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Initial predictor training and performance assessment

Dataset Actives Inactives Total ROC AUC
(Train/Test)

PR AUC
(Train/Test)

MCC
(Train/Test)

hERG 3800 34200 38000 0.99/0.96 0.99/0.838 0.96/0.761
DRD2 1039 100000 101039 1.00/0.99 0.97/0.63 0.83/0.59

Reduced DRD2 62 178 240 1.00/- 1.00/- 1.00/-

Table S1: Dataset specifications used for QSAR modelling and predictive performance on holdout
test sets, prior to deployment.

∗These authors contributed equally.

1



Figure S1: Linear correlation plot of predicted vs. actual LogP values for the initial dataset D0

Metis settings for the human experiments

t u t o r i a l : f a l s e
debug: f a l s e
wandb: f a l s e
max_iterat ions : 3
i n n e r l o o p _ i t e r a t i o n s : 5
a c t i v i t y _ l a b e l : " DRD2 "
introText : " We ␣ are ␣ interested ␣ in ␣ the ␣ design ␣ of ␣ an ␣ new ␣ binder ␣

for ␣ the ␣ Dopamine ␣ receptor ␣ D2 . ␣ We ␣ have ␣ identified ␣ two ␣ key ␣
properties : "

propertyLabe l s :
" DRD2 ␣ Activity ": " raw_DRD2 "
" hERG ␣ Activity ": " raw_herg "

data :
i n i t i a l _ p a t h : " ../ data / s c a f f o l d _ m e m o r y _ o r a c l e _ t r u t h . csv "
path : " ../ data / scaffold_memory . csv "
s e l e c t i o n _ s t r a t e g y : " epig "
num_molecules: 10
run_name: " chemist3_final "

u i :
show_atom_contributions : f a l s e
show_reference_molecules : true
tab :

render : f a l s e
tab_names: [ " General " , " DRD2 " ]

n a v i g a t i o n b a r :
sendButton :

render : true
editButton :

render : true
compareButton:

render : f a l s e
g e n e r a l :
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render : true
s l i d e r : true

s u b s t r u c t u r e s :
render : f a l s e
l i a b i l i t i e s :

ugly :
name: " Ugly "
c o l o r : " # ff7f7f "

tox :
name: " Toxicity "
c o l o r : " #51 d67e "

s t a b i l i t y :
name: " Stability "
c o l o r : " # eed358 "

l i k e :
name: " Good "
c o l o r : " #9542 f5 "

g l o b a l _ p r o p e r t i e s :
render : f a l s e
l i a b i l i t i e s : [

" Solubility " ,
" Lipophilicity " ,
" Plasma ␣ Proteinbinding " ,
" Synthetic ␣ Accessibility " ,
" Permeability " ,
" hERG " ,
" Too ␣ Big " ,
" Too ␣ Small " ,

]
interact ive_model :

o r a c l e _ s c o r e : f a l s e # use oracle score or user model to
update

weight : " pseudo_confidence "
use_human_component: f a l s e
oracle_path : " reinvent_connect / input_files / drd2 . pkl "
model_path:

" reinvent_connect / input_files / initial_qsar_model . pkl "
training_data_path : " ../ data / q s a r _ d a t a _ s c o r e d _ b y _ o r a c l e . csv "
ECFP:

b i t S i z e : 2 0 4 8
r a d i u s : 3
useCounts : true

Listing S1: YAML file given as input to Metis for running the experiment with Chemist 3
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Figure S2: "Explanation" window on the GUI displaying visual explanations for individual DRD2
bioactivity predictions for the selected molecules via the EPIG acquisition strategy.

Figure S3: "Similar Actives" window on the GUI displaying the most similar active molecules already
available in the initial training set of the DRD2 predictor for each of the selected molecules via the
EPIG acquisition strategy. Molecular similarity is computed based on MACCS keys.
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Additional results for the simulated experiments

Figure S4: Impact of the number of human queries for the penalized LogP optimization
use case. We report the mean and standard deviations across 10 replicates of each experimental run.
For all acquisition criteria, we use a noise-free simulated expert queried every 250 steps of molecular
generator optimization.

Figure S5: Impact of the frequency of human queries for the penalized LogP optimization
use case. We report the mean and standard deviations across 10 replicates of each experimental
run. For all acquisition criteria, we use a noise-free simulated expert and a query budget T = 10.
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Figure S6: Comparison with non-AL baselines for the penalized LogP optimization use
case. We report the mean and standard deviations across 10 replicates of each experimental run.
We use a noise-free simulated expert queried every 250 steps of molecular generator optimization
using EPIG.

Figure S7: Impact of the number of human queries for the DRD2 activity optimization
use case. We report the mean and standard deviations across 10 replicates of each experimental run.
For all acquisition criteria, we use a noise-free simulated expert queried every 250 steps of molecular
generator optimization.

6



Figure S8: Impact of the frequency of human queries for the DRD2 activity optimization
use case. We report the mean and standard deviations across 10 replicates of each experimental
run. For all acquisition criteria, we use a noise-free simulated expert and a query budget T = 10.

Figure S9: Comparison with non-AL baselines for the DRD2 activity optimization use
case. We report the mean and standard deviations across 10 replicates of each experimental run.
We use a noise-free simulated expert queried every 250 steps of molecular generator optimization
using EPIG.
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Additional results for the human experiments

Figure S10: Distribution of high-scoring molecules generated during a multi-objective molecule
generation with (in gray) and without (in red) intervention of chemist experts.
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