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Reduction of D and G to the cover set of an arc of D

In this document we prove that reducing the input graphs D and G (for MaSST and MaSSCoT) to their
cover set with respect to a path P in D yields the same solution as for the versions without reduction.

Assuming D is a directed graph, the following notations will be used:

• D∗ is the underlying undirected graph of D obtained by removing arc orientations.

• If G is an undirected graph such that V (D) = V (G) and P is a path in D, the notation CCC(D∗, G, P )
designates the common connected component of D∗ and G containing all vertices in P , if such a
component exists. If it does not, then CCC(D∗, G, P ) = ∅.

• For a vertex v of D, S+
v designates the descendants of v, i.e. the set of vertices in D that are

reachable by a path from vertex v.

• For a vertex v of D, S−v designates the ancestors of v, i.e. the set of vertices in D reaching vertex
v by a path in D.

The definition of cover set of a path uses the concept of bridge, defined as follows by Fertin et al. [1]:

Definition 1 Let D = (V,A) be a directed graph, G = (V,E) an undirected graph, and P a path in D.
A vertex r ∈ V is said to be a bridge of P with respect to G if there is no common connected component of
D∗[V −{r}] and G[V −{r}] containing all the vertices of P (i.e., CCC(D∗[V −{r}], G[V −{r}], P ) = ∅).

Fertin et al. [1] define the cover set of a path as follows:

Definition 2 Let D = (V,A) be a directed graph, G = (V,E) an undirected graph, and P = (v1, v2, . . . , vk)
a path in D. The cover set of path P in D with respect to G is the set X satisfying:

1. V (P ) ⊆ X ⊆ S−v1 ∪ S+
vk
∪ V (P ).

2. D∗[X] and G[X] are connected.

3. If r is a bridge of P in D[X] with respect to G[X] then X ⊆ S−r ∪ S+
r ∪ {r}.

4. X is maximal (with respect to the inclusion order).

Both MaSST and MaSSCoT take as input a directed graph D = (V,A), an undirected graph G = (V,E),
and an arc (u, v) in D. Let S be the cover set of arc (u, v) in D with respect to G. We prove that D and
G can respectively be replaced with D[S] and G[S], yielding the same solutions.

Following is a lemma for which the proof is omitted because it is trivial.

Lemma 1 Let G = (V,E) be an undirected graph and let A, B and C be three subsets of V . If G[A∪B]
and G[B ∪ C] are connected, then G[A ∪B ∪ C] is connected.

Next, we introduce a definition that will serve as a shorthand notation for the remainder of this document.
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Definition 3 Let D = (V,A) be a directed graph, G = (V,E) be an undirected graph and P be a path
in D. If a trail T in D exists such that (i) T ⊇ P , (ii) G[V (T )] is connected and (iii) @T ′ trail in D such
that T ′ ⊇ P , G[V (T ′)] is connected and span(T ′) > span(T ), then T is said to be a trail of maximum
span in D for P and G with respect to (i) and (ii), and T is said to verify SP (D, G).

Lemma 2 Let D = (V,A) be a directed graph, G = (V,E) an undirected graph, P a path in D, and
S the cover set of P in graphs D and G. If a trail T in D exists such that T verifies SP (D, G), then
V (T ) ⊆ S.

Proof. T ⊇ P by hypothesis (i) of definition 3 and S ⊇ V (P ) by definition of the cover set. It follows
that V (T ) ∩ S 6= ∅. Let I = V (T ) ∩ S be the vertices shared by T and S. Let {t1, . . . , tk} = V (T )− I
be the vertices of T not shared with S.

G[V (T )] is connected by hypothesis (ii) of definition 3, therefore G[{t1, . . . , tk} ∪ I] is connected. Since
G[S] is connected (by definition of the cover set), it means that G[{t1, . . . , tk} ∪ S] = G[{t1, . . . , tk} ∪
I ∪ (S− I)] is also connected (by lemma 1). Also, D∗[V (T )] is connected because T is a trail in D, which
means that D∗[{t1, . . . , tk} ∪ I] is connected. Since D∗[S] is connected (by definition of the cover set),
it means that D∗[{t1, . . . , tk} ∪ S] = D∗[{t1, . . . , tk} ∪ I ∪ (S − I)] is also connected (by lemma 1).

But if G[{t1, . . . , tk} ∪ S] and D∗[{t1, . . . , tk} ∪ S] are connected, then property 4 of definition 2 is
contradicted, therefore S cannot be maximal unless {t1, . . . , tk} = ∅. Hence V (T ) ⊆ S. �

Proposition 1 Let D = (V,A) be a directed graph, G = (V,E) an undirected graph, P a path in D,
and S the cover set of P in graphs D and G. If a trail T in D exists such that T verifies SP (D, G), then
T is also a trail in D[S] verifying SP (D[S], G[S]), that is, (i) T ⊇ P , (ii) G[S ∩ V (T )] is connected and
(iii) T has maximum span in D[S] with respect to (i) and (ii).

Proof. Let T be a trail in D such that T verifies SP (D, G). By lemma 2, V (T ) ⊆ S, therefore T is also
a trail in D[S]. We will now prove that T verifies properties (i)-(iii) for graphs D[S] and G[S].

(i) By hypothesis (i) of definition 3, T ⊇ P .

(ii) Since V (T ) ⊆ S, G[S∩V (T )] = G[V (T )]. Since G[V (T )] is connected by hypothesis (ii) of definition
3, it follows that G[S ∩ V (T )] is connected.

(iii) Suppose there exists a trail T ′ in D[S] verifying SP (D[S], G[S]), that is, T ′ ⊇ P , G[S ∩ V (T ′)] is
connected and span(T ′) > span(T ). Because T ′ is a trail in D[S], V (T ′) ⊆ S, which implies that
S ∩ V (T ′) = V (T ′). Since G[S ∩ V (T ′)] is connected, it follows that G[V (T ′)] is also connected.
Moreover, S ⊆ V by definition 2, therefore T ′ is also a trail in D. Hypotheses (i)-(iii) of definition
3 are thus fulfilled for T ′ in D, meaning that T ′ verifies SP (D, G), which contradicts the fact that
T verifies SP (D, G). Hence, no trail T ′ can exist in D[S] that includes P such that G[S ∩ V (T ′)]
is connected and such that T ′ has greater span than T . T has therefore maximum span in D[S]
with respect to properties (i) and (ii).

We have proved that, if a trail T in D exists such that T verifies SP (D, G), then T is also a trail in
D[S] that verifies SP (D[S], G[S]). �

Proposition 2 Let D = (V,A) be a directed graph, G = (V,E) an undirected graph, P a path in D,
and S the cover set of P in graphs D and G. If a trail T in D[S] exists that verifies SP (D[S], G[S]),
then T is also a trail in D verifying SP (D, G), that is, (i) T ⊇ P , (ii) G[V (T )] is connected and (iii) T
has maximum span in D with respect to (i) and (ii).

Proof. This proposition is the converse of proposition 1. Let T be a trail in D[S] such that T verifies
SP (D[S], G[S]). By definition 2, S ⊆ V , therefore T is also a trail in D. We will now prove that T
verifies properties (i)-(iii) for graphs D and G.

(i) By hypothesis (i) of definition 3, T ⊇ P .

(ii) Since T is a trail in D[S], V (T ) ⊆ S. Then S ∩ V (T ) = V (T ), and since G[S ∩ V (T )] is connected
by hypothesis (ii) of definition 3, it follows that G[V (T )] is connected.

(iii) Suppose there exists a trail T ′ in D verifying SP (D, G), that is, T ′ ⊇ P , G[V (T ′)] is connected and
span(T ′) > span(T ). By lemma 2, V (T ′) ⊆ S and therefore S ∩ V (T ′) = V (T ′). Since G[V (T ′)]
is connected, it follows that G[S ∩ V (T ′)] is also connected. Moreover, T ′ is also a trail in D[S]
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(because V (T ′) ⊆ S). Hypotheses (i)-(iii) of definition 3 are thus fulfilled for T ′ in D[S], meaning
that T ′ verifies SP (D[S], G[S]), which contradicts the fact that T verifies SP (D[S], G[S]). Hence,
no trail T ′ can exist in D that includes P such that G[V (T ′)] is connected and such that T ′ has
greater span than T . T has therefore maximum span in D with respect to properties (i) and (ii).

We have proved that, if a trail T in D[S] exists such that T verifies SP (D[S], G[S]), then T is also a
trail in D that verifies SP (D, G). �
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