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Lexicographic optimization

Dynamic flux balance analysis is defined in the following way. Consider a vec-
tor xo containing the initial concentrations of metabolites and biomass in a cul-
ture and assume there are ng microbial species in the culture. Given some up-
take and production rates of metabolites for each species (exchange fluxes), feed
and discharge rates from the culture, mass transfer rates, and other dynamic pro-
cesses, a rate of change function f can be obtained for each of the components
of xg. The function f can then be integrated to find the concentration profiles
with respect to time, x(t). Consider that each species k has n’fL exchange fluxes
and define the linear maps B : R™ — R™ which obtain the exchange fluxes

from the n* metabolic fluxes. Formally, given the nonempty open set D, C R"=,
£ [to,t;] X Dy x R™ x ... x R"" — R™ vk : D, — R™, vk : D, — R",

vEp Dy — R™ for k = 1,...,ns, and x : [to, t5] = R™=:
x(t) = £(t,x(t), B'(v' (x(2))), ..., B™ (v"(x(t)))), Vt € (to,ty], (1)
X(to) = Xo,
where v¥ is an element of the solution set of the flux balance model of species k:

vF(x(t)) € arg max (cF)Tv,
VER™Y

s.t. SFv =0, (2)

vip(x(t) > v > vip(x(t)),

where S* € R"*™" is the stoichiometry matrix, cF € R™ is a vector of zeroes and
ones with ones only in positions of growth fluxes, and vI’i B v’fJ p are lower and upper
bounds as functions of the extracellular concentrations. This definition of DFBA
has a serious problem: the solution set of the LP (2) is a set-valued function, and
therefore, when it is nonsingleton it is not clear which element of the set v* should

take to carry-on with the integration.
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In the rest of this document, we will work with the standard form LP of (2). Let
AF € RrmXny ¢k e R™, B € Rm:

min (c*)Tv,
veR™S

st. Afv =g, (3)
v > 0.

It is well known that any linear program can be rewritten in standard form [1].
The information of v¥ 5 and v§, 5 is now in the right-hand side vector 3. Then, for
cach species k, let b* : D, — R"m. Harwood and coworkers [2] use lexicographic
optimization to render unique exchange fluxes by making them objective function
values of a priority list of linear programs. Let h* : D, — ]R”E, then:

x(t) = £(t,x(t),h' (x(t)),...,h" (x(1))), Vt € (to,ty], (4)
X(to) = X(-
The function h* = [pf ... hfl ] depends on the solution of a lexicographic linear
h
program:
REx(t) = min_(c})v,
veR™
st. APv = bF(x(1)), (5)
v >0,

andf0r2§i§n2

hi(x(t)) = min_(cf)Tv,
veR™S

A’ b (x(1))

(e})* h(x(t))
5.t A , (6)

(i)’ i1 (x(t))

v >0,

where c¥ € R™ fori=1,... ,n¥. A more compact version of (5) and (6) can be

obtained by defining the lexicographic minimization operator minL. Let the columns
of CF € R™: X" be the vectors ck fori=1,...,nF. Then,

h*(x(t)) = minL (C*)Tv,

VG]R"%~
s.t. APv =bF(x(1)), (7)
v > 0.

Harwood et al. [2] present an efficient algorithm to compute a basis that contains
optimal bases for all LPs in the priority list. This algorithm was not implemented
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in DFBAlab because of difficulties extracting the optimal basis information with no
artificial variables from LP solvers in MATLAB, but will be implemented in future
releases.

LP Feasibility Problem

A major problem for DFBA simulators is that the LP in (5) may become infeasible
as time progresses. In this paper we use the LP feasibility problem [1] combined
with lexicographic optimization to generate an extended dynamic system for which
the LP always has a solution. An LP feasibility problem finds a feasible point or
identifies an LP as infeasible. It has two main characteristics: it is always feasible
and its optimal objective function value is zero if and only if the original LP is
feasible. Any LP in standard form (3) can be transformed such that 3 > 0 by
multiplying some equality constraints by -1. Then, the LP feasibility problem will
have the following general structure [1]:

min E Si,
VER”’IE, sER™n =1

st. Afv4+s =g, (8)
v>0,s>0.

When an LP is constructed in this form, a feasible solution is obtained by setting
s = 3 and v = 0. DFBAlab uses the LP feasibility problem as the highest priority
LP in the lexicographic linear program presented in (5) and (6). Then, the second-
priority linear program maximizes biomass and the subsequent lower-priority LPs
obtain unique exchange fluxes.
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