWL-S in SAWSDL”,

submitted to the “OWL-S: Experiences and Directions” workshop at the European

Semantic Web Conference, June 2007.

[15] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language for RDF”, W3C

Working Draft, 4 October 2006; http://www.w3.org/TR/2006/WD-rdf-sparql-query-

20061004/.

