CoMetGeNe: mining conserved neighborhood patterns in metabolic and genomic contexts

Alexandra Zaharia, Bernard Labedan, Christine Froidevaux, Alain Denise

Reduction of D and G to the cover set of an arc of D

In this document we prove that reducing the input graphs D and G (for MaSST and MaSSCoT) to their cover set with respect to a path P in D yields the same solution as for the versions without reduction.

Assuming D is a directed graph, the following notations will be used:

- D^* is the underlying undirected graph of D obtained by removing arc orientations.
- If G is an undirected graph such that $V(D) = V(G)$ and P is a path in D, the notation $CCC(D^*, G, P)$ designates the common connected component of D^* and G containing all vertices in P, if such a component exists. If it does not, then $CCC(D^*, G, P) = \emptyset$.
- For a vertex v of D, S_v^+ designates the descendants of v, i.e. the set of vertices in D that are reachable by a path from vertex v .
- For a vertex v of D, S_v^- designates the ancestors of v, i.e. the set of vertices in D reaching vertex v by a path in D .

The definition of cover set of a path uses the concept of bridge, defined as follows by Fertin et al. [\[1\]](#page-2-0):

Definition 1 Let $D = (V, A)$ be a directed graph, $G = (V, E)$ an undirected graph, and P a path in D. A vertex $r \in V$ is said to be a *bridge of P with respect to G* if there is no common connected component of $D^*[V - \{r\}]$ and $G[V - \{r\}]$ containing all the vertices of P (i.e., $CCC(D^*[V - \{r\}], G[V - \{r\}], P) = \emptyset)$.

Fertin *et al.* [\[1\]](#page-2-0) define the cover set of a path as follows:

Definition 2 Let $D = (V, A)$ be a directed graph, $G = (V, E)$ an undirected graph, and $P = (v_1, v_2, \ldots, v_k)$ a path in D. The cover set of path P in D with respect to G is the set X satisfying:

- 1. $V(P) \subseteq X \subseteq S_{v_1}^- \cup S_{v_k}^+ \cup V(P)$.
- 2. $D^*[X]$ and $G[X]$ are connected.
- 3. If r is a bridge of P in $D[X]$ with respect to $G[X]$ then $X \subseteq S_r^- \cup S_r^+ \cup \{r\}$.
- 4. X is maximal (with respect to the inclusion order).

Both MaSST and MaSSCoT take as input a directed graph $D = (V, A)$, an undirected graph $G = (V, E)$, and an arc (u, v) in D. Let S be the cover set of arc (u, v) in D with respect to G. We prove that D and G can respectively be replaced with $D[S]$ and $G[S]$, yielding the same solutions.

Following is a lemma for which the proof is omitted because it is trivial.

Lemma 1 Let $G = (V, E)$ be an undirected graph and let A, B and C be three subsets of V. If $G[A \cup B]$ and $G[B\cup C]$ are connected, then $G[A\cup B\cup C]$ is connected.

Next, we introduce a definition that will serve as a shorthand notation for the remainder of this document.

Definition 3 Let $D = (V, A)$ be a directed graph, $G = (V, E)$ be an undirected graph and P be a path in D. If a trail T in D exists such that (i) $T \supseteq P$, (ii) $G[V(T)]$ is connected and (iii) $\sharp T'$ trail in D such that $T' \supseteq P$, $G[V(T')]$ is connected and $span(T') > span(T)$, then T is said to be a trail of maximum span in D for P and G with respect to (i) and (ii), and T is said to verify $\mathscr{S}_P(D, G)$.

Lemma 2 Let $D = (V, A)$ be a directed graph, $G = (V, E)$ an undirected graph, P a path in D, and S the cover set of P in graphs D and G. If a trail T in D exists such that T verifies $\mathscr{S}_P(D, G)$, then $V(T) \subseteq S$.

Proof. $T \supset P$ by hypothesis (i) of definition [3](#page-0-0) and $S \supset V(P)$ by definition of the cover set. It follows that $V(T) \cap S \neq \emptyset$. Let $I = V(T) \cap S$ be the vertices shared by T and S. Let $\{t_1, \ldots, t_k\} = V(T) - I$ be the vertices of T not shared with S .

 $G[V(T)]$ is connected by hypothesis (ii) of definition [3,](#page-0-0) therefore $G[\{t_1, \ldots, t_k\} \cup I]$ is connected. Since $G[S]$ is connected (by definition of the cover set), it means that $G[{t_1, \ldots, t_k} \cup S] = G[{t_1, \ldots, t_k} \cup S]$ $I \cup (S - I)$ is also connected (by lemma [1\)](#page-0-1). Also, $D^*[V(T)]$ is connected because T is a trail in D, which means that $D^*[\{t_1, \ldots, t_k\} \cup I]$ is connected. Since $D^*[S]$ is connected (by definition of the cover set), it means that $D^*[\{t_1, \ldots, t_k\} \cup S] = D^*[\{t_1, \ldots, t_k\} \cup I \cup (S - I)]$ is also connected (by lemma [1\)](#page-0-1).

But if $G[\{t_1, \ldots, t_k\} \cup S]$ and $D^*[\{t_1, \ldots, t_k\} \cup S]$ are connected, then property 4 of definition [2](#page-0-2) is contradicted, therefore S cannot be maximal unless $\{t_1, \ldots, t_k\} = \emptyset$. Hence $V(T) \subseteq S$.

Proposition 1 Let $D = (V, A)$ be a directed graph, $G = (V, E)$ an undirected graph, P a path in D, and S the cover set of P in graphs D and G. If a trail T in D exists such that T verifies $\mathscr{S}_P(D, G)$, then T is also a trail in $D[S]$ verifying $\mathscr{S}_P(D[S], G[S])$, that is, (i) $T \supseteq P$, (ii) $G[S \cap V(T)]$ is connected and (iii) T has maximum span in $D[S]$ with respect to (i) and (ii).

Proof. Let T be a trail in D such that T verifies $\mathscr{S}_P(D, G)$. By lemma [2,](#page-1-0) $V(T) \subseteq S$, therefore T is also a trail in $D[S]$. We will now prove that T verifies properties (i)-(iii) for graphs $D[S]$ and $G[S]$.

- (i) By hypothesis (i) of definition [3,](#page-0-0) $T \supset P$.
- (ii) Since $V(T) \subseteq S$, $G[S \cap V(T)] = G[V(T)]$. Since $G[V(T)]$ is connected by hypothesis (ii) of definition [3,](#page-0-0) it follows that $G[S \cap V(T)]$ is connected.
- (iii) Suppose there exists a trail T' in $D[S]$ verifying $\mathscr{S}_P(D[S], G[S])$, that is, $T' \supseteq P$, $G[S \cap V(T')]$ is connected and $span(T') > span(T)$. Because T' is a trail in $D[S], V(T') \subseteq S$, which implies that $S \cap V(T') = V(T')$. Since $G[S \cap V(T')]$ is connected, it follows that $G[V(T')]$ is also connected. Moreover, $S \subseteq V$ by definition [2,](#page-0-2) therefore T' is also a trail in D. Hypotheses (i)-(iii) of definition [3](#page-0-0) are thus fulfilled for T' in D, meaning that T' verifies $\mathscr{S}_P(D, G)$, which contradicts the fact that T verifies $\mathscr{S}_P(D, G)$. Hence, no trail T' can exist in $D[S]$ that includes P such that $G[S \cap V(T')]$ is connected and such that T' has greater span than T. T has therefore maximum span in $D[S]$ with respect to properties (i) and (ii).

We have proved that, if a trail T in D exists such that T verifies $\mathscr{S}_P(D, G)$, then T is also a trail in $D[S]$ that verifies $\mathscr{S}_P(D[S], G[S])$.

Proposition 2 Let $D = (V, A)$ be a directed graph, $G = (V, E)$ an undirected graph, P a path in D, and S the cover set of P in graphs D and G. If a trail T in $D[S]$ exists that verifies $\mathscr{S}_P(D[S], G[S])$, then T is also a trail in D verifying $\mathscr{S}_P(D, G)$, that is, (i) $T \supseteq P$, (ii) $G[V(T)]$ is connected and (iii) T has maximum span in D with respect to (i) and (ii).

Proof. This proposition is the converse of proposition [1.](#page-1-1) Let T be a trail in $D[S]$ such that T verifies $\mathscr{S}_P(D[S], G[S])$. By definition [2,](#page-0-2) $S \subseteq V$, therefore T is also a trail in D. We will now prove that T verifies properties (i)-(iii) for graphs D and G .

- (i) By hypothesis (i) of definition [3,](#page-0-0) $T \supset P$.
- (ii) Since T is a trail in $D[S], V(T) \subseteq S$. Then $S \cap V(T) = V(T)$, and since $G[S \cap V(T)]$ is connected by hypothesis (ii) of definition [3,](#page-0-0) it follows that $G[V(T)]$ is connected.
- (iii) Suppose there exists a trail T' in D verifying $\mathscr{S}_P(D, G)$, that is, $T' \supseteq P$, $G[V(T')]$ is connected and $span(T') > span(T)$. By lemma [2,](#page-1-0) $V(T') \subseteq S$ and therefore $S \cap V(T') = V(T')$. Since $G[V(T')]$ is connected, it follows that $G[S \cap V(T')]$ is also connected. Moreover, T' is also a trail in $D[S]$

(because $V(T') \subseteq S$). Hypotheses (i)-(iii) of definition [3](#page-0-0) are thus fulfilled for T' in D[S], meaning that T' verifies $\mathscr{S}_P(D[S], G[S])$, which contradicts the fact that T verifies $\mathscr{S}_P(D[S], G[S])$. Hence, no trail T' can exist in D that includes P such that $G[V(T')]$ is connected and such that T' has greater span than T . T has therefore maximum span in D with respect to properties (i) and (ii).

We have proved that, if a trail T in $D[S]$ exists such that T verifies $\mathscr{S}_P(D[S], G[S])$, then T is also a trail in D that verifies $\mathscr{S}_P(D, G)$.

References

[1] Fertin G, Mohamed-Babou H, Rusu I. Algorithms for subnetwork mining in heterogeneous networks. In: International Symposium on Experimental Algorithms. Springer; 2012. p. 184–194.