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Supplementary Figures

Figure S1. Example of update of probabilities along the phylogenetic tree.
Graphical representation of the process of updating probabilities along the phylogenetic
tree during the up-down pruning approach, and in particular during the use of
Equations 4 and 5. The top part of the Figure refers to the initialization of the
probabilities for a sequence s1 with an observed character A (only characters A and C
are considered for simplicity), as in Equation 4. The bottom plot represents the
calculation of the probabilities for the top node ν1 of branch b that links s1 to the rest
of the tree (not shown), as in Equation 5.
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Figure S2. Simulated character frequency distributions. Graphical
representation of the Dirichlet distributions used for sampling (A) simulated
equilibrium nucleotide frequency distributions (α = 0.1), and (B) simulated equilibrium
amino acid frequency distributions (α = 0.02). Each plot refers to the probability of the
frequency of one character. On the x-axes are ranges of character frequencies, and on
the y-axis is the probability of such ranges under the given Dirichlet distribution.
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Figure S3. Comparison of different weighting schemes with rescaled branch
lengths. Bars show weights assigned to the tips of tree in Figure 1 (species names on
x-axis labels) by different weighting schemes: PNS (weights ws), HH94 [5] and GSC94
[9]. Here, differently from Figure 2, branch lengths in the tree are rescaled by A 0.2,
and B 5. Weights from each scheme are normalized so that the sum over taxa is 1.
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Supplementary Methods

Calculating PNS via simulations I: not conditional on data

It is possible to approximate PNS weights ws by simulating evolution along a tree. The
idea is to repeatedly simulate many alignment columns, and then average (over all
simulated columns) the evolutionary novelty of a tree tip to obtain an estimate of its
score. At each simulation step, corresponding to one simulated alignment column, we
first sample a character at the root of the phylogeny according to the root frequency
distribution. We then iteratively sample characters at internal nodes while moving
downward on the tree. At each node we condition on the character already sampled at
the node’s parent. For example, assume that node ν2 is separated from its parent ν1 by
a branch b of length t, and that we have already sampled character j1 at ν1. We sample
a character j2 at ν2 using probabilities P j1,j2t where Pt = exp(tQ) is the probability
matrix and Q is the substitution rate matrix. If we sample a j2 6= j1, then we know that
at least one mutation occurred along b, and so that no tip descendent from b is PIBD to
any tip not descendent from b at this alignment column. There are however two ways in
which we can have j2 = j1: either with no mutation on b, with probability Ij1t
(Equation 3), or with more than one mutation on b, with probability P j1,j1t − Ij1t . As we
move down the tree, we simulate and record which characters are sampled at each node,
and whether mutations happened on each branch.

Once we have simulated characters at all tree tips, we add to the partial score ŵs of
tip s the score corresponding to 1/PIBD(s), the inverse of the number of tips simulated
to be PIBD to s at the current alignment column. The final approximation of ws is
obtained, after all alignment columns are simulated, by dividing ŵs by the number of
simulated alignment columns. In practice, we simulate one block (e.g. 100) of alignment
columns at a time, and if the score approximations do not change significantly once a
new alignment block has been added (for example the differences between the scores are
below a certain threshold ε, e.g. ε = 0.01), we stop the simulations.

Calculating PNS via simulations II: conditional on data

We can also use simulations to approximate wDs scores, that is, scores conditional on the
data from a specific alignment column. We use a slight modification of the up-down
approach of [46] to sample characters at internal nodes of the phylogeny conditional on
the observed alignment column D. The small difference from [46] is that we do not need
to perform the last step of the up-down algorithm, that is, sampling a mutational
history within each branch conditional on the two states at the end of the branch. This
is because we only need to know if any strictly positive number of mutations (i.e. one or
more) happened on a branch, or none. This is done as described in the previous section.

Calculating PNS via brute-force

A simple but computationally demanding way to calculate the PNS is to iterate over all
possible mutational histories along the phylogeny, calculating the probability of each
mutational history and its contribution to the scores. This brute-force method requires
exponential time in the number of phylogenetic tips, and we only use it to test the
correctness of the other methods and as an example to showcase the properties of the
PNS.

In a rooted tree φ with N tips and 2N − 2 branches, we define a mutational history
as a pair of vectors (µ,o). µ has 2N − 2 boolean entries, and each entry µb is
associated with one branch b of the tree. o has 2N − 1 character entries, each entry oν
associated with one node ν of the tree. A value µb = 0 represents no mutation
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happening on b; otherwise, µb = 1 represents at least one mutation happening on b. A
value oν = j means that character j is found at node ν in the mutational history
considered. These two vectors are sufficient to describe all the aspects of a mutational
history that matter for PNS. However, not all possible vector pairs (µ,o) describe a
legitimate mutational history. For example, if for a branch b with parent node ν1 and
child node ν2 we have µb = 0, but also oν1 6= oν2 , then µ and o are not compatible with
each other. For each µ, the number of possible o consistent with it is B1+

∑
b µb , with B

the number of characters. This follows from the fact that all o consistent with a given µ
can be obtained by first assigning any character to the root, and then a new character
on the child node of a branch b that contains mutations (µb = 1). We denote by Oµ the
space of all o consistent with µ. When conditioning on data D (that is, for weights
wDs ), Oµ only contains character vectors o consistent with data D.

Given a mutation vector µ, a character vector o ∈ Oµ, and data D, the probability
P (µ,o, D) is given by π(oρ)

∏
b P (µb, oνc |oνp), where ρ is the root node, νp and νc are

respectively the parent and child nodes of branch b, and P (µb, oνc |oνp) is the probability
of the considered events happening on branch b. If the length of b is t, we have:

P (µb, oνc |oνp) =


P
oνp ,oνc
t if oνp 6= oνc
P
oνp ,oνp
t − Ioνpt if µb = 1 and oνp = oνc
I
oνp
t if µb = 0

(21)

The probability P (µ, D) is then given by
∑
o∈Oµ

P (µ,o, D). Conditioning on D, we

have P (µ|D) = P (µ, D)/P (D), where P (D) =
∑
µ P (µ, D). For each µ, the

corresponding score S(µ, s) for tip s can be calculated as the inverse of the number of
tips that are PIBD to s within µ. We then have wDs =

∑
µ P (µ|D)S(µ, s); the scores

unconditional on data, ws, are obtained in the same way except that in this case D is
defined as not containing any information, that is, Oµ contains all o consistent with µ
without any additional restriction, and so also P (D) = 1.

Calculating ESN via a pruning approach

Recall that the effective sequence number (ESN) is defined as the sum of weights over
all tips s of tree φ: T =

∑
s∈φ ws or TD =

∑
s∈φ w

D
s . If one is only interested in

calculating ESN without needing the values of the individual ws or wDs , the following
fast pruning-like algorithm can be used. The idea is to calculate T for each subtree,
starting from the tips and moving upwards; the T at the root ρ is then the final value of
interest.

We focus here on weights wDs conditional on data D. As before, for calculating
corresponding values for weights unconditional on data, ws, we simply need to assume
D empty (uninformative) in the following. Given alignment column data D, we have

T =
∑
s∈φ

wDs =
∑
s∈φ

∑
i

pφs (i|D)

i
=
∑
j

π(j)
∑
s∈φ

∑
i

pφs (i|D, j)
i

=

∑
j π(j)

∑
s∈φ

∑
i

(
pφs (i,D|j)/i

)
P (D)

(22)

where j is any character, π(j) is the root frequency of j, and pφs (i|D, j) is the
probability that tip s has i PIBD tips in φ conditional on D and on having character j
at the root. Similarly, pφs (i,D|j) is the probability that s has i PIBD tips in φ and data
D, conditional on having character j at the root. We also define scores

Sj =
∑
s∈φ

∑
i

pφs (i,D|j)
i

(23)
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and

Sjν =
∑
s∈φν

∑
i

pφνs (i,Dν |j)
i

(24)

where now φν is the sub-phylogeny comprising the descendants of node ν, and
pφνs (i,Dν |j) is the probability of having i tips descendent from ν that are PIBD to s,
and of data Dν at the tips descendent from ν, conditional on having character j in ν.
We also define

Cjν =
∑
i>0

pφνν (i,Dν |j) , (25)

the probability of Dν and of at least one tip descendent from ν being PIBD to ν,
conditional on having character j at ν. For all tips s and characters j we initialise
Sjs = Cjs = δ(j,Ds), where δ is the Kronecker delta.

Given an internal node ν separated from child c1 by a branch b1 of length t1, and
from child c2 by a branch b2 of length t2, and assuming that Sjc1 , S

j
c2 , C

j
c1 and Cjc2 have

already been calculated, we have that

Cjν = Ijt1C
j
c1Pν(Dc2 |j) + Ijt2C

j
c2Pν(Dc1 |j)− I

j
t1C

j
c1I

j
t2C

j
c2 , (26)

where Pν(Dc|j) is the probability of Dc conditional on having j at node ν, which can be
obtained recursively with Felsenstein’s pruning algorithm.

Similarly,

Sjν =

(∑
k

P j,kt1 Skc1

)
Pν(Dc2 |j) +

(∑
k

P j,kt2 Skc2

)
Pν(Dc1 |j)− I

j
t1C

j
c1I

j
t2C

j
c2 . (27)

Using both Equations 26 and 27 recursively up the tree, we can calculate Sjν and Cjν for
every ν and j until we reach the the root ρ. Once we reach ρ, the total ESN score T can
be calculated as in Equation 22: T =

(∑
j π(j)S

j
ρ

)
/P (D). Since Equations 26 and 27

require a constant time (more precisely, proportional to alphabet size for Equation 27),
since these steps are performed once for each node, and since the number of nodes is
linear in the number of tips, we have that the cost of these steps is O(N). When
conditioning on data, we also need to perform the classical Felsenstein pruning
algorithm to calculate Pν(Dc|j), but since its cost is linear in N also, the total cost of
calculating T with this approach is still O(N).

Calculating fast PNS via a pruning approach

In Equation 14 we introduced the fast PNS, ws, which is a fast approximation of the
PNS ws. They are defined as ws = 1/E[iφ(s)] = 1/

∑N
i=1 ips(i), and similarly for their

version conditional on observed data, wDs . The fast PNS can be computed very
efficiently with an up-down pruning approach, requiring only O(N) time instead of
O(N3) as required for the ws. Here we describe such an algorithm. For completeness,
we will describe how to calculate wDs ; the case for ws follows by assuming empty
(uninformative) data D. For a subtree φ′, a node ν, and a character j, we will consider
the quantities N(ν, φ′|j):

N(ν, φ′|j) =
N∑
i=1

ipφ
′

ν (i,Dφ′ |j) (28)

and similarly N(ν, φ′, j) =
∑N
i=1 ip

φ′

ν (i,Dφ′ , j). We will also consider the likelihoods for
sub-phylogenies (as in the standard pruning algorithm), L(ν, φ′|j) = P (Dφ′ |Dν = j),

9



which is the likelihood of the sub-phylogeny φ′ conditioned on having character j at
node ν; similarly, L(ν, φ′, j) = P (Dφ′ , Dν = j)

First, we initialise the conditional expected values and likelihoods at the tips of φ:
for every tip s and every character j we set

N(s, φs|j) = L(s, φs|j) = δ(j,Ds) (29)

where φs is the phylogeny consisting only of tip s.
If we have a branch b of length t separating nodes ν2 (bottom, or descendant) and ν1

(top, or ancestral), and if we denote the two subtrees obtained from φ by removing b by
φ1 and φ2, with φ1 containing ν1 and φ2 containing ν2, and assuming we know
N(ν2, φ2|j) and L(ν2, φ2|j), we can calculate:

N(ν1, φ2|j) = IjtN(ν1, φ1|j)

L(ν1, φ2|j) =
∑
k

P j,kt L(ν2, φ2|k) . (30)

This means that we can move the expectations and likelihoods ‘up’ on the branches,
and we do this starting from the tips.

Given an internal node ν and the two descendant sub-phylogenies φ1 and φ2 it splits
φ into, we can calculate for every character j:

N(ν, φ1 ∪ φ2|j) = N(ν, φ1|j)L(ν, φ2|j) +N(ν, φ2|j)L(ν, φ1|j)
L(ν, φ1 ∪ φ2|j) = L(ν, φ1|j)L(ν, φ2|j) .

(31)

Combining the steps of Equations and iteratively, we can calculate these expectations
and likelihoods for all the internal nodes, starting from the tips and up to the root ρ,
which concludes the ‘up’ phase. Given the root frequencies π, and given the two
sub-phylogenies of the root φ1 and φ2, we can then calculate

N(ρ, φ1, j) = π(j)N(ρ, φ1|j)
N(ρ, φ2, j) = π(j)N(ρ, φ2|j)
L(ρ, φ1, j) = π(j)L(ρ, φ1|j)
L(ρ, φ2, j) = π(j)L(ρ, φ2|j) .

(32)

The second (‘down’) stage of the algorithm proceeds downward on the tree, from the
root towards the tips. Again, we assume we have a branch b of length t separating
nodes ν2 (bottom) and ν1 (top), and we denote the two subtrees obtained from φ by
removing b as φ1 (containing ν1) and φ2 (containing ν2). This time we assume we know
N(ν1, φ1, j) and L(ν1, φ1, j), and we calculate:

N(ν2, φ1, j) = N(ν1, φ1, j)I
j
t

L(ν2, φ1, j) =
∑
k

L(ν1, φ1, k)P
k,j
t . (33)

This lets us move downward along a branch. Now, assuming we reach an internal node
ν, then given one of its two descendant sub-phylogenies, φ3, and its top (ancestor)
sub-phylogeny φ1, we can calculate the following for every character j:

N(ν, φ3 ∪ φ1, j) = N(ν, φ3|j)L(ν, φ1, j) +N(ν, φ1, j)L(ν, φ3|j)
L(ν, φ3 ∪ φ1, j) = L(ν, φ3|j)L(ν, φ1, j) .

(34)
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We apply Equation twice for each internal node and once for each descendant
sub-phylogeny. We keep applying Equations and while moving downward in the tree,
until we reach the tips. When we reach a tip s, after applying Equation we obtain
N(s, φ \ s, j) and L(s, φ \ s, j) for every character j. We also have N(s, φs|j) and
L(s, φs|j) from the initialisation step. Combining them, we obtain

N(s, φ, j) = N(s, φs|j)L(s, φ \ s, j) + L(s, φs|j)N(s, φ \ s, j) , (35)

and summing this over all characters j (when D is empty; otherwise we can just take
the one observed value Ds for j), and normalising by the total likelihood of D, L(φ), we
obtain

wDs =
L(φ)

N(s, φ)
=

L(φ)∑
j N(s, φ, j)

. (36)

In total, the algorithm requires using Equations , , and once for each internal node
and for each alphabet character; the bottleneck cost is using Equations and , since they
have linear cost in the alphabet size B and they need to be used B times for each node.
The total cost of this algorithm is therefore linear in N , or more precisely O(B2N).
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