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Simplification of the four-state genetic switching model

For the four-state genetic switching model, the chemicateraequation has the form

d

%P(l,m,n; t) =—kpnP(1,m,n;t) + dpP(2,m,n;t) — kgoP(1,m,n;t) + dg P(3,m,n;t) + AP(1,m,n;t),
d

%P(B,m,n; t) = — kpnP(3,m,n;t) + dpP(4,m,n;t) — dgP(3,m,n;t) + kgoP(1,m, n;t)

+ k E,_nl—l 2,m,n;t) + AP(3,m,n;t),
ro(B! = 1p(2.m, 5 ) + AP (.m0 ) -

d
—P(4,m,n;t) =kpnP(3,m,n;t

g dpP(4,m,n;t) — dagP(4,m,n;t) + kg1 P(2,m,n;t)

d

) -
+ kri(E,," — p(3,m,n;t) + AP(4,m,n;t),
pn ) —

P(2,m,n;t) =kpnP(1,m,n;t) — dpP(2,m,n;t) — kg1 P(2,m,n;t) + dgP(4,m,n;t) + AP(2,m,n;t),

whereA is the associated translation and degradation operatorediedis
AP(a,m,n;t) = dp(EL — 1)[nP(a,m,n;t)] + dp(EL — 1)[mP(a,m,n;t)] + kp(E; ' — 1)P(a, m, n; t), (S2)

andP(«, m, n;t) stands for the probability that there aremRNA molecules and protein molecules in the system at timhe
when gene is closed and unbounded 1), closed and bounded (= 2), open and unbounded (= 3), or open and bounded

(a = 4). Here we assume that the number of protein molecules is Iaipe system, and binding/release of regulatory proteins
is fast compared with all the other reactions. So we haye 1 andkr, dr is much bigger than the other parameters. Thus,
binding and release of regulatory proteins can be apprdeimaritten as

kr

DNA nboundedt+ 7 ‘T DNApounded+ 7.
F

According to the quasi-steady-state approximation (QSS®W)Equation (S1), we obtain
kenP(1,m,n;t) =~ dpP(2, m,n;t),

S3
krpnP(3,m,n;t) ~ dp P(4,m,n;t). (S3)



Then we define
Qo(m,n;t) = P(1,m,n;t) + P(2,m,n;t),

Q1(m,n;t) = P(3,m,n;t) + P(4,m,n;t),

whereQ.(m,n;t) is the probability that there are mMRNA molecules ana protein molecules in the system at timeshen
gene is closedy{ = 0) or open & = 1). From Egs. S3 and S4, we know

(S4)

P(1m13t) =2 Qom, it) ~ - Qolim. s,
P(3,m,n;t) :kpjij-dle(m’n; t) ~ n—i—KQl(m’n;t)’ s5)
P(4,m,n;t) :kalFiﬁdFQl(m,n; t) ~ - j:KQl(m,n;t),
P2 nst) = Qolm,mit) ~ —Qom, i)
whereK = ndg/kr. Thus, Equation (S1) can be simplified as
Qo £) =~ (ko + ke ——2)Qolm, 3 0) + da Qs (m,m: ) + AQo(m, m; ),
“5Qum, 13 0) =(hco + ko — =) Qo(m, 15 ) + (ko + ki ——) (B, = 1)@a(m, i) (S6)

— dg@Q1(m, n;t) + AQ1(m, n; ).

We defineOp = n/(n+ K), andOp is actually the relative occupancy of protein at DNA bindgiig. In this simplified two-
state genetic switching modé), (m, n; t) corresponds to the closed gene state, which is the comtinetistate(<) and (i7)

in the original four-state model, ar@, (m, n; t) has similar meaning. The jump rate into the open state anttahscription
rate are controlled by p, whereas the jump rate into the closed state is not affegtékddonumber of proteins. The essential
properties and dynamics of the system do not change aft@figation.

Gaussian approximation in the regime of slow switching rates

To analyze the behavior of the system on different layersstart from studying the backward operatbassociated with the
transcription and translation process
Lh(0,m,n) = ATh(0,m,n),

Lh(1,m,n) = AMh(1,m,n) + (kno + kg —

n+ K

Y(EL — DA(1,m,n), S7)

m

whereh is any function of 3-tupléa, m,n) € {0,1} x N2, m, n represent the number of MRNAs and proteins, and 0, 1
represent the inactive and active state of gene, resplctll¢ is the raising operator acting gf{n) asEJ, f(n) = f(n + j).
Genetic switches are ignored in this regimg (kq, kqo < 1). The operatoA ' is the adjoint ofA defined as

ATh(a,m,n) = dpn(E; ' — Dh(a, m,n) + dgm(E;} — 1)h(a,m,n) + kpm(EL — 1)h(a, m,n). (S8)

To investigate the evolution of the concentration variaplge consider the variables= m/V, y = n/V on the rescaled
latticeN? /V, whereV is the system volume. Then the infinitesimal generaton the rescaled lattice has the form

/:'h(O,ac,y) = VATh(O,m,n),

£h(L.z,y) = VAT(Lm,n) + V (ko + kn—2—=)(BL, — Dh(L,2,y), (59
y+ K
where the rescaled operator
ATh(a,x7y) = dPy(Er_Ll - 1)h(0[,1‘, y) + de(E;zl - 1)h(0¢,$7y) + k'P.'I;(E,}L - 1)h(Oé, x,y), (SlO)

andkg = kr/V, kro = kro/V, andK = K/V. Defineu(z,y) = h(0,z,y), v(z,y) = h(1,,y), e = 1/V, then we have
the backward equations for the rescaled dynamics througlofexpansion

du

e Alu + O(e),
dv -y 1 (S11)
FTi A'v + (kgo + kRy n }f{)[a:cv + 56%&] + O(e),



where At is the continunized differentiation form & as

1 1
ATU(% y) :dP[_yayv(xv y) + §6yayyv($a y)] + dR[_xaxU(xa y) + éexam;v(x? y)} (512)
1
+ kplzdyv(z,y) + §ex8yyv($, y)].

Definex = (z,y), and letA,, A; be the adjoint operator of the right-hand side of EquatidhljS Ignoring the terms of
O(e), the equations for the pdf become

OPo(xit) oy (.
T —AaPa(a:,t)

=- %[Q(a, x) P, (x;t)] — %[02(04,3:)Pa(93;t)] (513)

2 2

+ %[GDu(a,w)Pa(w; )] + 8%2[6D22(a7 ) Pa(@;1)],

where

y+K

Ci(a, ) } _ | —drz+ a(kro + kr—L=)
kpx — dpy ’

(S14)

Yy
y+f() 0 .
0 kpx 4+ dpy
Whene < 1, the probability distributions can be approximated by Geusdistributions along the deterministic trajectory.
The first and second order moment equations are

D(a,z) = {

Dll(a, .’13) Dlz(()é, 2E) _1 de + O‘(];RO + I;R
D21(Oé7$) DQQ(&,Q)) 2

(1) =Cla, (1)),

. i (S15)
o(t) =o(t)J" (a,t) + J(a, t)o(t) + 2D|a, 2(t)],

whereJ(a, ) is the Jacobian matrix af'[a, (t)], ande(t) is the covariance matrix of the system. Equation (S15) are on
the latticeN?/V/, and we can transfer them back to the lati® We only need to replackg, kro, K in C(a,x) by
kgr, kro, K, with the form of Equation (S15) unchanged.

An extension of the results:0Op = n*/(n* + K*), k € N

In the regime of slow switching rates, the effective dynaan be reduced to independent evolutions on two sepayates la
corresponding to gene activation and inactivation stai&s.discussed in the paper, the existence of this phenomenon i
independent of the expression@f-. Thus, in the case @aPp = n*/(n* + K*) wherek > 1, the results in the slow regime
will not change.

In the fast regime, the genetic switching system has twdestidied points and one saddle with reasonable parameters
whenOp = n/(n+ K). Here, we put forward an argument thia¢ system still has two stable fixed points and one saddte wit
suitable parameters whelp = n*/(n* + K*), k > 1. At the end of this material we will show the proof of the argurhe
Thus, the numerical approaches in the fast regime still work

In the intermediate regime, since it is hard to analyze theadycs theoretically, we simulate the system numerically
and find some interesting results based on intuitive obSensand reasonable inferences. The downward-slopingeshaf
the left parts and the flat shapes of the right parts of the M8Ves have theoretical supports whep = n/(n + K). The
derivations we got show that the argument is still correthécase thab» = n* /(n* + K*). However, the U-shaped parts of
the MST curves are difficult to be demonstrated analyticdiygpite that it is in accordance with intuition. We made taitkl
discussion on this point at the end of @Base Cin the paper. To further investigate this issue, we simdi#te whole results
with Op = n?/(n? + K?), and found that the shape of the MST curves is the same asumne™g Hence, it is reasonable to
state that with suitable parameters the shape of the MSEdsiqualitatively robust whe@p = n*/(n* + K*), k € N.

In the intermediate regime, since it is hard to analyze theadyics theoretically, we simulate the system numerically
and find some interesting results based on intuitive obiensand reasonable inference as discussed in the paper. Th
downward-sloping shapes of the left parts and the flat shaptiee right parts of the MST curves have theoretical support
whenOp = n/(n+ K). The derivations above show that it is still correct in theecthatO p = n* /(n* + K*). Moreover, the
U-shaped parts of the MST curves are difficult to be demotestranalytically, despite that it is in accordance with itibum.
Here we simulate the MST curves with» = n?/(n? + K?) (Figure S1), and find that the shape of the MST curves is the
same as in Figure 5 in the paper. Hence, it is reasonableteotht with suitable parameters the shape of the MST cusves i
qualitatively robust whe®p = n*/(n* + K*), k € N.



Distinguishing the three regimes when the positive feedback stngth K takes the
boundary values

In the paper, we perform the simulation experiment to digtish the slow, intermediate and fast regimes with a pdaiicu
group of parameters. Since the positive feedback streRgth a key parameter in our model, it is necessary to study that
whether the simulation experiment still works well when tadue of K locates on the boundary. As mentioned in the paper,
with other parameters unchanged, the lower bounft @§ 2754, whereas the upper bound &f is 3211. The results of the
case thatk’ = 2754 are shown in Figure S2. We find that the valuePsf fractionP— fraction changes rapidly towards the
equilibrium level in the intermediate regime, which is stiffint to help us identify the intermediate regime. In facthe case
that K = 3000, either Figure 6B or 6C alone can be basis for judgment. Bthigicase, we have to take both Figure S2A
and S2B into account, since the behavior of Blegroup whenx = 50 is indistinct, and small final values &+ fraction may
lead to meaningless results because of observation eifbesperturbation-response approach which aims at dishing

the slow and fast regimes, is also very effective in this chsthe slow regimed = 0.001), P+ fraction changes more quickly
whenk increases, whereas in the relatively fast regime=(2, 50), the lines of P+ fractions are shifted down or unchanged
whenk increases. The results of the case that 3211 are shown in Figure S3. The discussions above are also aplgito
this case, and we do not repeat the details here.

The change of switching paths as a function of

In the slow regime, the switching paths between two metéststates are ODE paths, whereas in the fast regime, the most
probable switching paths between two metastable statesabmalated from the geometric minimum action method (deshot

as gMAM paths). It will be interesting to find out whether thés a smooth transition in switching paths wheincreases.

We simulate the system through Gillespie’s algorithm, areduse principal curve to characterize the averaged swgchin
trajectories (Figure S4). The numerical results suggestttie averaged switching trajectories change smoothiy fedE
paths to gMAM paths as increases. However, it is a challenging task to prove tlgamment.

Biological relevance of the parameter values

The biological relevance of the parameter values we useawrshin Table S1. The rates of gene activation/inactivation
(kg, dg) are changing over a wide range, with the ratio/ds being fixed. kgo and kro should have small values and
they are set as% and0.1% of k¢ andkg. After determination of these parameter valugsis calculated to make sure that
metastability always exists with changing. We find a valid range of the valueféfmust be from2754 to 3211, and we set

K = 3000 for simulations.

Table S1: The biological relevance of the parameter values

Parameters In Refs. In Refs. (after unit conversion) In our paper
kg (transcription) 0.016 ~ 0.032 mRNAs/s [1] 57.6 ~ 115.2 mRNAs/h 100
kp (translation) 140 proteins/mRNA/h [4] 140 proteins/mRNA/h 51.5
dr (MRNA decay) 0.7/h [3] 0.7/h 0.7
dp (protein decay) 1.4 /h[3] 1.4 /h 1.4
de (gene inactivation rate) 0.022 /s [2] 79.2 /h
0.015 /h [3] 0.015 /h

ka/dq (the ratio of gene activation rate
to inactivation rate) 2.8 ~20.7[3] 2.8 ~20.7 20

Proof of the argument in the previous section abouDp = n*/(n* + K*), k> 1

First, let us repeat the deterministic mean-field description of this model:

k k
dm  (kro + kr 75w ) (ko + ko 75w )

- — - - dley
dt (de + kco + kc,ﬂikm) (S16)
% :kpm — dpn.



We defineM (n, k) = n*/(n* + K*) = 1/[1 + (K/n)*], and

a [kr1 +M(n,k)][kc1 + M(n, k)]
o kg2 + M(n, k)

S(n, k) —dpin 2 T[M(n, k)] — drin, (S17)

Wherele = kRo/k‘R, k'Gl = kG()/_k'G, k‘Gz =, (l’y'GO + dG)/k’G, de_ = dej?/kRk_p, T[M(n, k)] = [le + M(TL, k)Mk'Gl —+
M (n, k)]/[kaz + M (n, k)]. Then solving the equilibrium points of Equation (S16) is equivalent to soliagoots ofS(n, k) = 0 for each
fixed k. If we fix the value ofr and letk increase tet-oo , M (n, k) will decrease to zeron( < K), be equal td.5 (n = K), or increase to

one @ > K). Thus,S;(n) £ lim_, 1 S(n, k) is a piecewise linear function (Figure S5). We compute the derivative

dT"  [2M + (kr1 + kc1)|(kgz + M) — (kr1 + M) (kg1 + M) -1 (ka2 — ka1) (ka2 — kr1)

dM — (ka2 + M)? Bl (k2 + M)?

(S18)

According to the definitions we haviezs > k1. If kge = kri, dT/dM > 1 — k4 /k&s = 0. If kga < kg1, dT/dM > 1 > 0. Thus,

95 _ 9T _ dT'9M _ [ <0, n<K, (S19)
9k~ 8k dM ok | >0, n>K.
And 8s  or aT oM
on = on M= @ar e R (S20)
where R
oM kK*/n (s21)

on T (L (KRR

Here we choose a group of parameters for examfilg: = 20, Kro = 0.2, kp = 49,dr = 0.7,dp = 1.4,dg = 5 x 10, kg = 105,
kao = 10*, andK = 300. In this case, functiotb (n, 2) has three equilibrium points;, x2, x3 as shown in Figure S5. It is not difficult
to verify thatz; = 1.676 andxzs ~ 852.422 correspond to stable fixed points of Equation (S16),anek 130.473 corresponds to a saddle
point. S(n,2) > 0 whenn € [0,z1) U (z2,z3), andS(n,2) < 0 whenn € (z1,z2) U (x3, +00). FunctionS;(n) is a piecewise linear
function with two equilibrium pointg, = 5/3, ys ~ 962.358 and a point of discontinuity. = 300. According to Equation (S19) we have

_J <0, ne€lzi,z]U]lys,+0], kEN, k> 2
S(n. k) = { >0, nel0,]UB00.2s), kEN, k> 2. (S22)

Now we attempt to demonstrate that for &ll> 2, S(n, k) has three equilibrium points which are located(in, z1), (z2,y2) and
(z3,ys) separately. When € (y1,x1),

oM k/n < k/y1
on  (K/n)k+ (K/n)=*+2 ~ (300/x1)

- <107% =dp1, Yk > 2. (S23)

And from the fact thakgo > kr1 we know0 < d7'/dM < 1. HencedS/0n < 0, Vn € (y1,z1), k > 2. We obtain thalS(n, k) have a
unique equilibrium point iy, z1) as a function oh (k > 2).

Whenn € (z2,y2), we defineh(k) = 300/ ¥k — 3, k > 3. Through calculatinglh/dk we find thath(k) is an increasing function
whenk > 8, and245 < h(k) < 300, k > 8. Then we obtain when € (h(k),y2)

oM k/y2 1
an ~ BOOJR(R)E +1+2 3000 F7 S (S24)

dT (kcz — kGl)(kGQ — le) . 11
dM>1 R, _36,Vk>8. (S25)
Thus,
oS 11 _3
— > — 1 . S26
an>36><300 07° >0, Vk>38 (S26)
Since

(755 +0.01)*
= +0.06

(525 +0.01)*

S(h(k), k) = L +0.06

—h(k)-107% < —0.245 < 0, Vk > 8, (827)

andS(y2, k) = Si(y2) > 0, Vk > 8, S(n, k) have a unique equilibrium point as a functionofn the interval(h(k), y2) (whenk > 8).
And in (x2, h(k)], S(n, k) < S(n,8) < 0, k > 8 (Figure S5). The case @f < k < 8 can be calculated one by one, and we do not write
down the details here.
Whenn & (1’37 yg),
oM k/n k/xzs _3
o K/ + (Kjn) F 1 2 < (s /300)F < 10 dr1, Yk > 2. (S28)
And from0 < dT'/dM < 1 we obtaindS/on < 0, ¥n € (z3,y3), k > 2. Thus,S(n, k) have a unique equilibrium point ifx3, y3) as a
function ofn (k > 2).
Through computing the eigenvalues of the Jacobian matrix of Equatid),(®& can determine the type of the equilibrium points. This
procedure is tedious and we only bring out the results here. The middilébeigm point is a saddle point, whereas the other two equilibrium
points are stable nodes.
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Figure S1:The mean switching time (MST) as a function ofkx when Op = n?/(n? + K?). (A) MST curve of off-to-on
switch. (B) MST curve of on-to-off switch. The shapes of MSIFwes are qualitatively same with the cas®gf = n/(n+K)
as shown in Figure 5 of the paper. The parameterd@aye= 20, Ko = 0.2, kp = 51.5,dg = 0.7,dp = 1.4, dg /kc = 0.05,
de/kao = 5, and K = 300. We change the value afthrough change the value df;. All of the results are obtained from

Gillespie’s algorithm.
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Figure S2: A method we propose to distinguish the slow, intermediate ahfast regimes whenkK = 2754. (A, B) We
simulate the evolution of the two groups for a long time witliéSpie’s algorithm. The change of P+ fractions are reedrith
solid lines and the final values of P+ fractions are drawn Bhed lines. It is obvious that cells of the intermediatemeghave
shorter memory, for they rapidly recover to the origin utsdistate (invariant distribution). (C, D, E) If we pertutlfthrough
changingds and keeping the ratiod; /kc, da/kco and other parameters unchanged), the lines of P+ fractienshefted
in different ways with respect to different regimes. In th@asregime ¢ = 0.001), P+ fraction changes more quickly when
k increases, whereas in the relative fast regime=(2, 50), the time spent for cells to recover to the invariant disttion

is longer or unchanged whenincreases. The parameters &g = 100, Kry = 0.1, kp = 51.5, dg = 0.7, dp = 1.4,
dg/kG = 0.05, anddG/kGO = 5.
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Figure S3: A method we propose to distinguish the slow, intermediate ahfast regimes whenkK = 3211. (A, B) We
simulate the evolution of the two groups for a long time witilgSpie’s algorithm. The change of P+ fractions are reedrth
solid lines and the final values of P+ fractions are drawn ghed lines. It is obvious that cells of the intermediatemeghave
shorter memory, for they rapidly recover to the origin utsdistate (invariant distribution). (C, D, E) If we pertwifthrough
changingd and keeping the ratiod; /ke, da/kco and other parameters unchanged), the lines of P+ fractienshefted
in different ways with respect to different regimes. In th@sregime ¢ = 0.001), P+ fraction changes more quickly when
k increases, whereas in the relative fast regime=(2, 50), the time spent for cells to recover to the invariant disttion is
longer or unchanged whenincreases. The parameters are the same with Figure S2.
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Figure S4:The change of switching paths as a function of. (A) Off-to-on switching paths. (B) On-to-off switching pe.
We use principal curve to characterize the averaged swijdnajectories, which change smoothly from ODE paths to gMA
paths as: increases. The results ef= 0.04, 0.07, 0.14, 0.28 are obtained from Gillespie’s algorithm. The parametees ar
the same with Figure S2 excefit = 3000.
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Figure S5:lllustrations of function S(n, k), k = 2,4,8 and S;(n). All of the functions pass through the same points when
n = 0 andn = 300. Three equilibrium points of(n,2) arex; ~ 1.676, x2 ~ 130.473, x5 ~ 852.422. S(n,2) > 0
whenn € [0,21) U (z2,23), andS(n,2) < 0 whenn € (x1,z2) U (23, +00). 21 andxs correspond to stable fixed points of
Equation (S16), and, corresponds to a saddle point. Similar results can be dadatainth respect t&(n, 4) and.S(n, 8). Two
equilibrium points ofS;(n) arey; = 5/3, ys ~ 962.358. yo = 300 is a point of discontinuityy; andys both correspond to
stable fixed points of Equation (S16). The parameterd@aye= 20, Krg = 0.2, kp = 49,dr = 0.7,dp = 1.4, dg = 5x 10%,

ka = 108, kgo = 104, andK = 300.
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