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Simplification of the four-state genetic switching model

For the four-state genetic switching model, the chemical master equation has the form

d

dt
P (1,m, n; t) =− kFnP (1,m, n; t) + dFP (2,m, n; t)− kG0P (1,m, n; t) + dGP (3,m, n; t) +AP (1,m, n; t),

d

dt
P (3,m, n; t) =− kFnP (3,m, n; t) + dFP (4,m, n; t)− dGP (3,m, n; t) + kG0P (1,m, n; t)

+ kR0(E
−1
m − 1)p(2,m, n; t) +AP (3,m, n; t),

d

dt
P (4,m, n; t) =kFnP (3,m, n; t)− dFP (4,m, n; t)− dGP (4,m, n; t) + kG1P (2,m, n; t)

+ kR1(E
−1
m − 1)p(3,m, n; t) +AP (4,m, n; t),

d

dt
P (2,m, n; t) =kFnP (1,m, n; t)− dFP (2,m, n; t)− kG1P (2,m, n; t) + dGP (4,m, n; t) +AP (2,m, n; t),

(S1)

whereA is the associated translation and degradation operator defined as

AP (α,m, n; t) = dP (E
1
n − 1)[nP (α,m, n; t)] + dR(E

1
m − 1)[mP (α,m, n; t)] + kP (E

−1
n − 1)P (α,m, n; t), (S2)

andP (α,m, n; t) stands for the probability that there arem mRNA molecules andn protein molecules in the system at timet
when gene is closed and unbounded (α = 1), closed and bounded (α = 2), open and unbounded (α = 3), or open and bounded
(α = 4). Here we assume that the number of protein molecules is large in the system, and binding/release of regulatory proteins
is fast compared with all the other reactions. So we haven ≫ 1 andkF , dF is much bigger than the other parameters. Thus,
binding and release of regulatory proteins can be approximately written as

DNAunbounded+ n
kF

dF

DNAbounded+ n.

According to the quasi-steady-state approximation (QSSA)and Equation (S1), we obtain

kFnP (1,m, n; t) ≈ dFP (2,m, n; t),

kFnP (3,m, n; t) ≈ dFP (4,m, n; t).
(S3)
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Then we define
Q0(m,n; t) = P (1,m, n; t) + P (2,m, n; t),

Q1(m,n; t) = P (3,m, n; t) + P (4,m, n; t),
(S4)

whereQα(m,n; t) is the probability that there arem mRNA molecules andn protein molecules in the system at timet when
gene is closed (α = 0) or open (α = 1). From Eqs. S3 and S4, we know

P (1,m, n; t) =
dF

kFn+ dF
Q0(m,n; t) ≈

K

n+K
Q0(m,n; t),

P (3,m, n; t) =
dF

kFn+ dF
Q1(m,n; t) ≈

K

n+K
Q1(m,n; t),

P (4,m, n; t) =
kFn

kFn+ dF
Q1(m,n; t) ≈

n

n+K
Q1(m,n; t),

P (2,m, n; t) =
kFn

kFn+ dF
Q0(m,n; t) ≈

n

n+K
Q0(m,n; t),

(S5)

whereK = ndF /kF . Thus, Equation (S1) can be simplified as

d

dt
Q0(m,n; t) =− (kG0 + kG

n

n+K
)Q0(m,n; t) + dGQ1(m,n; t) +AQ0(m,n; t),

d

dt
Q1(m,n; t) =(kG0 + kG

n

n+K
)Q0(m,n; t) + (kR0 + kR

n

n+K
)(E−1

m − 1)Q1(m,n; t)

− dGQ1(m,n; t) +AQ1(m,n; t).

(S6)

We defineOP = n/(n+K), andOP is actually the relative occupancy of protein at DNA bindingsite. In this simplified two-
state genetic switching model,Q0(m,n; t) corresponds to the closed gene state, which is the combination of state(i) and(ii)
in the original four-state model, andQ1(m,n; t) has similar meaning. The jump rate into the open state and thetranscription
rate are controlled byOP , whereas the jump rate into the closed state is not affected by the number of proteins. The essential
properties and dynamics of the system do not change after simplification.

Gaussian approximation in the regime of slow switching rates

To analyze the behavior of the system on different layers, westart from studying the backward operatorL associated with the
transcription and translation process

Lh(0,m, n) = A
†h(0,m, n),

Lh(1,m, n) = A
†h(1,m, n) + (kR0 + kR

n

n+K
)(E1

m − 1)h(1,m, n),
(S7)

whereh is any function of 3-tuple(α,m, n) ∈ {0, 1} × N
2, m,n represent the number of mRNAs and proteins, andα = 0, 1

represent the inactive and active state of gene, respectively. Ej
n is the raising operator acting onf(n) asEj

nf(n) = f(n+ j).
Genetic switches are ignored in this regime (dG, kG, kG0 ≪ 1). The operatorA† is the adjoint ofA defined as

A
†h(α,m, n) = dPn(E

−1
n − 1)h(α,m, n) + dRm(E−1

m − 1)h(α,m, n) + kPm(E1
n − 1)h(α,m, n). (S8)

To investigate the evolution of the concentration variables, we consider the variablesx = m/V , y = n/V on the rescaled
latticeN2/V , whereV is the system volume. Then the infinitesimal generatorL̃ on the rescaled lattice has the form

L̃h(0, x, y) = V Ã
†h(0,m, n),

L̃h(1, x, y) = V Ã
†h(1,m, n) + V (k̃R0 + k̃R

y

y + K̃
)(E1

m − 1)h(1, x, y),
(S9)

where the rescaled operator

Ã
†h(α, x, y) = dP y(E

−1
n − 1)h(α, x, y) + dRx(E

−1
m − 1)h(α, x, y) + kPx(E

1
n − 1)h(α, x, y), (S10)

andk̃R = kR/V , k̃R0 = kR0/V , andK̃ = K/V. Defineu(x, y) = h(0, x, y), v(x, y) = h(1, x, y), ǫ = 1/V, then we have
the backward equations for the rescaled dynamics through Taylor expansion

du

dt
= A†u+O(ǫ),

dv

dt
= A†v + (k̃R0 + k̃R

y

y + K̃
)[∂xv +

1

2
ǫ∂xxv] +O(ǫ),

(S11)
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whereA† is the continunized differentiation form of̃A† as

A†v(x, y) =dP [−y∂yv(x, y) +
1

2
ǫy∂yyv(x, y)] + dR[−x∂xv(x, y) +

1

2
ǫx∂xxv(x, y)]

+ kP [x∂yv(x, y) +
1

2
ǫx∂yyv(x, y)].

(S12)

Definex = (x, y), and letA0, A1 be the adjoint operator of the right-hand side of Equation (S11). Ignoring the terms of
O(ǫ), the equations for the pdf become

∂Pα(x; t)

∂t
=A∗

αPα(x; t)

=−
∂

∂x
[C1(α,x)Pα(x; t)]−

∂

∂y
[C2(α,x)Pα(x; t)]

+
∂2

∂x2
[ǫD11(α,x)Pα(x; t)] +

∂2

∂y2
[ǫD22(α,x)Pα(x; t)],

(S13)

where

C(α,x) =

[

C1(α,x)
C2(α,x)

]

=

[

−dRx+ α(k̃R0 + k̃R
y

y+K̃
)

kPx− dP y

]

,

D(α,x) =

[

D11(α,x) D12(α,x)
D21(α,x) D22(α,x)

]

= 1

2

[

dRx+ α(k̃R0 + k̃R
y

y+K̃
) 0

0 kPx+ dP y

]

.

(S14)

Whenǫ ≪ 1, the probability distributions can be approximated by Gaussian distributions along the deterministic trajectory.
The first and second order moment equations are

ẋ(t) =C[α,x(t)],

σ̇(t) =σ(t)JT (α, t) + J(α, t)σ(t) + 2D[α,x(t)],
(S15)

whereJ(α, t) is the Jacobian matrix ofC[α,x(t)], andσ(t) is the covariance matrix of the system. Equation (S15) are on
the latticeN2/V , and we can transfer them back to the latticeN

2. We only need to replacẽkR, k̃R0, K̃ in C(α,x) by
kR, kR0, K, with the form of Equation (S15) unchanged.

An extension of the results:OP = nk/(nk +Kk), k ∈ N

In the regime of slow switching rates, the effective dynamics can be reduced to independent evolutions on two separate layers
corresponding to gene activation and inactivation states.As discussed in the paper, the existence of this phenomenon is
independent of the expression ofOP . Thus, in the case ofOP = nk/(nk +Kk) wherek > 1, the results in the slow regime
will not change.

In the fast regime, the genetic switching system has two stable fixed points and one saddle with reasonable parameters
whenOP = n/(n+K). Here, we put forward an argument thatthe system still has two stable fixed points and one saddle with
suitable parameters whenOP = nk/(nk +Kk), k > 1. At the end of this material we will show the proof of the argument.
Thus, the numerical approaches in the fast regime still work.

In the intermediate regime, since it is hard to analyze the dynamics theoretically, we simulate the system numerically
and find some interesting results based on intuitive observations and reasonable inferences. The downward-sloping shapes of
the left parts and the flat shapes of the right parts of the MST curves have theoretical supports whenOP = n/(n +K). The
derivations we got show that the argument is still correct inthe case thatOP = nk/(nk+Kk). However, the U-shaped parts of
the MST curves are difficult to be demonstrated analytically, despite that it is in accordance with intuition. We made a detailed
discussion on this point at the end of theCase Cin the paper. To further investigate this issue, we simulated the whole results
with OP = n2/(n2 +K2), and found that the shape of the MST curves is the same as in Figure 5. Hence, it is reasonable to
state that with suitable parameters the shape of the MST curve is qualitatively robust whenOP = nk/(nk +Kk), k ∈ N.

In the intermediate regime, since it is hard to analyze the dynamics theoretically, we simulate the system numerically
and find some interesting results based on intuitive observations and reasonable inference as discussed in the paper. The
downward-sloping shapes of the left parts and the flat shapesof the right parts of the MST curves have theoretical supports
whenOP = n/(n+K). The derivations above show that it is still correct in the case thatOP = nk/(nk+Kk). Moreover, the
U-shaped parts of the MST curves are difficult to be demonstrated analytically, despite that it is in accordance with intuition.
Here we simulate the MST curves withOP = n2/(n2 + K2) (Figure S1), and find that the shape of the MST curves is the
same as in Figure 5 in the paper. Hence, it is reasonable to state that with suitable parameters the shape of the MST curves is
qualitatively robust whenOP = nk/(nk +Kk), k ∈ N.
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Distinguishing the three regimes when the positive feedback strengthK takes the
boundary values

In the paper, we perform the simulation experiment to distinguish the slow, intermediate and fast regimes with a particular
group of parameters. Since the positive feedback strengthK is a key parameter in our model, it is necessary to study that
whether the simulation experiment still works well when thevalue ofK locates on the boundary. As mentioned in the paper,
with other parameters unchanged, the lower bound ofK is 2754, whereas the upper bound ofK is 3211. The results of the
case thatK = 2754 are shown in Figure S2. We find that the value ofP+ fraction/P− fraction changes rapidly towards the
equilibrium level in the intermediate regime, which is sufficient to help us identify the intermediate regime. In fact, in the case
thatK = 3000, either Figure 6B or 6C alone can be basis for judgment. But inthis case, we have to take both Figure S2A
and S2B into account, since the behavior of theP+ group whenκ = 50 is indistinct, and small final values ofP+ fraction may
lead to meaningless results because of observation errors.The perturbation-response approach which aims at distinguishing
the slow and fast regimes, is also very effective in this case. In the slow regime (κ = 0.001), P+ fraction changes more quickly
whenκ increases, whereas in the relatively fast regime (κ = 2, 50), the lines of P+ fractions are shifted down or unchanged
whenκ increases. The results of the case thatK = 3211 are shown in Figure S3. The discussions above are also applicable to
this case, and we do not repeat the details here.

The change of switching paths as a function ofκ

In the slow regime, the switching paths between two metastable states are ODE paths, whereas in the fast regime, the most
probable switching paths between two metastable states arecalculated from the geometric minimum action method (denoted
as gMAM paths). It will be interesting to find out whether there is a smooth transition in switching paths whenκ increases.
We simulate the system through Gillespie’s algorithm, and we use principal curve to characterize the averaged switching
trajectories (Figure S4). The numerical results suggest that the averaged switching trajectories change smoothly from ODE
paths to gMAM paths asκ increases. However, it is a challenging task to prove this argument.

Biological relevance of the parameter values

The biological relevance of the parameter values we use is shown in Table S1. The rates of gene activation/inactivation
(kG, dG) are changing over a wide range, with the ratiokG/dG being fixed. kG0 andkR0 should have small values and
they are set as1% and0.1% of kG andkR. After determination of these parameter values,K is calculated to make sure that
metastability always exists withκ changing. We find a valid range of the value ofK must be from2754 to 3211, and we set
K = 3000 for simulations.

Table S1: The biological relevance of the parameter values

Parameters In Refs. In Refs. (after unit conversion) In our paper
kR (transcription) 0.016 ∼ 0.032 mRNAs/s [1] 57.6 ∼ 115.2 mRNAs/h 100
kP (translation) 140 proteins/mRNA/h [4] 140 proteins/mRNA/h 51.5
dR (mRNA decay) 0.7 /h [3] 0.7 /h 0.7
dP (protein decay) 1.4 /h [3] 1.4 /h 1.4
dG (gene inactivation rate) 0.022 /s [2] 79.2 /h

0.015 /h [3] 0.015 /h
kG/dG (the ratio of gene activation rate

to inactivation rate) 2.8 ∼ 20.7 [3] 2.8 ∼ 20.7 20

Proof of the argument in the previous section aboutOP = nk/(nk +Kk), k > 1

First, let us repeat the deterministic mean-field description of this model:

dm

dt
=
(kR0 + kR

n
k

nk+Kk
)(kG0 + kG

n
k

nk+Kk
)

(dG + kG0 + kG
nk

nk+Kk
)

− dRm,

dn

dt
=kPm− dPn.

(S16)
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We defineM(n, k) = nk/(nk +Kk) = 1/[1 + (K/n)k], and

S(n, k) ,
[kR1 +M(n, k)][kG1 +M(n, k)]

kG2 +M(n, k)
− dR1n , T [M(n, k)]− dR1n, (S17)

wherekR1 = kR0/kR, kG1 = kG0/kG, kG2 = (kG0 + dG)/kG, dR1 = dRdP /kRkP , T [M(n, k)] = [kR1 + M(n, k)][kG1 +
M(n, k)]/[kG2+M(n, k)]. Then solving the equilibrium points of Equation (S16) is equivalent to solvingthe roots ofS(n, k) = 0 for each
fixedk. If we fix the value ofn and letk increase to+∞ , M(n, k) will decrease to zero (n < K), be equal to0.5 (n = K), or increase to
one (n > K). Thus,Sl(n) , limk→+∞ S(n, k) is a piecewise linear function (Figure S5). We compute the derivative

dT

dM
=

[2M + (kR1 + kG1)](kG2 +M)− (kR1 +M)(kG1 +M)

(kG2 +M)2
= 1− (kG2 − kG1)(kG2 − kR1)

(kG2 +M)2
(S18)

According to the definitions we havekG2 > kG1. If kG2 > kR1, dT/dM > 1− k2
G2/k

2
G2 = 0. If kG2 < kR1, dT/dM > 1 > 0. Thus,

∂S

∂k
=

∂T

∂k
=

dT

dM

∂M

∂k
=

{

< 0, n < K,
> 0, n > K. (S19)

And
∂S

∂n
=

∂T

∂n
− dR1 =

dT

dM

∂M

∂n
− dR1, (S20)

where
∂M

∂n
=

kKk/nk+1

(1 + (K/n)k)2
. (S21)

Here we choose a group of parameters for example:KR = 20, KR0 = 0.2, kP = 49, dR = 0.7, dP = 1.4, dG = 5 × 104, kG = 106,
kG0 = 104, andK = 300. In this case, functionS(n, 2) has three equilibrium pointsx1, x2, x3 as shown in Figure S5. It is not difficult
to verify thatx1 ≈ 1.676 andx3 ≈ 852.422 correspond to stable fixed points of Equation (S16), andx2 ≈ 130.473 corresponds to a saddle
point. S(n, 2) > 0 whenn ∈ [0, x1) ∪ (x2, x3), andS(n, 2) < 0 whenn ∈ (x1, x2) ∪ (x3,+∞). FunctionSl(n) is a piecewise linear
function with two equilibrium pointsy1 = 5/3, y3 ≈ 962.358 and a point of discontinuityy2 = 300. According to Equation (S19) we have

S(n, k) =

{

< 0, n ∈ [x1, x2] ∪ [y3,+∞], k ∈ N, k > 2,
> 0, n ∈ [0, y1] ∪ [300, x3], k ∈ N, k > 2. (S22)

Now we attempt to demonstrate that for allk > 2, S(n, k) has three equilibrium points which are located in(y1, x1), (x2, y2) and
(x3, y3) separately. Whenn ∈ (y1, x1),

∂M

∂n
=

k/n

(K/n)k + (K/n)−k + 2
<

k/y1
(300/x1)k

< 10−3 = dR1, ∀k > 2. (S23)

And from the fact thatkG2 > kR1 we know0 < dT/dM < 1. Hence,∂S/∂n < 0, ∀n ∈ (y1, x1), k > 2. We obtain thatS(n, k) have a
unique equilibrium point in(y1, x1) as a function ofn (k > 2).

Whenn ∈ (x2, y2), we defineh(k) = 300/ k
√
k − 3, k > 3. Through calculatingdh/dk we find thath(k) is an increasing function

whenk > 8, and245 < h(k) < 300, k > 8. Then we obtain whenn ∈ (h(k), y2)

∂M

∂n
>

k/y2
(300/h(k))k + 1 + 2

=
1

300
, ∀k > 8, (S24)

dT

dM
> 1− (kG2 − kG1)(kG2 − kR1)

k2
G2

=
11

36
, ∀k > 8. (S25)

Thus,
∂S

∂n
>

11

36× 300
− 10−3 > 0, ∀k > 8. (S26)

Since

S(h(k), k) =
( 1

k−2
+ 0.01)2

1

k−2
+ 0.06

− h(k) · 10−3 <
( 1

8−2
+ 0.01)2

1

8−2
+ 0.06

− 0.245 < 0, ∀k > 8, (S27)

andS(y2, k) = Sl(y2) > 0, ∀k > 8, S(n, k) have a unique equilibrium point as a function ofn in the interval(h(k), y2) (whenk > 8).
And in (x2, h(k)], S(n, k) < S(n, 8) < 0, k > 8 (Figure S5). The case of2 < k 6 8 can be calculated one by one, and we do not write
down the details here.

Whenn ∈ (x3, y3),
∂M

∂n
=

k/n

(K/n)k + (K/n)−k + 2
<

k/x3

(y3/300)k
< 10−3 = dR1, ∀k > 2. (S28)

And from0 < dT/dM < 1 we obtain∂S/∂n < 0, ∀n ∈ (x3, y3), k > 2. Thus,S(n, k) have a unique equilibrium point in(x3, y3) as a
function ofn (k > 2).

Through computing the eigenvalues of the Jacobian matrix of Equation (S16), we can determine the type of the equilibrium points. This
procedure is tedious and we only bring out the results here. The middle equilibrium point is a saddle point, whereas the other two equilibrium
points are stable nodes.
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reveals the regulatory principle behind stochastic il-4 expression.Mol. Syst. Biol., 6:359, 2010.
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Figure S1:The mean switching time (MST) as a function ofκ when OP = n2/(n2 + K2). (A) MST curve of off-to-on
switch. (B) MST curve of on-to-off switch. The shapes of MST curves are qualitatively same with the case ofOP = n/(n+K)
as shown in Figure 5 of the paper. The parameters areKR = 20, KR0 = 0.2, kP = 51.5, dR = 0.7, dP = 1.4, dG/kG = 0.05,
dG/kG0 = 5, andK = 300. We change the value ofκ through change the value ofdG. All of the results are obtained from
Gillespie’s algorithm.
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Figure S2:A method we propose to distinguish the slow, intermediate and fast regimes whenK = 2754. (A, B) We
simulate the evolution of the two groups for a long time with Gillespie’s algorithm. The change of P+ fractions are recorded in
solid lines and the final values of P+ fractions are drawn in dashed lines. It is obvious that cells of the intermediate regime have
shorter memory, for they rapidly recover to the origin unsorted state (invariant distribution). (C, D, E) If we perturbκ (through
changingdG and keeping the ratiosdG/kG, dG/kG0 and other parameters unchanged), the lines of P+ fractions are shifted
in different ways with respect to different regimes. In the slow regime (κ = 0.001), P+ fraction changes more quickly when
κ increases, whereas in the relative fast regime (κ = 2, 50), the time spent for cells to recover to the invariant distribution
is longer or unchanged whenκ increases. The parameters areKR = 100, KR0 = 0.1, kP = 51.5, dR = 0.7, dP = 1.4,
dG/kG = 0.05, anddG/kG0 = 5.
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Figure S3:A method we propose to distinguish the slow, intermediate and fast regimes whenK = 3211. (A, B) We
simulate the evolution of the two groups for a long time with Gillespie’s algorithm. The change of P+ fractions are recorded in
solid lines and the final values of P+ fractions are drawn in dashed lines. It is obvious that cells of the intermediate regime have
shorter memory, for they rapidly recover to the origin unsorted state (invariant distribution). (C, D, E) If we perturbκ (through
changingdG and keeping the ratiosdG/kG, dG/kG0 and other parameters unchanged), the lines of P+ fractions are shifted
in different ways with respect to different regimes. In the slow regime (κ = 0.001), P+ fraction changes more quickly when
κ increases, whereas in the relative fast regime (κ = 2, 50), the time spent for cells to recover to the invariant distribution is
longer or unchanged whenκ increases. The parameters are the same with Figure S2.
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Figure S4:The change of switching paths as a function ofκ. (A) Off-to-on switching paths. (B) On-to-off switching paths.
We use principal curve to characterize the averaged switching trajectories, which change smoothly from ODE paths to gMAM
paths asκ increases. The results ofκ = 0.04, 0.07, 0.14, 0.28 are obtained from Gillespie’s algorithm. The parameters are
the same with Figure S2 exceptK = 3000.
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Figure S5:Illustrations of function S(n, k), k = 2, 4, 8 and Sl(n). All of the functions pass through the same points when
n = 0 andn = 300. Three equilibrium points ofS(n, 2) arex1 ≈ 1.676, x2 ≈ 130.473, x3 ≈ 852.422. S(n, 2) > 0
whenn ∈ [0, x1) ∪ (x2, x3), andS(n, 2) < 0 whenn ∈ (x1, x2) ∪ (x3,+∞). x1 andx3 correspond to stable fixed points of
Equation (S16), andx2 corresponds to a saddle point. Similar results can be obtained with respect toS(n, 4) andS(n, 8). Two
equilibrium points ofSl(n) arey1 = 5/3, y3 ≈ 962.358. y2 = 300 is a point of discontinuity.y1 andy3 both correspond to
stable fixed points of Equation (S16). The parameters areKR = 20, KR0 = 0.2, kP = 49, dR = 0.7, dP = 1.4, dG = 5×104,
kG = 106, kG0 = 104, andK = 300.
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