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Division of Radiology and Biomedical Engineering, Graduate School of Medicine 
The University of Tokyo 

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 
 

July 19, 2021 
 
Professor Mike Conway 
Editorial Board Member 
BMC Medical Informatics and Decision Making 
 
Dear Professor Conway: 
 Thank you for your email regarding our manuscript, “Automatic detection of actionable radiology 
reports using bidirectional encoder representations from transformers” (3963b05a-0ec1-4d28-8c13-
87dc2efd7388), and the valuable comments from the reviewers. We enclose our revised manuscript and 
point-by-point responses to the two reviewers’ comments. 
 Changes have been made to our manuscript in response to the reviewers’ comments, and the 
suggestions that we received from native English proofreaders have also been reflected in the revised 
manuscript. 
 Some of the figures have been updated. Please refer to the figures included in our revised 
manuscript, not the figures remaining on the upload system. 
 We hope that the revisions made to the manuscript have satisfactorily addressed the reviewers’ 
concerns and that the manuscript is now suitable for publication in BMC Medical Informatics and Decision 
Making. Thank you for your consideration of this paper. 
 
Sincerely, 
Yuta Nakamura 
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Response to Reviewer #1 
 
 We would like to express our appreciation to the reviewer for reading our manuscript and the 
insightful comments. 
 

 
Response:  

- We highly appreciate the comment. We have had the following two concerns about the dataset, 
which is partly shared by the reviewer: (i) The number of radiology reports in the positive class 
may be too small for the machine learning models to perform well. (ii) We collected radiology 
reports that had been issued only in the first three months since the deployment of the actionable 
tagging function, only 0.62% of which were actionable. However, the ratio might drastically 
change as the operation of the actionable tagging function continues for a longer time. 

- To address the issue, we have collected radiology reports further by extending the period from 
about five months to twenty months. Consequently, we have obtained around four times as many 
radiology reports as in our initial submission. We have carried out again all of the necessary 
experiments, annotations, and analyses using the new dataset. 

- We have revised “Clinical data” and “Class labeling and data split” sections to reflect the change. 
We have also explained more clearly that we excluded radiology reports for CT-guided biopsy 
and radiation therapy planning: 

- We obtained 93,215 confirmed radiology reports for computed tomography (CT) 
examinations performed at our hospital between September 9, 2019, and April 30, 2021, 
all of which were written in Japanese. Next, we removed the following radiology reports 
that were not applicable for this study: (i) eight radiology reports whose findings and 
impressions were both registered as empty, (ii) 254 reports for CT-guided biopsies, and 
(iii) 2,030 reports for CT scans for radiation therapy planning. The remaining 90,923 
radiology reports corresponded to 18,388 brain, head, and neck; 64,522 body; 522 
cardiac; and 5,673 musculoskeletal reports; and 3,209 reports of other CT examinations 
whose body parts could not be determined from the information stored in the Radiology 
Information System (RIS) server. The total was greater than the number of reports 
because some reports mentioned more than one part. 

- The increase in the amount of data has resulted in the improvement of model performance 
characteristics compared with our initial submission. We show Table 3 (renumbered from Table 
2) containing the updated results: 

Metho
d 

Use of 
order 
information 

AUPRC Average 
Precision 

AUROC F1 score Recall Precision Specificity 

LR 
 
 
 

(-) 0.4574 0.4224 0.9351 0.1052 0.8729 0.0559 0.8715 

(+) 0.4218 0.4580 0.8992 0.0763 0.8136 0.0400 0.8296 

GBDT (-) 0.4813 0.4816 0.8986 0.0975 0.7881 0.0520 0.8746 

(+) 0.4767 0.4771 0.9133 0.0699 0.8305 0.0365 0.8087 

LSTM (-) 0.4617 0.4620 0.9331 0.0916 0.8644 0.0484 0.8516 

(+) 0.4265 0.4272 0.9277 0.0797 0.8856 0.0417 0.8226 

1. Isn't the objective variable as actionable 0.62% too small? Can you build a model? 
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BERT (-) 0.5138 0.5142 0.9516 0.1030 0.9068 0.0546 0.9271 

(+) 0.5153 0.5157 0.9497 0.1183 0.8729 0.0634 0.9140 

 
 

- Similarly, we have updated the main result mentioned in the “Results” section as below: 
- In both of the experiments without and with order information, BERT achieved the 

highest AUPRC and average precision among the four methods, and it showed a 
statistically significant improvement over the other methods. In particular, the highest 
AUPRC of 0.5153 was achieved using BERT with order information. The F1 score 
tended to be higher for the methods with higher AUPRCs, average precisions, and 
AUROCs. The highest precision was 0.0634, considerably lower than that for recall. 

- Please note that the change in the ratio of actionable reports was small (from 0.62% to 0.87%). 
 
 

Response:  
- We apologize that our explanation was not clear enough. We surely intended to refer to the original 

Table 3, because it showed that the difference among the performance characteristics of BERT 
and other methods was statistically significant. We have revised the corresponding part as below. 
Please note that the original Tables 2 and 3 have been renumbered to 3 and 4: 

- Table 3 presents the performance of each method calculated from precision-recall curves 
and optimal cut-off points of ROC curve. Table 4 shows the results of statistical analysis 
to compare the performance characteristics of LR, GBDT, LSTM, and BERT. In both of 
the experiments without and with order information, BERT achieved the highest AUPRC 
and average precision among the four methods, and it showed a statistically significant 
improvement over the other methods. In particular, the highest AUPRC of 0.5153 was 
achieved using BERT with order information. The F1 score tended to be higher for the 
methods with higher AUPRCs, average precisions, and AUROCs. The highest precision 
was 0.0634, considerably lower than that for recall. 

 
Response:  

- We highly appreciate this comment which helps our manuscript more scientifically strict. 
- We have carried out hyperparameter tuning all over again using five-fold cross-validation not only 

for BERT but also for all of the other methods. 
- First, we have updated the “BERT” subsection with a more detailed description of hyperparameter 

tuning: 
- As in Table 2, the learning rate and the number of training epochs were set as follows. 

The learning rate was set to 5.0 × 10-5 for the experiment without order information and 
to 4.0 × 10-5 for the experiment with order information. The number of training epochs 
was set to 3 for both experiments. The learning rate and the number of training epochs 
were determined by the grid search and five-fold cross-validation using the training set. 
We tried all of the 25 direct groups of five learning rates, 1.0 × 10-5, 2.0 × 10-5, 3.0 × 10-
5, 4.0 × 10-5, and 5.0 × 10-5, and the five training epochs, 1 to 5. We calculated the 
averages of the area under the precision-recall curve (AUPRC) [37, 38] for the five folds, 
and chose the learning rate and the number of training epochs that gave the highest 
average AUPRC. 

-  

2. This should be Table.2 not Table.3 in line 6 of Result section, shouldn't it? 

3. Did five-fold cross-validation apply to BERT only? 
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-  
- Second, we have added Table 2 showing candidates and choices of hyperparameters: 

Method Hyper- 
param- 
eter 

Candidates Used hyperparameters 
Order information (-) Order information (+) 

Oversampling 
(-) 

Oversampling 
(+) 

Oversampling 
(-) 

Oversampling 
(+) 

LR C 1e-4, 1e-3, 
1e-2, 1e-1, 
1.0, 1e+1, 

1e+2, 1e+3, 
1e+4 

1e+2 1e-2 1.0 1.0 

L1 ratio 0.0, 0.5, 1.0 1.0 0.5 1.0 1.0 
GBDT Iterations 500, 1,000, 

1,500 
500 1,000 1,500 1,000 

LSTM Learning 
rate 

5e-6, 1e-5, 
2e-5, 3e-5 

5e-6 1e-5 5e-6 5e-6 

Epochs 5, 10, 15, 20, 
25, 30 

20 5 20 25 

BERT Learning 
rate 

1e-5, 2e-5, 
3e-5, 4e-5, 

5e-5 

5e-5 5e-5 4e-5 1e-5 

Epochs  1, 2, 3, 4, 5 3 1 3 1 
 

- Third, we have added descriptions of hyperparameter tuning for methods other than BERT in the 
“Methods” section. Please note that we have included a long short-time memory (LSTM) model 
in baselines: 

- We trained the LSTM classifier from scratch. The same optimizer and loss function as 
those in BERT were used. The batch size was set to 256. As in BERT, the learning rate 
and the number of training epochs were determined by grid search and five-fold cross-
validation. Table 2 shows the hyperparameter candidates on which the grid search was 
performed and the hyperparameters that were finally chosen for each experiment. 

- Here, we describe the details of hyperparameters of the LR and GBDT models. For LR, 
we used Elastic-Net regularization [30], which regulates model weights with the mixture 
of L1- and L2-norm regularizations. Elastic-Net takes two parameters, C and the L1 ratio. 
C is the reciprocal strength to regularize the model weights, and the L1 ratio is the degree 
of dominance of L1-norm regularization. The C and the L1 ratio were determined with 
the grid search and five-fold cross-validation, whose candidates and choices are shown 
in Table 2. For GBDT, the tree depth was set to 6. The number of iterations was 
determined by grid search and five-fold cross-validation in the same way as LR. 

 

Response:  
- Thank you for the comment. We agree that a more detailed explanation is required for how Figures 

6a and 6b were created and what is described in them. 
- First, we have added a description on how we obtained the visualizations in Figures 6a and 6b in 

the “Results” section: 
- For LR and GBDT, each of the available n-grams (i.e., uni-, bi-, and trigrams) were 

scored using coefficients assigned by the LR models or feature importance assigned by 
the GBDT models, which reflected the n-grams that the LR and GBDT models placed 
importance during prediction. N-grams consisting only of either Japanese punctuations 
or Japanese postpositional particles were excluded because they were assumed to be of 
little value. 

- Second, we have also added a description of Figures 6 and 7 in the “Results” section, part of which 
has been moved from their captions: 

- The results are shown in Figures 6 and 7, which suggest that the LR and GBDT models 
tended to predict radiology reports as actionable if they contained such expressions as “is 

4. The Figure.6a and 6b should be described in detail. 
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actionable,” “investigation,” “cancer,” or “possibility of cancer.” This suggests that the 
models picked up explicit remarks by radiologists recommending clinical actions or 
pointing out cancers. In contrast, patterns in keywords used by the LR model for non-
actionable radiology reports were less clear, although some negations such as “is absent” 
or “not” are observed in Figure 6b. The word “apparent”, which is frequently 
accompanied by negative findings in Japanese radiology reporting, is also present in the 
top negative words in Figure 6b. These imply that the LR model might deduce that 
radiology reports are non-actionable when negative findings predominate. Order 
information may not be used much by the LR and GBDT models because few of the n-
grams in order information are present in Figures 6 and 7. 

 
Response: 

- The definition of “the 12 attention heads” is the same as that given by Devlin J et al., 2019 (DOI: 
10.18653/v1/N19-1423). We used a pre-trained BERT model whose architecture is equivalent to 
that of the BERTBASE model referred to by Devlin J et al. The BERTBASE model has 12 self-
attention heads in each layer, as explained by Devlin J et al., 2019 (DOI: 10.18653/v1/N19-1423) 
as follows: 

- we denote the number of layers (i.e., Transformer blocks) as L, the hidden size as H, and 
the number of self-attention heads as A. 3 We primarily report results on two model sizes: 
BERTBASE (L=12, H=768, A=12, Total Parameters=110M) and BERTLARGE (L=24, 
H=1024, A=16, Total Parameters=340M). 

- Apart from the above, the description about how attention scores were calculated was indeed quite 
unclear. We have revised the corresponding section with a more detailed explanation: 

- For BERT, tokens directing intensive attention toward the [CLS] special token are shown 
in red. The attention scores were calculated by averaging all of the attention weight 
matrices in each of the 12 attention heads in the last Transformer encoder layer of the 
BERT classifier. 

Response:  
- Thank you for the comment. First, we have updated the portion and number of the implicit 

actionable reports in the “Results” section: 
- 111 truly actionable reports (47%) were implicit in the test set. 

- We are afraid that it is quite difficult to list all the implicit actionable reports. Instead, we have 
added a more detailed analysis of implicit actionable reports. We focused on the implicit 
actionable reports that do not contain any emphatic expression for the actionable findings (e.g., 
“highly suspected to be primary lung cancer” for lung nodules). Such radiology reports cannot be 
identified by looking at the presence or absence of particular expressions. We have found that 
BERT is still capable of identifying such implicit actionable reports, and in such cases, BERT has 
assigned high attention scores to disease names. We have added Figure 9 showing results of this 
analysis: 

- Fig. 9 Three implicit actionable radiology reports pointing out incidental pneumothorax, 
all of which were successfully identified only by BERT. BERT attention scores are 
visualized in the same way as in Figure 8. Although none of the three radiology reports 
emphasize urgency or explicitly recommend clinical actions, BERT has given high 
attention scores to the disease name “pneumothorax.” 

- We have also added the description of this analysis in the “Results” section: 
- Five of the implicit actionable reports were detected only by BERT and not detected by 

other methods without order information. Figure 9 shows the BERT attention 
visualizations towards three of the reports, all of which point out pneumothorax. 

5. Please define "the 12 attention heads" in Result section. 

6. You should show which of the sixteen truly actionable reports (38%) were implicit in the test set. 



 

6 
 

Although none of the three reports include explicit recommendations or emphatic 
expressions to highlight actionable findings, BERT successfully predicted them as 
actionable. Moreover, Figure 9 shows that BERT has assigned high attention scores to a 
part of the involved disease name “pneumothorax.” 

 

 
Response:  

- We appreciate the comment. In the “Discussion” section in our original manuscript, we mentioned 
the capability of our method to identify implicit actionable reports, but not for non-mass actionable 
reports. 

- Our analysis suggests that all of the methods, including the BERT-based one, tend to mainly rely 
on the presence or absence of expressions for recommendations, possibilities, or suspicions, rather 
than particular disease names. However, we suppose that the capability of BERT is not limited to 
considering such superficial clues. We have added Figure 9 explaining why. Figure 9 implies that 
BERT can identify implicit actionable reports by focusing on specific disease names. We have 
newly discussed this viewpoint in the “Discussion” section: 

- As in Tables 8 and 9, our BERT-based approach was effective in identifying actionable 
reports regardless of the explicitness or the targeted abnormality. The probable reasons 
were that (i) implicit actionable reports often emphasized the abnormality that was 
considered actionable (e.g., “highly suspected to be primary lung cancer” for lung 
nodules) and that (ii) the BERT classifiers were alert to such emphatic expressions in 
addition to explicit recommendations for follow-up, investigations, or treatment. 
Furthermore, Figure 9 shows that BERT could still identify implicit actionable reports 
without emphatic expressions for the actionable findings, and it could assign high 
attention scores to the names of the actionable findings. This implies that BERT is 
capable of learning to distinguish disease names that are likely to be often reported as 
actionable findings. 

 
 

Response to Reviewer #2 
 We would like to express our appreciation to the reviewer for reading our manuscript and the 
insightful comments. 

 
Response:  

- We highly appreciate this comment, which helped to improve our manuscript. We agree that the 
performance of BERT should be compared with that of another deep learning method, not only 
with those of statistical machine learning methods, to properly examine the impact of introducing 
a transformer-based model. 

- We have additionally performed an experiment with a bidirectional long short-term memory 
(LSTM) model followed by a self-attention layer. The reason for introducing a self-attention layer 
was that a vanilla LSTM model alone performed far poorer than other methods in empirical 
experiments. 

- Accordingly, we have added a new subsection, “Baselines: LSTM”, in the “Methods” section as 
below: 

- As one of the baselines against BERT, we performed automated detections of actionable 
reports using a two-layer bidirectional long short-term memory (LSTM) model followed 
by a self-attention layer [27, 29]. As in BERT, the inputs to the LSTM model were report 

7. Clearly mention the reason of methods detected actionable reports in Table 5 in Discussion section. 

1. The author compared BERT with statistical machine learning methods to prove the advantage of 
BERT. I think more comparison with other deep learning methods was needed. 
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bodies in the experiments without order information and were concatenations of order 
information and report bodies in the experiments with order information. The lengths of 
the input documents in a batch were aligned to the longest one by adding special padding 
tokens at the end of the other documents in the same batch. Next, each document was 
tokenized and converted into sequences of vocabulary IDs using the SentencePiece 
tokenizer, and was then passed into a 768-dimensional embedding layer. In short, the 
preprocessing converted radiology reports in a batch into a batch size × length × 768 
tensor. 

- The final layer of the LSTM model outputs two batch size × length × 768 tensors 
corresponding to the forward and backward hidden states. We obtained document-level 
representations by concatenating the two hidden states. The representations were further 
passed into a single-head self-attention layer with the same architecture as proposed by 
Vaswani et al. [27]. The self-attention layer converts the document-level representations 
to a batch size × 1,536 matrix by taking the weighted sum of the document-level 
representations along the time dimension effectively by considering the importance of 
each token. Then, the matrix was converted into two-dimensional vectors using a single-
layer perceptron with softmax activation. The resulting two-dimensional vectors were 
used as prediction scores. Hereafter, we collectively refer to the LSTM model, the self-
attention layer, and the perceptron as the “LSTM classifier.” 

- We trained the LSTM classifier from scratch. The same optimizer and loss function as 
those in BERT were used. The batch size was set to 256. As in BERT, the learning rate 
and the number of training epochs were determined by grid search and five-fold cross-
validation. Table 2 shows the hyperparameter candidates on which the grid search was 
performed and the hyperparameters that were finally chosen for each experiment. 

-  
- We have revised the description of our methods in Table 1 by changing “SML, BERT” to “SML, 

LSTM, BERT”: 
This study Japanese Yes Yes Reports with an 

actionable tag 
Order 
Information, 
Findings, 
Impression 

SML, 
LSTM, 
BERT 

 
- We have also revised Table 3 (renumbered from 2), describing the main result including the 

metrics of LSTM classifiers. Please note that there have been changes in the scores, although the 
main conclusions have been affected slightly. This is because we have carried out again all of the 
experiments with a larger amount of data by extending the targeted period to obtain radiology 
reports from our hospital. Below is the revised Table 3: 

Metho
d 

Use of 
order 
information 

AUPRC Average 
Precision 

AUROC F1 score Recall Precision Specificity 

LR 
 
 
 

(-) 0.4574 0.4224 0.9351 0.1052 0.8729 0.0559 0.8715 

(+) 0.4218 0.4580 0.8992 0.0763 0.8136 0.0400 0.8296 

GBDT (-) 0.4813 0.4816 0.8986 0.0975 0.7881 0.0520 0.8746 

(+) 0.4767 0.4771 0.9133 0.0699 0.8305 0.0365 0.8087 

LSTM (-) 0.4617 0.4620 0.9331 0.0916 0.8644 0.0484 0.8516 

(+) 0.4265 0.4272 0.9277 0.0797 0.8856 0.0417 0.8226 

BERT (-) 0.5138 0.5142 0.9516 0.1030 0.9068 0.0546 0.9271 

(+) 0.5153 0.5157 0.9497 0.1183 0.8729 0.0634 0.9140 

-  
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Response:  

- First, we agree that the original Figures 6 and 7 were not sufficiently informative because symbols 
and function words other than content words frequently appeared in the top n-grams. Thus, we 
have improved Figures 6 and 7 by excluding n-grams from the visualization of model behaviors 
if they were Japanese punctuations, Japanese postpositional particles, or the concatenations of both. 
We have also revised the corresponding part in the “Results” section as below: 

- For LR and GBDT, each of the available n-grams (i.e., uni-, bi-, and trigrams) were 
scored using coefficients assigned by the LR models or feature importance assigned by 
the GBDT models, which reflected the n-grams that the LR and GBDT models placed 
importance during prediction. N-grams consisting only of either Japanese punctuations 
or Japanese postpositional particles were excluded because they were assumed to be of 
little value. 

- Next, let us discuss the top expressions for negations. Although it is difficult to interpret most of 
the top negative words in the updated Figures 6a and 6b, some words for negations including “not” 
and “absent” are found there. We assume that such words often co-occur with negative findings. 
The word “apparent” is also present in Figure 6b, which can also be a key to detecting negative 
findings. This is because, in Japanese radiology reporting, the word “apparent” is frequently used 
to describe negative findings (e.g., “pulmonary metastasis is not apparent.”) but is rarely 
accompanied by positive findings. Given that negative findings may rarely be actionable, these 
negative words and the word “apparent” may contribute as keys for the models to detecting non-
actionable radiology reports. Thus, we have revised the corresponding part of the “Discussion” 
section as below: 

- In contrast, patterns in keywords used by the LR model for non-actionable radiology 
reports were less clear, although some negations such as “is absent” or “not” are observed 
in Figure 6b. The word “apparent”, which is frequently accompanied by negative findings 
in Japanese radiology reporting, is also present in the top negative words in Figure 6b. 
These imply that the LR model might deduce that radiology reports are non-actionable 
when negative findings predominate. 

- Third, our additional analysis suggests that BERT models can probably make a decision on the 
basis of characteristics of diseases rather than by simply looking at affirmative or negative words. 
We have added Figure 9, which illustrates the additional analysis: 

- Fig. 9 Three implicit actionable radiology reports pointing out incidental pneumothorax, 
all of which were successfully identified only by BERT. BERT attention scores are 
visualized in the same way as in Figure 8. Although none of the three radiology reports 
emphasize urgency or explicitly recommend clinical actions, BERT has given high 
attention scores to the disease name “pneumothorax.” 

- We have also discussed this viewpoint in the “Results” section as below: 
- Five of the implicit actionable reports were detected only by BERT and not detected by 

other methods without order information. Figure 9 shows the BERT attention 
visualizations towards three of the reports, all of which point out pneumothorax. 
Although none of the three reports include explicit recommendations or emphatic 
expressions to highlight actionable findings, BERT successfully predicted them as 
actionable. Moreover, Figure 9 shows that BERT has assigned high attention scores to a 
part of the involved disease name “pneumothorax.” 

 
 

2. Result in Figure 6 to 8 suggested that all three methods mainly relied on whether radiology reports 
contain specific expressions of recommendation, suspect, or negation. The author should discuss the 
clinical meanings of these top expressions, since I didn’t find clinical significance of expressions like 
“no”,”apparent” etc. 
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Response:  

- We highly appreciate this comment. 
- We have carried out oversampling to include 10 times as many positive samples in the training 

set. We did not re-use the same hyperparameters as in the experiment without oversampling, but 
carefully tuned models again to select the best hyperparameters with oversampling. 

- We have added a new subsection, “Oversampling”, at the end of the “Methods” section: 
- We mainly used the training set mentioned in the previous section, but its significant 

class imbalance may affect the performance of the automated detection of actionable 
reports. Oversampling positive data can be one of the methods to minimize the negative 
impact of the class imbalance [47].  

- To examine the effectiveness of oversampling, we additionally performed experiments 
using the oversampled training set. The oversampled training set was created by 
resampling each actionable radiology report ten times and each non-actionable radiology 
report once from the original training set. Hyperparameters for each method (LR, GBDT, 
LSTM, and BERT) and for each input policy (using and not using order information) 
were determined using the same strategy as that in the experiments without oversampling. 
The chosen hyperparameters are shown in Table 2. 

- Note that we did not oversample the validation datasets during the five-fold cross-
validation because we intended to search optimal hyperparameters for the same positive 
class ratio as the test set. 

- To examine the effect of oversampling, we statistically compared the AUPRC and 
average precision obtained without and with oversampling in the same way as 
aforementioned. 

-  
- Contrary to our expectations, the oversampling did not contribute to the model performance except 

for GBDT. We have added Tables 6 and 7 showing the results: 
Method Use of order 

information 
Oversampling AUPRC Average 

Precision 
AUROC F1 score 

LR (-) (-) 0.4574 0.4224 0.9351 0.1052 

(+) 0.3166 0.3167 0.8036 0.0474 

(+) (-) 0.4218 0.4580 0.8992 0.0763 

(+) 0.4214 0.4221 0.9277 0.1089 

GBDT (-) (-) 0.4813 0.4816 0.8986 0.0975 

(+) 0.4854 0.4858 0.9335 0.0841 

(+) (-) 0.4767 0.4771 0.9133 0.0699 

(+) 0.4874 0.4878 0.9307 0.0920 

LSTM (-) (-) 0.4617 0.4620 0.9331 0.0916 

(+) 0.4188 0.4194 0.9262 0.0818 

(+) (-) 0.4265 0.4272 0.9277 0.0797 

(+) 0.4086 0.4066 0.9255 0.0795 

BERT (-) (-) 0.5138 0.5142 0.9516 0.1030 

(+) 0.4256 0.4273 0.9464 0.1190 

3. In the classification problem, the low positive case ratio (0.62%) of data needs to be noted. In this 
study, oversampling or under sampling methods were not applied to solve the data imbalance problem. 
In the Discussion section, the author mentioned the method by Madabushi et al. However, the author 
didn’t apply this method to solve the data imbalance problem. 
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(+) (-) 0.5153 0.5157 0.9497 0.1183 

(+) 0.4549 0.4559 0.9441 0.0953 

 
Method Use of order 

information 
Metrics p values 

Oversampling (-) vs (+) 
LR (-) AUPRC p < 0.0001  

Average Precision p < 0.0001  
(+) AUPRC p = 0.7971  

Average Precision p = 0.9280 

GBDT (-) AUPRC p = 0.0001  
Average Precision p < 0.0001  

(+) AUPRC p < 0.0001  
Average Precision p < 0.0001  

LSTM (-) AUPRC p < 0.0001  
Average Precision p < 0.0001  

(+) AUPRC p < 0.0001  
Average Precision p < 0.0001  

BERT (-) AUPRC p < 0.0001  
Average Precision p < 0.0001  

(+) AUPRC p < 0.0001  
Average Precision p < 0.0001  

 
- Accordingly, we have updated the “Results” section with the explanation of the results of 

oversampling: 
- Oversampling showed a limited positive effect on the performance. As in Tables 6 and 

7, oversampling positive samples in the training dataset ten times brought statistically 
significant improvement of AUPRC and average precision only for GBDT.  

- We assume that the reason for the poor contribution of simple oversampling was that it 
did not bring additional information to the models. 

We also recognize that other various methods are worth trying to alleviate the class imbalance 
including different oversampling ratios, undersampling, cost-sensitive learning, or better loss 
functions, although it is difficult to try all of them owing to time limitation. We have revised the 
corresponding part of the “Discussion” section with new references 49 and 51 (reference 46 in the 
original manuscript has been renumbered to 50): 

- This negative impact of low positive case ratio was not alleviated by simple oversampling, 
probably because it did provide bring new information to learn characteristics of 
actionable reports to the models. To overcome this limitation, obtaining a larger amount 
of positive data by collecting more radiology reports or data augmentation [49] may be 
an effective solution. Other approaches such as cost-sensitive learning [50] or the use of 
dice loss function [51] can also be worth trying in future studies. 

- 49. Wei J, Zou K. EDA: Easy data augmentation techniques for boosting performance 
on text classification tasks. Proceedings of the 2019 Conference on Empirical Methods 
in Natural Language Processing and the 9th International Joint Conference on Natural 
Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for 
Computational Linguistics; 2019. p. 6382–8. 
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- 51. Li X, Sun X, Meng Y, Liang J, Wu F, Li J. Dice Loss for Data-imbalanced NLP 
Tasks. Proceedings of the 58th Annual Meeting of the Association for Computational 
Linguistics. 2020. p. 465–76. 

 

 
Response:  

- Thank you for this comment, which helped us make a more detailed analysis. We have calculated 
the ratio of actionable reports in the test set and recall scores for each body part, which is shown 
in Table 10: 

 
Body 

part 
#Actionable reports Recall 

Method LR GBDT LSTM BERT 

Use of 
order 
infor- 

mation 

(-) (+) (-) (+) (-) (+) (-) (+) 

Total Implicit Non- 
mass  

Brain, 
Head & 
Neck 

23/5,584 
(0.41%) 

10/23 
(43.5%) 

16/23 
(69.6%)  0.739 0.65

2 
0.60

9 
0.78

3 
0.87

0 
0.82

6 
0.87

0 
0.69

6 

Body 206/19,256 
(1.1%) 

101/206 
(49.0%) 

91/206 
(44.2%)  0.879 0.83

5 
0.80

1 
0.82

5 
0.85

4 
0.88

3 
0.90

3 
0.88

8 
Cardiac 0/151 

(0%) 
- -  - - - - - - - - 

Skeletal 9/1,758 
(0.51%) 

1/9 
(11.1%) 

6/9 
(66.7%)  1.000 0.66

7 
0.88

9 
1.00

0 
1.00

0 
1.00

0 
1.00

0 
0.88

9 
Other 0/959 

(0%) 
- -  - - - - - - - - 

 
 

- We have also added the description in the “Results” section as below: 
- As in Table 10, actionable reports accounted for 0.41% of brain, head, and neck; 1.1% 

of body; and 0.51% of musculoskeletal CT radiology reports in the test set. Table 10 
also shows that the recall scores for the actionable musculoskeletal CT reports were 
greater than those for brain, head, and neck CT reports. 

- The analysis above has revealed the different proportions of subsets of actionable reports among 
body parts, which may result in better performance for musculoskeletal actionable reports than 
for brain, head, and neck ones. We have added this discussion at the end of the “Results” section 
as below: 

- As in Table 10, the detection performance was affected by the body part of the 
radiology reports. This is probably caused by the difference in the proportion of explicit 
and mass actionable reports for each body part. The actionable musculoskeletal CT 
reports were more often explicit and targeting mass abnormality than the brain, head, 
and neck CT reports. Tables 8 and 9 suggest that explicit and mass actionable reports 
were comparatively easier to identify than implicit and non-mass ones. This was 
probably why all four methods achieved higher recalls scores for musculoskeletal 
actionable reports than brain, head, and neck ones. 

4. The dataset contained radiology reports corresponded to brain, head and neck, body and 
musculoskeletal. Writing emphasis and content in these different kinds of reports had big difference. 
The author should discuss the impact on the result since these reports were simply mixed together. 


