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MIMO Details

1 SBML format and graph model

The Systems Biology Markup Language (SBML) [1] is a free XML-based format for representing molecular
interaction networks. In the following, we only describe those components of SBML documents that are
used in our comparison algorithm. For a detailed description of the latest SBML release refer to [2].

An SBML document specifies a set of entities, generally denoted with the term species, that take part
in reactions. An SBML specie has two mandatory attributes: the id attribute, used to uniquely identify
the species entities in the document and the compartment attribute, a type of location where the reacting
entities are located. A specie has also an optional name attribute, of type string. A reaction component
is a statement that links one or more species. A reaction is defined in terms of the participating species
and it consists of:

• a possibly empty set of species called reactants

• a possibly empty set of species called products

• a possibly empty set of species called modifiers

• reversibility attribute: true/false

The set of reactants, products and modifiers does not uniquely identify a reaction: as for species, every
reaction is identified by a mandatory id attribute and an optional name attribute. A reaction can be seen
as a directed edge connecting a set of reactants to a set of products. The set of modifiers can be seen as
an attribute of the edge. The reversibility attribute, when equal to true, implicitly asserts that the role of
reactants and products in the reaction can be reversed. A specie in the SBML document can participate
in one or more reactions as reactant, product or modifier. SBML specifications allow the definition of
species that do not take part in any reaction and reactions that have empty sets of reactants, products
and modifiers.

The topology of an SBML map can be described by a labeled multidigraph, i.e. a directed graph that
allows multiple (parallel) edges between the same nodes. In detail, given an SBML document D, denote
with S,R,N and C the set of SBML specie id attributes, SBML reaction id attributes, SBML specie name
attributes and SBML compartment name attribute, respectively. The multidigraph G related to D is a
8-tuple (V,E, s, t, γ, κ, λ, µ) where

• V ⊆ S is a set of vertices. Each node in V represents a specie in the SBML document D. In our
model, the set V is a subset of all species in D since it contains only those species in the SBML
document that have a non-empty name attribute and that are involved in at least one reaction for
which both the set of reactants and modifiers are nonempty.

• E is a set of edges. There is an edge between every pair of nodes v, v′ ∈ V such that v is the
reactant and v′ the product of a reaction in D or v is the product and v′ the reactant of a reversible
reaction in D. Since two species v, v′ can be both involved in different reactions, there can be
several different edges starting from v and ending in v′ (and conversely).

• s : E → V and t : E → V are two functions that map every edge e ∈ E to its starting vertex
s(e) ∈ V and its terminating vertex t(e) ∈ V .

• γ : V → N is a labeling function that maps every vertex in V to the name attribute of the
corresponding specie.
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• κ : V → C is a labeling function that maps every vertex in V to the compartment name attribute
of the corresponding specie.

• λ : E → R is a labeling function that maps every edge in E to the id attribute of the corresponding
reaction. Note that the λ function is not one-to-one, since multiple edges can have the same id
attribute.

• µ : E → 2V , where 2V denotes the set of all subsets of V (including the empty set), is a labeling
function that maps every edge e ∈ E to the set of modifiers of the reaction λ(e).

We do not encode in our multidigraph those species that are isolated in the model and those that have
no name attribute. Moreover we do not encode those reactions that have an empty set of reactants or
products while the set of modifiers (defined as an attribute of the edges) is allowed to be empty.

In order to simplify the notation, we will abuse the above notation in the following way. The func-
tions s, t, γ, λ and µ will be ambiguously used on distinct graphs. For instance, we will always denote
with s the function that returns the starting vertex of an edge, even if s is used on edges belonging to
different graphs (in which case, the domain of s is different on the two graphs). Moreover, we assume
that these functions are naturally extended to paths in the following way. Given p = e1...en ∈ E+, we
use the following conventions:

• s(p) denotes s(e1) and t(p) denotes t(en),

• λ(p) denotes the sequence λ(e1)..λ(en),

• µ(p) denotes the set ∪n
i=1 µ(ei).

2 Graph comparison procedure

In our model, the overlap between two multidigraphsG1 = (V1, E1, s, t, γ, κ, λ, µ) andG2 = (V2, E2, s, t, γ, κ, λ, µ)
is obtained by detecting the largest possible (consistent) set of compatible matchings between non-
overlapping shortest paths in the two graphs. In particular, this induces a one-to-one mapping between
subset of reaction pathways, entities (species) and compartments. This approach is quite powerful and
flexible and allows gap and mismatches identification a posteriori from the computed solution.

The implementation of our algorithm relies on two user-defined parameters:

1. Maximum length of simple pathways: N specifies the maximum-length for the computation of the
shortest paths.

2. List of allowed/forbidden matchings between nodes and reaction pathways: the list is used to con-
straint or extend the set of possible mappings between the two graphs. In detail, given two species
v1 ∈ V1 and v2 ∈ V2, the list can contain mappings of the form:

• v1 ↔ v2, i.e. the specie v1 can be mapped with specie v2 even if γ(v1) 6= γ(v2) (v1 and v2 have
different name attributes)

• v1 6↔ v2, i.e. the specie v1 cannot be mapped with specie v2 even if γ(v1) = γ(v2) (v1 and v2
have same name attributes)

Thus we say that two species v1 ∈ V1 and v2 ∈ V2 are equivalent, v1 ∼ v2, if:

(a) γ(v1) = γ(v2) (i.e. v1 and v2 have the same name attribute) and the mapping v1 6↔ v2 is not
explicitly forbidden by the user or
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(b) γ(v1) 6= γ(v2) but the mapping v1 ↔ v2 is explicitly allowed by the user.

Furthermore, given two pathways p1 in G1 and p2 in G2, with λ(p1) = r1..rm and λ(p2) = s1..sn,
the user is allowed to explicitly forbidden the mapping between p1 and p2, r1..rm 6↔ s1..sn.

The algorithmic procedure implemented in MIMO consists of 4 main steps.

i) Simple paths computation. Given two graphs G1 and G2, the algorithm computes and stores the set
of simple paths, P1 and P2, of G1 and G2, respectively. Formally, given a graph G = (V,E, s, t, γ, κ, λ, µ),
a sequence of edges p = e1...en ∈ E+ is a simple path if:

(p1) p is a valid path in G: ∀1 ≤ i < n, t(ei) = s(ei+1)

(p2) p is non-overlapping : ∀1 ≤ i 6= j ≤ n, λ(ei) 6= λ(ej)

(p3) p is minimal : @p′ ∈ E+, with properties (p1-2), such that |p| > |p′| and s(p) = s(p′), t(p) = t(p′)

(p4) p is of maximum length N .

A simple path is a valid path in G (p1) of maximum length N (p4). Moreover, a simple path is non-
overlapping in G in the sense that it identifies a non-overlapping chain of reactions ids (p2). Finally, a
simple path between nodes v, v′ is required to be minimal (p3), i.e. all simple paths are shortest paths.
Note that, by definition, a simple path is allowed to start and end at the same vertex.

In conclusion, this step returns two lists of simple paths P1 and P2 of maximum length N for G1 and G2,
respectively.

ii) Simple paths matching. In this phase, the algorithm computes and stores the list of equiva-
lent simple paths in the two maps. The path matching procedure can be formalized in the following way.
Consider two simple paths p1 = e1...em ∈ P1 and p2 = e′1...e

′
n ∈ P2. Then p1, p2 are equivalent if the

following four conditions hold:

(m1) p1 and p2 have equivalent extremes: s(p1) ∼ s(p2) and t(p1) ∼ t(p2)

(m2) p1 and p2 do not contain matchable subpaths: ∀i ∈ [1,m), j ∈ [1, n), t(ei) 6∼ t(e′j)

(m3) p1 and p2 identify a one-to-one mapping between species and compartments:

• s(p1) = t(p1) if and only if s(p2) = t(p2)

• κ(s(p1)) = κ(t(p1)) if and only if κ(s(p2)) = κ(t(p2))

(m4) the mapping λ(p1) 6↔ λ(p2) is not explicitly forbidden by the user

In order to be equivalent, two simple paths are required to have equivalent initial and terminal vertices
(m1). The matching between two simple paths is not considered if the matching between the correspond-
ing reaction pathways is explicitly forbidden by the user (m4), if they do not induce a one-to-one mapping
between species and compartments (m3) and if they contain matchable subpaths (m2), i.e. if there are
two equivalent intermediate nodes in the two paths.

In conclusion, this step returns a set of equivalent path pairs

E = {(p1, p2) ∈ P1 × P2 | p1 ∈ P1 and p2 ∈ P2 are equivalent simple paths according to rules (m1-4)}.
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iii) Maximal sets of compatible simple path pairs. In this phase, the procedure selects the maximal
consistent subset of E, computed at the previous step (ii). Note that each pair of paths in E identifies
a small overlap between G1 and G2. Not all of such small overlaps are compatible/consistent.A subset of
E is consistent if it induces a one-to-one mapping between species, compartments and reaction pathways
and it is maximal if it is not a proper subset of any other consistent set. The problem of computing
the maximal consistent subset of E can be recoded as the problem of computing the maximal clique of
the compatibility graph on E. The maximal clique of the compatibility graph is computed here with the
standard Bron-Kerbosh Version 2 (BKv2) algorithm [3]. In the rest of this section we describe in detail
the exact procedure used to select a maximal consistent subset of E.

The compatibility graph is an undirected graph (without self loops) that describes the compatibility
between pairs of matched paths. Each vertex of the compatibility graph corresponds to one pair of
matched paths in E. An edge between two vertices of the compatibility graph is present if and only
if the two pairs of matched paths respect the following two properties. Two pairs of equivalent paths
(p1, p2), (p′1, p

′
2) ∈ E are compatible if:

(c1) the induced mapping between reaction pathways is one-to-one: there is a common reaction between
λ(p1) = r1..rm and λ(p′1) = r′1..r

′
m′ or between λ(p2) = s1..sn and λ(p′2) = s′1..s

′
n′ , i.e.

{r1, .., rm} ∩ {r′1, .., r′m′} 6= ∅ or {s1, .., sn} ∩ {s′1, .., s′n′} 6= ∅

if and only if

• λ(p1) = λ(p′1) and λ(p2) = λ(p′2), or

• λ(p1) and λ(p2) are the reverse of λ(p′1) and λ(p′2), respectively, i.e. λ(p1) = r1..rm = r′m′ ..r′1
and λ(p2) = s1..sn = s′n′ ..s

′
1

(c2) the induced mapping between vertices and compartments is one-to-one: consider the set of vertices
mappings

X = {s(p1)↔ s(p2), t(p1)↔ t(p2), s(p′1)↔ s(p′2), t(p′1)↔ t(p′2)}

Then ∀x↔ y, x′ ↔ y′ ∈ X, it must be

• x = x′ if and only if y = y′

• κ(x) = κ(x′) if and only if κ(y) = κ(y′)

Two pairs of matched paths are compatible if the induced mapping between reaction pathways is one-
to-one, i.e. a chain of reaction ids in one graph can be matched at most with a unique chain of reactions
id in the other graph, and, in particular, every single reaction id is required to belong at most to a unique
pathway of reaction ids or its reverse (c1). Moreover, two pairs of matched paths are compatible if the
induced mapping between vertices and compartments is one-to-one (c2). This last condition avoids, for
example, a reaction starting and ending in one single compartment to be mapped with a reaction that
spreads among two different compartments. Note that, a subset E′ ⊆ E for which each pair of matched
paths respect rules (c1-2) assures that the subset E′ is consistent in the sense that it induces a one-to-one
mapping between species, compartments and reaction id pathways.

The computation of the maximal compatible subset of E is in general computationally hard both in
terms of time and memory usage. For this reason, the computation of the maximal compatible subset of
E is iteratively performed in N steps. First of all, E is spliced into N disjoint subsets, E1, ..., EN where
for 1 ≤ i ≤ N

Ei = {(p1, p2) ∈ E | |p1| ≤ i, |p2| ≤ i and (|p1| = i or |p2| = i)},
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where |p| is the length of pathway p. Thus, at step 1, the procedure computes the compatibility graph
on E1 and a maximal clique on such compatibility graph with the BKv2 algorithm. The maximal clique
on E1 identifies an initial solution E′ ⊆ E1 ⊆ E. At step 2, the procedure selects from E2 the subset
E′2 ⊆ E2 of all path pairs that are compatible with all path pairs in E′ with respect to rules (c1-2). As
in the previous iteration, the procedure builds the compatibility graph on E′2 and detects the maximal
clique of such compatibility graph with the BKv2 procedure. The solution found is added to E′. This
procedure is iteratively performed for N steps. At the end such iterative procedure, the set E′ ⊆ E
is a maximal consistent subset of E and it encodes a solution for the overlap between G1 and G2. We
remark that, due to our iterative procedure for the selection of the elements, while E′ is always maximal,
its is not necessarily the largest possible; that is, there can be maximal consistent subsets of E with a
larger number of elements than E′. On the other end, our heuristic approach for the selection of E′ has
the advantage of speeding up the computation and of giving more importance to the shortest pathways
matches first: in this sense, the procedure iteratively builds a solution by detecting first the most safe
similarities among the two graphs,

When matching two paths, the matching between the modifiers (if present) computed directly is not
convenient from a computational point of view therefore MIMO detects mappings between modifiers a
posteriori. After the computation of the subset E′ ⊂ E, the procedure setups the mapping between those
modifiers that appear in the selected pathways. The procedure builds a list of modifier pairs (i.e. modi-
fiers that can be mapped according to ∼), it builds the compatibility graph on such list and then detects
a compatible set of mappings between modifiers by selecting a maximal clique on such compatibility graph.

iv) Overlap score. The maximal subset E′ ⊆ E computed in the previous step detects a subgraph
matching between G1 and G2. The comparison score S associated to E′ is defined as

S(G1, E
′) =

P
r∈R1

w(r)

|R1| ,

whereR1 is the set of reaction identifiers in G1 and w(r) is a weight associated to the reaction r, computed
as

w(r) = |RE(r)|+|PE(r)|+|ME(r)|
|R(r)|+|P (r)|+|M(r)| ,

where R(r), P (r),M(r) denote the set of Reactants, Products, Modifiers of reaction r, respectively, and
RE(r), PE(r),ME(r) denote the set of Reactants, Products, Modifiers of reaction r contained in E,
respectively. As a result w(r) = 0 if r has no match in G2 and w(r) = 1 if all reactants, products and
modifiers of r have a match in G2 with respect to E. The score for G2 is computed equivalently by
S(G2, E) (normalized on |R2|). Note that, since the score S is normalized with respect to the size of
the graph, it is in general not symmetric, i.e. in general S(G1, E) 6= S(G2, E). This scoring function
provides a value in [0, 1] and roughly measures how much of the graph G1 is contained in G2 according
to E (equivalently, for G2).

Implementation details

Our software has been implemented in C language by using the libSBML [4] interface library version
4.1.0. The libSBML library provides routines for reading, writing, manipulating and validating SBML
documents. Our implementation takes in input two valid SBML documents and there is no need of
conversion into an intermediate format.

The memory usage and the running time of our algorithm is generally bound by the running time of
the BKv2 algorithm [3], used in step (iii) for the computation of all maximal cliques of the compatibility
graph. The BKv2 algorithm is efficient in practice [5] but, even with clever pivoting strategies, its running
time depends also on the number of possible maximal cliques in a graph, which can be exponential on
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the number of nodes [6]. In order to provide some control on the running time of the algorithm in the
most complex cases, we allow the user to bound the running time of the BKv2 procedure by specifying
a maximum number of solutions and/or a maximum amount of time for the execution of the BKv2
procedure.

Finally, if required by the user, during the computation, the algorithm can avoid to take into con-
sideration the compartment constraints (i.e. it does not assure that the mapping between compartments
is one-to-one) and it can avoid to find a mapping between modifiers (so the reaction weight in the final
score is normalized with respect to reactants and products only).

Our implementation provides also the computed overlap in SBML format. In particular, if requested
by the user, the executable saves three SBML files related to the solution found. Two of these documents
correspond to the SBML documents in which the non-matched reactions have been removed. In these
files the matched reactions are saved in their full definition, i.e. all reactants, products and modifiers of
the reaction are saved, even if they have not been matched in the computed overlap. The third SBML
file contains the true overlap between the two molecular interaction maps. In such file, every matched
pair of reaction pathways is saved as a unique reaction. Only those reactants, products and modifiers
that have been matched are saved into the document. In addition, in order to simplify the inspection of
such SBML documents, a text file listing the mappings between species, reactions and compartments is
also saved.
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