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Supplementary Methods

Details of simulations studies on estimating the
power of association tests using EM

To study the power of testing for association between
a SNP and a phenotype of interest using the method
in the “Testing for associations between a SNP and
a phenotype in case-control studies” subsection, we
first generate case-control pooled sequencing data on
loci that are not associated with the phenotype and
repeat the process R = 1000 times. We then ob-
tain the empirical distributions of A. For a given
type I error v, we take the upper v percentile ¢, as
the threshold to decide whether a locus is associated
with the phenotype. Then we simulate case-control
data with true association for R = 1000 times, and
compute the fraction of times that the value of A is
above ¢, which is taken as an estimate of the power
of association with the phenotype.

Supplementary Results

Results on the accuracy of fem using the modified
measures of MSE and Cg

There are a few outlier estimates that are far away
from the true value. This indicates that the standard
MSE criterion used in the main text may not effec-
tively reflect the estimation accuracy of the param-
eters. Thus, we modify the MSE as follows. First,
remove the upper k percent and the lower x percent
of the estimated values of fem. Second, calculate the
mean squared error of the remaining fem’s, denoted
as 02, (), where the subscript m refers to this modi-

fied version. Here we let K = 5 and 10 and the values
of 02 (k)’s are presented in supplementary Tables S1

and S2, corresponding to the 16 scenarios in supple-
mentary Figures S2 and S3.

The effects of the number of chromosomes K in
a pool, the number of pools G, and the number
of reads n on the estimation accuracy of fem

To study the effects of the number of chromosomes
K in a pool and the number of pools G on the es-
timation accuracy of fem as an estimator of f, we
fix f = 1%, agtars = 1% and plot the histograms of
fem with n = 1000 in supplementary Figure S4. It
shows that fem maintains the nice property of un-
biasedness around the true value f as shown in the
“The effects of minor allele frequency f and sequenc-
ing error rate a on the estimation accuracy of fcm”
subsection, while fem as an estimator of f displays
considerable variance at the same time. However,
in supplementary Figure S5 where we plot the his-
tograms of fey, — frrac Wwhen n = 1000, the variance
of fem — fhac 1s significantly reduced compared to
fem in supplementary Figure S4. The smaller the
value of K is, the more significant the reduction in
variance is, which is also confirmed quantitatively in
supplementary Table S3. This observation indicates
that when the number of chromosomes K in each
pool is relatively low, fcm is a fairly accurate esti-
mate of the fraction of chromosomes fg.,. carrying
minor alleles, and the variance of fem is mostly due
to the variance of fga., which is an intrinsic vari-
ance of the sampling procedure from the population.



As the number of chromosomes K in each pool in-
creases, the variance induced by the algorithm itself
plays a more important role, while the variance of
frrac contributes less to the variance of fem due to
the larger sample size. In addition, supplementary
Figures S4 and S5 show a consistent trend of an
increase in the accuracy of fcm (or decrease in the
MSE) as the number of pools G increases and as
the number of chromosomes K in a pool decreases.

Supplementary Figures

This can also be seen from supplementary Table S3.

To study the effect of the number of reads n
on the estimation accuracy of fe, for f, we also
let n = 3000. The results are presented in sup-
plementary Figures S6 and S7, and supplementary
Tables S4 and Table S6. It can be seen that the ac-
curacy of fem increases with the number of reads in
each pool.
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Figure S1: The log values of the relative errors (RE) of favg and fem for the 288 simulations. The four sections
(72 simulations each) divided by the solid lines correspond to simulations with f = 0.1%,0.5%, 1%, 5%,
respectively. For favg the decrease by section indicates the significant effect of f on RE. Within each
section the two subsections (36 simulations each) divided by the dashed line correspond to simulations
with n = 1000, 3000, respectively. For favg the indifference between subsections indicate no effects of
n on RE. Within each subsection the four quarters (9 simulations each) correspond to simulations with
a = 0.05%,0.1%, 0.5%, 1%, respectively. For favg the step-like shape indicates little effect of G, K on RE,

compared to significant effect of «.
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Figure S2: The effects of f and « on the accuracy of fcm as an estimator of f. The histograms of fcm under
different combinations of f and « are shown, (K, G,n) = (100, 10, 3000).
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Figure S3: The effects of f and « on the accuracy of fcm as an estimator of f... The histograms of fem — frrac
under different combinations of f and « are shown, (K, G, n) = (100, 10, 3000).
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Figure S4: The effects of (K,G) on the estimation accuracy of fom as an estimator of f, (n, f, Qstart) =
(1000, 0.01,0.01).
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Figure S5: The effects of (K, G) on the estimation accuracy of fem as an estimator of frac, (7, f, Qstart) =
(1000, 0.01,0.01).



K=50 G=10 K=50 G=20 K=50 G=50

o 8 R
3 S =0.01 f=0.01
o Ostar=0.01 Ostar=0.01
5 n=3000 3 n=3000
P o > >
g S 2 o 2
g - c © o
z =l 2 o
3 o 2 o ©
L g [ fing
o
3 o
E
o o
T T T T 1
0.00 0.01 0.02 0.03 0.04 0.005 0010 0015 002 0025 0.030 0.005 0.010 0.015 0.020
fem fem fem
K=100 G=20 K=100 G=50
< =0.01 =0.01
o Osan=0.01 ° Osar=0.01
© o n=3000 © n=3000
> > @ >
3 3 3
2 2 2
o 2 o o
3 ¥ 3 9 3 Q
g g g °
iy i fing
o
& =) o
E
o o °
T T T T T T T 1
0.000 0.010 0.020 0.030 0005 0010 0015 0020 0025 0.005 0.010 0.015 0.020
fem fem fem
K=200 G=20 K=200 G=50
8 3
=0.01 ° =0.01
° Osan=0.01 3 Osar=0.01
3 e n= 3000 ° n=3000
> > > <
2 2 2
[ 3 o o o
z Q s v g 7
g ® o L o
[ w o w ~
N
S E|
o o o
T T T T 1 T T T T T 1
0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04 0,005 0010 0015 0020 0025 0.030
fem fem fem

Figure S6: The effects of (K,G) on the estimation accuracy of fom as an estimator of f, (n, f, Qstart) =
(3000, 0.01,0.01).
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Figure S7: The effects of (K, G) on the estimation accuracy of fem as an

(3000,0.01,0.01).
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Supplementary Tables

a = 0.05% a=0.1% a=0.5% a=1%

f TMSE  Cg MSE  Cg MSE (g MSE  Cg
0.1% 6.3e-07 3.7e-08 6.4e-07 1.2e-07 1.5e-06  9.3e-07 3.6e-06  3.2e-06
0.5% 3.4e-06 1.1e-07 3.4e-06 1.6e-07 4.1e-06  9.6e-07 5.1e-06  1.5e-06

1% 7.4e-06 3.8e-07 7.5e-06 5.1e-07 8.1e-06 1.4e-06 9.1e-06 2.7e-06
5% 3.3e-05  9.4e-06 3.4e-05  9.6e-06 3.8e-05 1.2e-05 4.9¢-05  2.0e-05

Table S1: The values of ¢2,(5) (defined in terms of MSE and Cg) for fem as an estimator of f or fgae for
different values of f and «, (K, G,n) = (100, 10, 3000).

a2,(10) a =0.05% a=0.1% a=0.5% a=1%

f MSE Cg MSE Cg MSE Cg MSE Cg
0.1%  4.9e-07 3.7e-08 4.8e-07 1.2e-07 7.9e-07 2.2e-07 1.1e-06  4.0e-07
0.5%  2.4e-06 1.1e-07 2.4e-06  1.5e-07 2.9e-06  6.6e-07 3.3e-06  8.6e-07

1% 5.2e-06  3.6e-07 5.2e-06  4.9e-07 5.7¢-06  1.4e-06 6.2e-06 2.2e-06
5% 2.4e-05 8.7e-06 2.4e-05 8.8e-06 2.6e-05 1.1e-05 3.2e-05 1.3e-05

Table S2: The values of 62, (10) (defined in terms of MSE and Cg) for fom as an estimator of f or feac for
different values of f and «a, (K, G,n) = (100,10, 3000).

G=10 G =20 G =50
K MSE Cg MSE Cg MSE Cg
50 3.3e-05 1.1e-05 1.5e-05 4.3e-06 5.5e-06  2.0e-06
100  5.3e-05 4.3e-05 4.5e-05 4.0e-05 1.8¢-05 1.6e-05
200 5.2e-05 5.4e-05 5.9e-05 5.9e-05 3.8¢-05 3.7e-05

Table S3: The values of MSE and Cg for fcm as an estimator of f and fg.c, respectively, for different values
of (K,G), (n, f, astart) = (1000,0.01,0.01).
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G=10 G =20 G =50
K MSE Cg MSE Cg MSE Cg
50  2.4e-05 4.2e-06 1.4e-05 2.6e-06 5.1e-06  1.4e-06
100  1.6e-05 5.6e-06 7.6e-06  2.4e-06 2.8¢-06 6.8e-07
200 2.5e-05 2.4e-05 1.6e-05 1.4e-05 7.5e-06  6.8e-06

Table S4: The values of MSE and Cg for fem as an estimator of f and fr,c, respectively, for different values
of (K,G), (n, f, astart) = (3000,0.01,0.01).

G=10 G =20 G =50
K 50 100 200 50 100 200 50 100 200
0% usp(®) L1805 26e05 28c05  8.8¢-06 1.9¢-05 3.3¢-05  3.0e-06 6.8¢-06 1.6e-05
0% 0,(5)  5.3e06 2.1e-05 2.8e-05  1.6e-06 1.8¢-05 3.4e-05  5.0e-07 5.7e-06 1.6e-05
02 usp(10)  1.2¢-05 1.8¢-05 1.8e-05  6.2e-06 1.2e:05 2.1e-05  2.1e-06 4.1e-06 9.2e-06
02 0,(10)  4.1e06 15e-05 1.9¢-05  1.3e-06 1.2e-05 2.2e-05  5.1e-07 3.2e-06 8.9e-06

Table S5: The modified mean-squared-error ¢2,(5) and o2 (10) of the estimated values of f for different

numbers of chromosomes in a pool K and numbers of pools G, (n, f, astars) = (1000, 0.01,0.01).

G=10 G =20 G =50
K 50 100 200 50 100 200 50 100 200
02 usp(®)  1.4e-05 9.1e-06 1.1e-05 7.2e-06 4.1e-06 6.7e-06 2.7e-06 1.5e-06 2.9e-06
U?ﬁ,cg(5) 2.3e-06 2.7e-06 1.0e-05 1.1e-07  9.2e-07  6.0e-06 1.9e-08 2.9e-07 2.6e-06
aﬁl’MSE(l()) 1.0e-05 6.2e-06 7.5e-06 5.0e-06 2.8e-06 4.2e-06 1.9e-06 1.1e-06 1.8e-06
afmcg(lO) 1.2e-06 2.2e-06 7.5e-06 1.2e-07  8.1e-07  4.0e-06 1.7e-08  2.6e-07 1.7e-06

Table S6: The modified mean squared error ¢2,(5) and o2, (10) of the estimated values of f for different

m
numbers of chromosomes in a pool K and numbers of pools G, (n, f, astars) = (1000, 0.01,0.01).

variants called TEMm < 0.2% fave < 0.2%
# total # dbSNP  # novel # total # dbSNP  # novel
a) Top 100 SNPs

EM-SNP 11 9 2 13 11 2

SNVer 10 1 9 10 0 10
b) Top 150 SNPs

EM-SNP 29 18 11 30 22 8

SNVer 30 4 26 26 2 24

Table S7: The total number of SNPs (2nd and 5th columns), the number of SNPs in the dbSNP database
(3rd and 6th columns), and the number of novel SNPs (4th and 7th columns) among the top a) 100 and
b) 150 EM-SNP or SNVer called SNPs with minor allele frequency at most 0.2% according to either fop, or
fave.- The dbSNP ratio for the SNPs called by EM-SNP is much higher than that for SNVer.
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variants called total known(dbSNP) novel
#Ti  #Tv #Ti #Tv #Ti1  #Tv
b) Top 100 SNPs

EM-SNP 9 2 7 2 2 0

SNVer 3 7 1 0 2 7
b) Top 150 SNPs

EM-SNP 20 9 13 5 7 4

SNVer 13 17 3 1 10 6

Table S8: The number of transitions (Ti) (2nd, 4th and 6th columns) and the number of transversions (Tv)
(3rd, 5th and 7th columns) among the top a) 100 and b) 150 EM-SNP or SNVer called SNPs with minor
allele frequency at most 0.2% according to either fem or fays. The Ti/Tv ratio for the SNPs called by
EM-SNP is much higher than that for SNVer.

16



