CoMetGeNe: mining conserved neighborhood patterns in metabolic and genomic contexts

Alexandra Zaharia, Bernard Labedan, Christine Froidevaux, Alain Denise

CoMetGeNe usage

CoMetGeNe.py

Suppose CoMetGeNe is executed as follows: CoMetGeNe.py eco data/ -dG 2 -dD 1 -o eco.out.

Metabolic pathways for *Escherichia coli* K-12 MG1655 (eco) are automatically downloaded from KEGG and stored under data/. At most two genes (-dG 2) and one reaction (-dD 1) can be skipped. Results are saved in the output file eco.out.

Detailed CoMetGeNe.py options follow:

usage: CoMetGeNe.py [-h] [--delta_G NUMBER] [--delta_D NUMBER] [--timeout SECONDS] [--output OUTPUT] [--skip-import] ORG DIR

Determines maximum trails of reactions for the specified organisms such that the genes coding for the enzymes involved in the trail are neighbors.

A trail of reactions is a sequence of reactions that can repeat reactions (vertices), but not arcs between reactions.

Metabolic pathways and genomic information is automatically retrieved from the KEGG database.

Required arguments:	
ORG	<pre>query organism (three- or four-letter KEGG code, e.g. 'eco' for Escherichia coli K-12 MG1655). See full list of KEGG organism codes at http://rest.kegg.jp/list/genome</pre>
DIR	directory storing metabolic pathways for the query organism ORG or where metabolic pathways for ORG will be downloaded
Optional arguments:	
-h,help	show this help message and exit
delta_G NUMBER, -dG	NUMBER
	the NUMBER of genes that can be skipped (default: 0)
delta_D NUMBER, -dD	NUMBER
	the NUMBER of reactions that can be skipped (default: 0)
timeout SECONDS, -t	SECONDS
	timeout in SECONDS (default: 300)
output OUTPUT, -o OUTPUT	
	output file
skip-import, -s	skips importing metabolic pathways from KEGG,

attempting to use locally stored KGML files if they are present under the specified directory (DIR)

Example: running

python2 CoMetGeNe.py eco data/ -dG 2 -o eco.out

downloads metabolic pathways for species 'eco' to directory 'data/'. Trail finding is performed, allowing two genes to be skipped at most (-dG 2). Reactions cannot be skipped (-dD is 0 by default). Maximum trails of reactions such that the reactions are catalyzed by products of neighboring genes are saved in the output file 'eco.out'.

grouping.py

For example, suppose grouping is executed as follows: grouping.py genes results/ data/ eco -o tsg_eco.csv.

Trail grouping by genes is performed for species eco and the resulting table T_{eco}^g is saved in tsg_eco.csv. CoMetGeNe results for all species and metabolic pathways of eco are respectively assumed to exist in results/ and data/.

Detailed grouping.py options follow:

usage: grouping.py [-h] [--output OUTPUT] {genes,reactions} RESULTS KGML ORG

Groups CoMetGeNe trails by either genes or reactions, producing a CSV file.

Required arguments:

'genes' or 'reactions')	es:
8 ,	
RESULTS directory storing CoMetGeNe results	
KGML directory containing input KGML files	
ORG reference species (KEGG organism code)	

Optional arguments:

```
-h, --help show this help message and exit
--output OUTPUT, -o OUTPUT
output file (CSV)
```

KGML needs to contain a subdirectory for every species for which a result file is present in RESULTS. The subdirectory names need to be the three- or fourletter KEGG codes for the species in question (e.g., 'bsu', 'eco', 'pae', etc.). Each species subdirectory is expected to contain metabolic pathways in KGML format.

Example: running

python2 grouping.py genes results/ data/ eco -o grouping_gene_eco.csv

will perform trail grouping by genes for the reference species 'eco'. The CoMetGeNe results are stored in 'results/', and the KGML files are available in 'data/'. A CSV file is produced ('grouping_gene_eco.csv').