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1 Demonstration of the TCRhom computation

Supplementary Table S1: Basic example of the TCR data

Subject ID Amino Acid Sequence Abundance

1 CASSYSVGTDTQYF 1

1 CASSDGGGNEQFF 4

1 CASSLIRNGYT 2

2 CASSELLTGYTF 3

2 CASSYGFRWGGEQYF 1

Table S1 shows a simple data structure which contains two subjects’ repertoires R1 and R2. The

first subject’s repertoire R1 has three unique amino acid sequences a1,1 = CASSYSVGTDTQYF,

a1,2 = CASSDGGGNEQFF, and a1,3 = CASSLIRNGYT. The corresponding abundances are

w1,1 = 1, w1,2 = 4, and w1,3 = 2. The second subject’s repertoire R2 has two unique amino

acid sequences a2,1 = CASSELLTGYTF and a2,2 = CASSYGFRWGGEQYF with the abundances

w2,1 = 3 and w2,2 = 1, respectively. For the computation of s(a1,k, a2,l), k = 1, 2, 3, l = 1, 2, we use

the BLOSUM62 substitution matrix with the default affine gap penalty for pairwise alignments

via the Needleman-Wunsch algorithm. The affine gap penalty is referred to as gap opening +

gap extension × length of gaps, where the gap opening is the cost of creating a gap (−) and the

gap extension is the cost of extending the gap.

Then the TCRhom S1,2 is computed as

S1,2 =

∑3
k=1w1,k max

l∈{1,2}
s(a1,k, a2,l) +

∑2
l=1w2,l max

k∈{1,2,3}
s(a1,k, a2,l)∑3

k=1w1,k +
∑2

l=1w2,l

= 0.3544903.

Likewise, it is easy to show that S2,1 = 0.3544903. Thus, we say that the homology between two

subjects’ TCR repertoires is 0.3544903.
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2 Independence between Uη and Uτ2

Let

X =


1 X11 X12 · · · X1q

1 X21 X22 · · · X2q

...
...

...
...

1 Xn1 Xn2 · · · Xnq

 : n× (q + 1) matrix

and

Z =


1 X11 X12 · · · X1q W>1 f(R1) W>2 f(R1) · · · W>r f(R1)

1 X21 X22 · · · X2q W>1 f(R2) W>2 f(R2) · · · W>r f(R2)
...

...
...

...
...

...
...

...
...

1 Xn1 Xn2 · · · Xnq W>1 f(Rn) W>2 f(Rn) · · · W>r f(Rn)

 : n× (q + 1 + r) matrix,

where f(Ri) is a p× 1 vector of the extracted features of the ith subject’s TCR repertoire Ri and

W = [W1 W2 · · ·Wr] is a p × r matrix whose Wl, l = 1, 2, . . . , r, is a p × 1 vector of amino acid

characteristic corresponding to the p amino acids of the feature vector. We adapt the proof in the

MiST (Sun et al., 2013) framework to prove the independence between Uτ2 and Uη.

Let A = I − ΩX(X>ΩX)−1X> and B = I − ΩZ(Z>ΩZ)−1Z>, where Ω is a n × n diagonal

variance matrix of y and I is a n× n identity matrix. By Taylor’s expansion, we can approximate
y1 − µ̃1

y2 − µ̃2
...

yn − µ̃n

 ≈

A11 · · · A1n

A21 · · · A2n

...
...

...

An1 · · · Ann




y1 − µ1

y2 − µ2
...

yn − µn

 and


y1 − µ̂1

y2 − µ̂2
...

yn − µ̂n

 ≈

B11 · · · B1n

B21 · · · B2n

...
...

...

Bn1 · · · Bnn




y1 − µ1

y2 − µ2
...

yn − µn

 .

We consider the following eigen-decomposition of S: S =
∑m

k=1 λk uk u
>
k , where λ1 ≥ · · · ≥ λm

are the m non-negative eigenvalues of S and uk = [uk1 uk2 · · · ukn]> is the n × 1 corresponding

eigenvector for k = 1, 2, . . . ,m. Let ξi = [
√
λ1u1i

√
λ2u2i · · ·

√
λmumi]

> for i = 1, 2, . . . , n. We can

write

S =


ξ>1

ξ>2
...

ξ>n


[
ξ1 ξ2 · · · ξn

]
,
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and hence, Uτ2 = (y − µ̂)>S(y − µ̂) =
∑n

i=1

∑n
j=1(yj − µ̂j)ξ>j ξi(yi − µ̂i) = D>τ2Dτ2 , where Dτ2 =∑n

i=1 ξi(yi − µ̂i). Then we have

Uη =
n∑
i=1

W>f(Ri)(yi − µ̃i) ≈
n∑
i=1

W>f(Ri)
n∑
j=1

Aij(yj − µj), : a r × 1 vector

Dτ2 =
n∑
i=1

ξi(yi − µ̂i) ≈
n∑
i=1

ξi

n∑
j=1

Bij(yj − µj) : a m× 1 vector.

Hence, we get

Cov(Uη, Dτ2) ≈ Cov(

n∑
i=1

n∑
j=1

W>f(Ri)Aij(yj − µj),
n∑
i=1

n∑
j=1

ξiBij(yj − µj))

=

n∑
i=1

n∑
j=1

W>f(Ri)AijΩjjBijξ
>
i ,

=
n∑
i=1

n∑
j=1

W>f(Ri)AijBijΩjjξ
>
i

=
n∑
i=1

n∑
j=1

W>f(Ri)[Iij − (ΩX(X>ΩX)−1X>)ij ]BijΩjjξ
>
i .

Note that Z>BΩ = Z>Ω− Z>ΩZ(Z>ΩZ)−1Z>Ω = Z>Ω− Z>Ω = 0(q+1+r)×n. That is, we have

•
∑n

i=1BijΩjj = 0 for j = 1, 2, . . . , n.

•
∑n

i=1XikBijΩjj = 0 for k = 1, 2, . . . , q and j = 1, 2, . . . , n.

•
∑n

i=1W
>
l f(Ri)BijΩjj = 0 for l = 1, 2, . . . , r and j = 1, 2, . . . , n.

Thus, Cov(Uη, Dτ2) is a r × m matrix of zeros. Since Uτ2 is solely based on Dτ2 , hence Uτ2 is

independent of Uη.
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3 Additional simulation studies

For each of the sample sizes (n = 350, 400, 450), 1, 000 simulations were performed. Two con-

founding variables were generated: for i = 1, 2, . . . , n, Xi1 followed a Bernoulli distribution with

the probability of 0.5 and Xi2 followed a standard normal distribution. We simulated two char-

acteristics W1 and W2 as follows: W1 was a 20 × 1 vector whose the elements were uniformly

distributed from −3 through 3 and W2 was a 20 × 1 vector whose the elements were normally

distributed with a mean of 0 and a variance of 4. We used a 20×1 vector for f(Ri), i = 1, 2, . . . , n,.

We considered the fixed effects W>1 f(Ri) and W>2 f(Ri) for i = 1, 2, . . . , n. The random effect

[h(R1) h(R2) · · · h(Rn)]> followed a multivariate normal distribution with a mean vector of 0s and

a variance-covariance matrix τ2S, where S was specified based on either BLOSUM62 or PAM250.

For i = 1, 2, . . . , n, εi followed a standard normal distribution.

Then we considered the following TCR-L models: for the binary trait yi, i = 1, 2, . . . , n,

logitP (yi = 1) = β0 + β1Xi1 + β2Xi2 + η1W
>
1 f(Ri) + η2W

>
2 f(Ri) + h(Ri),

and for the continuous trait yi, i = 1, 2, . . . , n,

yi = β0 + β1Xi1 + β2Xi2 + η1W
>
1 f(Ri) + η2W

>
2 f(Ri) + h(Ri) + εi.

The power for the TCR-L models was evaluated where we set

• β0 = 0.1, β1 = 0.5, β2 = −0.4, η1 = 3, η2 = 1.5, and τ2 = 4 for the binary trait

• β0 = 0.1, β1 = 0.5, β2 = −0.4, η1 = 1.5, η2 = 0.5, and τ2 = 0.5 for the continuous trait.

Here, both the fixed and random effects contributed to the trait. The variance-covariance matrix

of the random effect, S, was specified based on the PAM250 in Table S2, and hence, the power

for the TCRL-P250 was the highest at each sample size. A comparable power was observed in the

TCRL-B62 in Table S2, indicating that the TCR-L approaches are fairly robust to the choice of

substitution matrix for S. This finding is consistent in Table S3 when S was specified based on

BLOSUM62. Table S3 shows that the TCRL-B62 has the highest power and the TCRL-P250 has

a comparable power.
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Supplementary Table S2: Power comparison of the TCRL and alternative methods for binary or

continuous outcomes when both the fixed and random effects were considered (S was based on

PAM250)

Binary Trait Continuous Trait

Approach n = 350 n = 400 n = 450 n = 350 n = 400 n = 450

Ext. features 0.527 0.613 0.633 0.735 0.790 0.839

Seq.-B62 0.695 0.768 0.809 0.661 0.711 0.798

Seq.-P250 0.762 0.836 0.884 0.712 0.783 0.864

TCRL-B62 0.807 0.879 0.907 0.863 0.917 0.955

TCRL-P250 0.855 0.918 0.947 0.888 0.938 0.970

Supplementary Table S3: Power comparison of the TCRL and alternative methods for binary or

continuous outcomes when both the fixed and random effects were considered (S was based on

BLOSUM62)

Binary Trait Continuous Trait

Approach n = 350 n = 400 n = 450 n = 350 n = 400 n = 450

Ext.features 0.520 0.598 0.611 0.749 0.800 0.821

Seq.-B62 0.737 0.783 0.875 0.695 0.758 0.828

Seq.-P250 0.674 0.726 0.810 0.639 0.698 0.770

TCRL-B62 0.841 0.887 0.940 0.880 0.946 0.961

TCRL-P250 0.788 0.853 0.904 0.849 0.911 0.939

Alternatively, we also evaluated the power when only the fixed effect was considered. In this

case, we set

• β0 = 0.1, β1 = 0.5, β2 = −0.4, η1 = 3, η2 = 2, and τ2 = 0 for the binary trait

• β0 = 0.1, β1 = 0.5, β2 = −0.4, η1 = 1.5, η2 = 1, and τ2 = 0 for the continuous trait.
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Supplementary Table S4: Power comparison of the TCRL and alternative methods for binary or

continuous outcomes when only the fixed effect was considered

Binary Trait Continuous Trait

Approach n = 350 n = 400 n = 450 n = 350 n = 400 n = 450

Ext.features 0.923 0.956 0.974 0.943 0.977 0.984

Seq.-B62 0.081 0.069 0.075 0.087 0.086 0.115

Seq.-P250 0.085 0.077 0.100 0.098 0.108 0.123

TCRL-B62 0.850 0.910 0.942 0.898 0.944 0.959

TCRL-P250 0.851 0.909 0.945 0.890 0.935 0.962

Given that only the fixed effect was associated with the trait, the power for the Ext. features

was the highest. The power for the TCR-L approaches was adequate since the TCR-L approach

included the fixed effect.
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4 More simulations based on real data

In this section, we conducted simulation studies based on the skin cutaneous melanoma (SKCM)

dataset in TCGA. The data have been described in the Real Data Analysis section in the main text.

We generated two confounding variables X1 and X2 to emulate gender and age in the real data.

In detail, the X1 was generated from a Bernoulli distribution with the probability parameter being

0.66, where 0.66 is the proportion of male subjects in the SKCM data. To mimic the distribution

of the age in the real data, we generated X2 from a normal distribution with mean 56 and standard

deviation 16. The age observed from the SKCM data was between 15 and 86; thus, if the simulated

age was out of this range, we re-generated X2 from the normal distribution until X2 falls into

the range. For the parameter setup, we observed from the real data analysis that the regression

coefficients for intercept, gender and age were β̂0 = −2.9, β̂1 = 0.23, and β̂2 = 0.034, respectively,

thus we used these values for the parameters in our simulations.

To mimic the S matrix in the real data, we directly sampled the TCR repertoire from the

subjects in the SKCM data. In other words, the TCR repertoire Ri was not generated through

the simulation scheme described in the main text, but from the real TCR repertoire of the SKCM

patients. After removing subjects with a single amino acid sequence, we had 349 subjects in the

SKCM dataset. Then, we sampled Ri for i = 1, 2, . . . , n from the TCR repertoires of the 349

subjects without replacement for each simulation replicate. Next, the weighted hydrophobic score

for the ith subject, W T f(Ri), and the TCRhom matrix, S, were computed accordingly. Once the

S was computed, the random effects [h(R1), . . . , h(Rn)]T were generated from N(0, τ2S).

We generated a binary trait yi, i = 1, 2, . . . , n, by

logitP (yi = 1) = β0 + β1Xi1 + β2Xi2 + ηW T f(Ri) + h(Ri),

and a continuous trait yi, i = 1, 2, . . . , n, by

yi = β0 + β1Xi1 + β2Xi2 + ηW T f(Ri) + h(Ri) + εi,

where εi was generated from N(0, 1).
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We considered three scenarios for power comparison: the model contained only fixed effect, the

model contained only random effect, and the model contained both fixed and random effects. These

three scenarios were denoted as SI, SII, and SIII, respectively. The parameter settings for SI, SII,

and SIII are given in Table S5. For SII and SIII, depending on whether the S matrix was derived

from BLOSUM62 or PAM250, the data simulation schemes were named as SII-B62, SIII-B62, or

SII-P250, SIII-P250.

Supplementary Table S5: Parameter settings for SI, SII, and SIII for the binary or continuous trait

Scenario Binary trait Continuous trait

SI η = 2.5, τ = 0 η = 1, τ = 0

SII η = 0, τ = 4 η = 0, τ = 1

SIII η = 2, τ = 2 η = 0.8, τ = 0.8

We considered n = 250 and 300, and simulated the data such that the sample size per group was

no less than 10% of n. We replicated 1,000 times and evaluated the power at the significance level

of α = 0.05. The results of the power comparison were summarized in Tables S6 - S9. These results

showed that the TCRL had a robust performance in SI and SII and was the most competitive

approach in SIII. The observed pattern of power was similar to that of the main text.

Supplementary Table S6: Power comparison of the TCRL and alternative methods for binary

outcomes for situations SI, SII, and SIII (n = 250)

SI SII-B62 SII-P250 SIII-B62 SIII-P250

Ext.features 0.953 0.157 0.143 0.641 0.625

Seq.-B62 0.173 0.896 0.892 0.706 0.689

Seq.-P250 0.174 0.872 0.916 0.677 0.718

TCRL-B62 0.914 0.871 0.867 0.842 0.827

TCRL-P250 0.911 0.840 0.889 0.819 0.837
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Supplementary Table S7: Power comparison of the TCRL and alternative methods for continuous

outcomes for situations SI, SII, and SIII (n = 250)

SI SII-B62 SII-P250 SIII-B62 SIII-P250

Ext.features 0.960 0.152 0.126 0.679 0.694

Seq.-B62 0.156 0.846 0.833 0.756 0.750

Seq.-P250 0.155 0.816 0.863 0.736 0.775

TCRL-B62 0.902 0.814 0.796 0.869 0.884

TCRL-P250 0.901 0.797 0.828 0.859 0.892

Supplementary Table S8: Power comparison of the TCRL and alternative methods for binary

outcomes for situations SI, SII, and SIII (n = 300)

SI SII-B62 SII-P250 SIII-B62 SIII-P250

Ext.features 0.981 0.164 0.159 0.685 0.686

Seq.-B62 0.223 0.936 0.929 0.757 0.730

Seq.-P250 0.213 0.910 0.951 0.728 0.765

TCRL-B62 0.956 0.920 0.916 0.879 0.872

TCRL-P250 0.953 0.891 0.938 0.862 0.887

Supplementary Table S9: Power comparison of the TCRL and alternative methods for continuous

outcomes for situations SI, SII, and SIII (n = 300)

SI SII-B62 SII-P250 SIII-B62 SIII-P250

Ext.features 0.984 0.135 0.134 0.734 0.738

Seq.-B62 0.167 0.923 0.884 0.856 0.828

Seq.-P250 0.152 0.904 0.912 0.835 0.857

TCRL-B62 0.954 0.904 0.854 0.930 0.932

TCRL-P250 0.951 0.873 0.878 0.922 0.944
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