# Additional file 1

GWENA: gene co-expression networks analysis and extended modules characterization in a single Bioconductor package

Gwenaëlle G. Lemoine, Marie-Pier Scott-Boyer, Bathilde Ambroise, Olivier Périn, Arnaud Droit

## Supplementary Material and Method

#### 1 Z summary detail and combination with NetRep

As NetRep uses a permutation test with the null hypothesis of the module being not preserved, it can only return if the module is preserved or not significant. To determine if a module is not preserved or moderately preserved, a Z summary statistic is computed using the topological metrics defined by Langfelder et al. [1] and renamed by NetRep [2] such as :

$$Z_{summary} = \frac{Z_{density} + Z_{connectivity}}{2}$$

With the NetRep notation :

$$Z_{density} = median(Z_{cor.density}, Z_{avg.edge.wei}, Z_{mod.coh}, Z_{avg.node.contrib})$$
$$Z_{connectivity} = median(Z_{concor.wei.deg}, Z_{concor.nod.contrib}, Z_{concor.cor})$$

Where :

$$\begin{aligned} & cor.density = \mathsf{mean}(vect.Matrix(\mathsf{sign}(r_{ij}^{[ref](q)}rij^{[test](q)}))) & vect.Matrix(A) = (a_{2,1}, a_{3,1}, ..., a_{n,1}, a_{n,n-1}) \\ & avg.edge.wei = density^{[test](q)} = \mathsf{mean}(vect.Mat(A^{[test](q)})) & r_{ij}^{[ref]} = \mathsf{cor}(x_i^{[ref]}, x_j^{[ref]}) \\ & mod.coh = \mathsf{mean}_{i \in Mq}((kME_i^{[test](q)})^2) & r_{ij}^{[test]} = \mathsf{cor}(x_i^{[test]}, x_j^{[test]}) \\ & avg.node.contrib = \mathsf{mean}_{i \in Mq}(\mathsf{sign}(kME_i^{[ref](q)})kME_i^{[test](q)}) \\ & concor.wei.deg = \mathsf{cor}(kIM)^{[ref](q)}, kIM^{[test](q)} \\ & concor.cor = \mathsf{cor}(vect.Matrix(r^{[ref](q)}), vect.Matrix(r^{[test](q)}))) \end{aligned}$$

This score returns :

- **Preserved** if the Z<sub>summary</sub> is above 10
- Moderately preserved if the Z<sub>summary</sub> is between 2 and 10
- Unpreserved if the Z<sub>summary</sub> is below 2

The results from both NetRep permutation test and the  $Z_{summary}$  are then combined in GWENA as shown in Figure 1 and return a final result on the module comparison.



Figure 1: Combination of the permutation test result ans the  $Z_{summary}$  result in GWENA to return a final result on the module comparison.

### 2 Details on case study data

Public data were obtained from GTEx v8 version on the GTEx Portal on 09/20/2020. Access to private data was subject to a request to dbGaP on accession number phs000424.v8.p2. Data were obtained on 10/21/2020.

| Data               | File                                                            |
|--------------------|-----------------------------------------------------------------|
| Gene expression    | GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_reads.gct.gz     |
| Public annotation  | GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt             |
| Private annotation | phs000424.v8.pht002742.v8.p2.c1.GTEx_Subject_Phenotypes.GRU.txt |
| Phenotype          | $GTEx\_Analysis\_v8\_Annotations\_SubjectPhenotypesDS.txt$      |

Table 1: Correspondence between file names and their contents

#### **3** GTEx data normalization with PC-correction method

In order to limit batch effect and handle the maximum of other co-founding effects, we chose to use a method based on PC-correction as recommended by Parsana et al. [3] for GTEx data. However age is usually included in this confounding factors, therefore is corrected. Since we're interested in gene changes we adapted the method to remove only the top n PC correlated to age and which removed the least of genes correlating with age. The n number of PC to remove was estimated by calculating the loss of correlation between phenotype and genes expression (Figure 2) and confirmed by looking for the number of significantly correlated genes with two ageing gene databases (Figure 3): GenAge [4] and Digital Aging Atlas [5].



Figure 2: Ageing genes correlation density with phenotype depending on the number of PC corrected. Left figure contains all PC correction tested. For clarity we filtered on the first 10 PC corrected on the right figure.



Figure 3: Number of genes known to be associated with ageing.

Correlation density in Figure 2 suggest a similarity between the corrections from 2 to 5 PC removal. Combined with the proportion of overlapping known ageing genes in Figure 3 we determined the optimal number of PC n to remove to be 4.

# Supplementary Results

4 Connectivity drop on all modules



Figure 4: Here is a caption of the figure which is so long that it has to be wrapped over multiple lines, but should not exceed the width (height after the rotation) of the image.

### 5 New enrichment terms in sub module 6 from module 7 old age range

Table 2: Enrichment table from module 7 sub module 6 in old condition. Terms are sorted along their novelty (is the enrichment new compared to the enrichments from sub modules in the young age range) and then the source. Source is the enrichment database used on the gene set (GO:BP = Gene Ontology : Biological Process, GO:CC = Gene Ontology Cellular Compartment, GO:MF = Gene Ontology : Molecular Function, HP : Human Phenotype Ontology, WP = WikiPathway, KEGG = Kyoto Encyclopedia of Genes and Genomes, REAC = Reactome, TF = Transfac).

| source | term name                                     | is new | source | term name                                                             | is new |
|--------|-----------------------------------------------|--------|--------|-----------------------------------------------------------------------|--------|
| CORUM  | Fibrinogen complex                            | no     | GO:BP  | regulation of vasoconstriction                                        | yes    |
| GO:BP  | fibrinolysis                                  | no     | GO:BP  | heterotypic cell-cell adhesion                                        | yes    |
| GO:BP  | negative regulation of blood coag-<br>ulation | no     | GO:BP  | platelet aggregation                                                  | yes    |
| GO:BP  | negative regulation of hemostasis             | no     | GO:BP  | regulation of endothelial cell apop-<br>totic process                 | yes    |
| GO:BP  | negative regulation of coagulation            | no     | GO:BP  | endothelial cell apoptotic process                                    | yes    |
| GO:BP  | negative regulation of wound heal-<br>ing     | no     | GO:BP  | protein processing                                                    | yes    |
| GO:BP  | negative regulation of response to wounding   | no     | GO:BP  | cell-matrix adhesion                                                  | yes    |
| GO:BP  | regulation of body fluid levels               | no     | GO:BP  | positive regulation of response to wounding                           | yes    |
| GO:CC  | blood microparticle                           | no     | GO:BP  | positive regulation of blood circu-<br>lation                         | yes    |
| GO:CC  | platelet alpha granule lumen                  | no     | GO:BP  | vasoconstriction                                                      | yes    |
| GO:CC  | platelet alpha granule                        | no     | GO:BP  | regulation of vesicle-mediated transport                              | yes    |
| GO:CC  | collagen-containing extracellular<br>matrix   | no     | GO:BP  | cell adhesion                                                         | yes    |
| GO:CC  | fibrinogen complex                            | no     | GO:BP  | biological adhesion                                                   | yes    |
| GO:CC  | extracellular space                           | no     | GO:BP  | homotypic cell-cell adhesion                                          | yes    |
| GO:CC  | extracellular exosome                         | no     | GO:BP  | vascular process in circulatory sys-<br>tem                           | yes    |
| GO:CC  | extracellular vesicle                         | no     | GO:BP  | extrinsic apoptotic signaling path-<br>way via death domain receptors | yes    |
| GO:CC  | extracellular organelle                       | no     | GO:CC  | secretory granule lumen                                               | yes    |
| GO:CC  | extracellular region                          | no     | GO:CC  | cytoplasmic vesicle lumen                                             | yes    |
| GO:CC  | secretory granule                             | no     | GO:CC  | vesicle lumen                                                         | yes    |
| GO:CC  | secretory vesicle                             | no     | GO:CC  | extracellular matrix                                                  | yes    |
| GO:CC  | vesicle                                       | no     | GO:CC  | cell surface                                                          | yes    |
| GO:MF  | enzyme inhibitor activity                     | no     | GO:CC  | endoplasmic reticulum lumen                                           | yes    |
| HP     | Splenic rupture                               | no     | GO:CC  | cytoplasmic vesicle                                                   | yes    |
| WP     | COVID-19, thrombosis and anti-<br>coagulation | no     | GO:CC  | intracellular vesicle                                                 | yes    |
| GO:BP  | platelet degranulation                        | yes    | GO:CC  | chylomicron                                                           | yes    |
| GO:BP  | regulation of blood coagulation               | yes    | GO:CC  | very-low-density lipoprotein parti-<br>cle                            | yes    |
| GO:BP  | regulation of hemostasis                      | yes    | GO:CC  | triglyceride-rich plasma lipoprotein particle                         | yes    |
| GO:BP  | regulation of coagulation                     | yes    | GO:CC  | external side of plasma membrane                                      | yes    |
| GO:BP  | regulation of wound healing                   | yes    | GO:CC  | high-density lipoprotein particle                                     | yes    |
| GO:BP  | plasminogen activation                        | yes    | GO:CC  | plasma lipoprotein particle                                           | yes    |
| GO:BP  | regulation of response to wounding            | yes    | GO:CC  | lipoprotein particle                                                  | yes    |
| GO:BP  | protein activation cascade                    | yes    | GO:CC  | protein-lipid complex                                                 | yes    |
| GO:BP  | blood coagulation, fibrin clot for-<br>mation | yes    | GO:MF  | signaling receptor binding                                            | yes    |
| GO:BP  | vesicle-mediated transport                    | yes    | GO:MF  | chaperone binding                                                     | yes    |
| GO:BP  | regulated exocytosis                          | yes    | GO:MF  | immunoglobulin binding                                                | yes    |
| GO:BP  | negative regulation of fibrinolysis           | yes    | GO:MF  | lipoprotein particle receptor bind-<br>ing                            | yes    |

| GO:BP | exocytosis                                                          | yes      |
|-------|---------------------------------------------------------------------|----------|
| GO:BP | zymogen activation                                                  | ves      |
| GO:BP | blood coagulation                                                   | yes      |
|       |                                                                     |          |
| GO:BP | hemostasis                                                          | yes      |
| GO:BP | coagulation                                                         | yes      |
| GO:BP | regulation of fibrinolysis                                          | yes      |
| GO:BP | positive regulation of heterotypic cell-cell adhesion               | yes      |
| GO:BP | regulation of cell-substrate adhe-<br>sion                          | yes      |
| GO:BP | negative regulation of response to external stimulus                | yes      |
| GO:BP | negative regulation of blood vessel diameter                        | yes      |
| GO:BP | negative regulation of response to                                  | yes      |
| GO:BP | regulation of heterotypic cell-cell adhesion                        | yes      |
| GO:BP | positive regulation of blood coag-<br>ulation                       | yes      |
| GO:BP | positive regulation of hemostasis                                   | yes      |
| GO:BP | positive regulation of coagulation                                  | yes      |
| GO:BP | wound healing                                                       | yes      |
| GO:BP | negative regulation of multicellular                                | yes      |
|       | organismal process                                                  | <b>J</b> |
| GO:BP | positive regulation of cell-<br>substrate adhesion                  | yes      |
| GO:BP | secretion by cell                                                   | yes      |
| GO:BP | negative regulation of endothelial cell apoptotic process           | yes      |
| GO:BP | positive regulation of vasoconstric-                                | yes      |
|       | tion                                                                |          |
| GO:BP | export from cell                                                    | yes      |
| GO:BP | negative regulation of cellular pro-<br>cess                        | yes      |
| GO:BP | regulation of response to stress                                    | yes      |
| GO:BP | positive regulation of substrate adhesion-dependent cell spreading  | yes      |
| GO:BP | regulation of blood vessel diameter                                 | yes      |
| GO:BP | regulation of tube diameter                                         | yes      |
| GO:BP | negative regulation of extrinsic<br>apoptotic signaling pathway via | yes      |
| GO:BP | death domain receptors regulation of tube size                      | yes      |
| GO:BP | cell-substrate adhesion                                             | yes      |
| GO:BP | post-translational protein modifi-                                  | yes      |
| GO:BP | response to wounding                                                | yes      |
| GO:BP | secretion                                                           | yes      |

| GO:MF | extracellular matrix structural con-                                   | yes |  |  |
|-------|------------------------------------------------------------------------|-----|--|--|
|       | stituent                                                               |     |  |  |
| HP    | Menometrorrhagia                                                       |     |  |  |
| HP    | Abnormality of the common coag-<br>ulation pathway                     | yes |  |  |
| HP    | Spontaneous abortion                                                   | ves |  |  |
| HP    | Abnormality of coagulation                                             | ves |  |  |
| нр    | Hypofibringgonomia                                                     | yes |  |  |
|       |                                                                        | yes |  |  |
| ΗP    | gen                                                                    | yes |  |  |
| HP    | Joint swelling                                                         | yes |  |  |
| HP    | Abnormality of the coagulation cascade                                 | yes |  |  |
| HP    | Abnormal delivery                                                      | yes |  |  |
| HP    | Abnormal thrombosis                                                    | yes |  |  |
| KEGG  | Complement and coagulation cas-                                        | yes |  |  |
| KEGG  | Platelet activation                                                    | yes |  |  |
| KECC  | Chalasteral metabolism                                                 |     |  |  |
| NEGG  | Cholesterol metabolism                                                 | yes |  |  |
| MIRNA | hsa-miR-409-3p                                                         | yes |  |  |
| MIRNA | hsa-miR-144-3p                                                         | yes |  |  |
| REAC  | Platelet degranulation                                                 | yes |  |  |
| REAC  | Response to elevated platelet cy-<br>tosolic $Ca2+$                    | yes |  |  |
| REAC  | Platelet activation. signaling and                                     | ves |  |  |
|       | aggregation                                                            | jee |  |  |
| REAC  | Regulation of Insulin-like Growth<br>Factor (IGF) transport and uptake | yes |  |  |
|       | ing Proteins (IGERPs)                                                  |     |  |  |
|       | Post translational protoin phos                                        | VOC |  |  |
| NLAC  | phorylation                                                            | yes |  |  |
| REAC  | Hemostasis                                                             | yes |  |  |
| REAC  | GRB2:SOS provides linkage to MAPK signaling for Integrins              | yes |  |  |
| REAC  | p130Cas linkage to MAPK signal-                                        | yes |  |  |
|       | ing for integrins                                                      |     |  |  |
| REAC  | Regulation of TLR by endogenous                                        | yes |  |  |
|       | Inganu<br>Common Dothumu of Fibrin Clot                                |     |  |  |
| REAC  | Common Patnway of Fibrin Clot                                          | yes |  |  |
|       | Integrin signaling                                                     |     |  |  |
|       | Cinceling by high binance estimity                                     | yes |  |  |
| REAC  | BRAF mutants                                                           | yes |  |  |
|       |                                                                        |     |  |  |
| REAC  | Platelet Aggregation (Plug Forma-                                      | yes |  |  |
| REAC  | Formation of Fibrin Clot (Clotting                                     | ves |  |  |
|       | Cascade)                                                               | ,   |  |  |
| REAC  | MAP2K and MAPK activation                                              | yes |  |  |
| REAC  | Signaling by moderate kinase ac-                                       | yes |  |  |
|       | tivity BRAF mutants                                                    |     |  |  |
| REAC  | Signaling downstream of RAS mu-<br>tants                               | yes |  |  |

| GO:BP | regulation of response to external stimulus                                            | yes | REAC | Paradoxical activation of RAF sig-<br>naling by kinase inactive BRAF | yes |
|-------|----------------------------------------------------------------------------------------|-----|------|----------------------------------------------------------------------|-----|
| GO:BP | platelet activation                                                                    | yes | REAC | Signaling by RAS mutants                                             | yes |
| GO:BP | transport                                                                              | yes | REAC | Signaling by BRAF and RAF fusions                                    | yes |
| GO:BP | response to stress                                                                     | yes | REAC | Oncogenic MAPK signaling                                             | yes |
| GO:BP | establishment of localization                                                          | yes | REAC | Dissolution of Fibrin Clot                                           | yes |
| GO:BP | negative regulation of epithelial cell apoptotic process                               | yes | REAC | Integrin cell surface interactions                                   | yes |
| GO:BP | regulation of cell adhesion                                                            | yes | TF   | Factor: HNF1A; motif: GGT-<br>TAATNATTAMC                            | yes |
| GO:BP | regulation of substrate adhesion-<br>dependent cell spreading                          | yes | TF   | Factor: HNF-1alpha; motif: GGT-<br>TAATNWTTAMCN                      | yes |
| GO:BP | induction of bacterial agglutina-<br>tion                                              | yes | TF   | Factor: Sox-2; motif:<br>NNNNNAACAAWGN; match<br>class: 1            | yes |
| GO:BP | regulation of response to stimulus                                                     | yes | WP   | Folate Metabolism                                                    | yes |
| GO:BP | proteolysis                                                                            | yes | WP   | Selenium Micronutrient Network                                       | yes |
| GO:BP | negative regulation of biological process                                              | yes | WP   | Human Complement System                                              | yes |
| GO:BP | regulation of cell-cell adhesion                                                       | yes | WP   | Blood Clotting Cascade                                               | yes |
| GO:BP | regulation of extrinsic apoptotic<br>signaling pathway via death do-<br>main receptors | yes | WP   | Fibrin Complement Receptor 3<br>Signaling Pathway                    | yes |
| GO:BP | positive regulation of wound heal-<br>ing                                              | yes | WP   | Vitamin B12 Metabolism                                               | yes |

The distribution of the newly and previously found terms in the enrichment analysis across the the sub-modules from young and old age range (Figure 5).



Figure 5: Overlap between the enrichments found in sub-cluster 1 young, sub-cluster 1 old, and sub-cluster 6 old.(Upset diagram)

## References

- [1] Peter Langfelder, Rui Luo, Michael C. Oldham, and Steve Horvath. Is my network module preserved and reproducible? *PLoS Computational Biology*, 7(1), 2011.
- [2] Scott C. Ritchie, Stephen Watts, Liam G. Fearnley, Kathryn E. Holt, Gad Abraham, and Michael Inouye. A Scalable Permutation Approach Reveals Replication and Preservation Patterns of Network Modules in Large Datasets. *Cell Systems*, 3(1):71–82, 2016.
- [3] Princy Parsana, Claire Ruberman, Andrew E. Jaffe, Michael C. Schatz, Alexis Battle, and Jeffrey T. Leek. Addressing confounding artifacts in reconstruction of gene co-expression networks. *Genome Biology*, 20(1):94, 2019.
- [4] Robi Tacutu, Daniel Thornton, Emily Johnson, Arie Budovsky, Dlogo Barardo, Thomas Craig, Eugene Dlana, Gilad Lehmann, Dmitri Toren, Jingwei Wang, Vadim E. Fraifeld, and Joaõ P. De Magalhães. Human Ageing Genomic Resources: New and updated databases. *Nucleic Acids Research*, 46(D1):D1083–D1090, 2018.
- [5] Thomas Craig, Chris Smelick, Robi Tacutu, Daniel Wuttke, Shona H. Wood, Henry Stanley, Georges Janssens, Ekaterina Savitskaya, Alexey Moskalev, Robert Arking, and João Pedro De Magalhães. The Digital Ageing Atlas: Integrating the diversity of age-related changes into a unified resource. *Nucleic Acids Research*, 43(D1):D873– D878, 2015.